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On Eigenstructure-Based Direct Multichannel
Blind Image Restoration

Hung-Ta PaiMember, IEEEand Alan Conrad BovikFellow, IEEE

Abstract—Existing eigenstructure-based direct multichannel ~ There are two classes of approaches to blind image restora-
blind image restoration techniques include nullspace-based and tion. One class identifies the blur first and then uses it to restore
direct deconvolver estimation technl_qu_es._ The nullspace-based the original image with one of the conventional image restora-
approach can be formulated as an optimization problem. We show tion algorithms. Algorithms in this class make more assump-
that this formulation implies a new subspace-based approach ™ g g. . . .p
that uses matrix operations. This new approach has the same tions on the original image, for instance, that the image consists
advantages as the nullspace-based one but requires less compuef point sources and edges. Therefore, their applications are lim-
tational complexity. Under some mild conditions, its complexity jted. The other class simultaneously identifies the blur and re-
is equal to that of the FFT. Furthermore, the relation among the gire5 the original image. All methods in this class are either
nullspace-based approach, the dlrept decqnvolver estimation and iterative or recursive. Tvbically. thev suffer from convergence
the new subspace-based approach is studied. - - 1yp Y: . y ) g

_ _ ) _ and/or stability problems. A review article [3] and an updated
nu'|?sd2§;e Zﬁggs;i“”d deconvolution, image restoration, yersion [4] for completeness on this topic are available. Some-
hace, pace. times the blur function is only partially determined, as in [5].

In some applications, several blurred versions of the same
|. INTRODUCTION original image are available from different blurring channels,
Jor instance, in short-exposure image sequences. Restoring the

astronomy and remote sensing, the observed images %rljglnal image in this scenario is calledultichannel blind

degraded by distortion. Distortion may arise from, for examplkmage restoration Two clgsses of muIthhanneI blind 'mage
rﬁ&toratlon algorithms exist. One class includes extensions of

atmospheric turbulence, relative motion between an object a . . .
P ) ggle-channel blind image restoration approaches [6], [7].

the camera, an out-of-focus camera, or variations in electroif laorithms in this ¢l h h bl h

imaging components. Restoration of the degraded images Ee algorithms '8 tlsbc_l_ass at\)/f € Samti pro _en?s, shuc als

generally desirable for further processing or interpretation nvergence and stability problems, as their single-c anne
counterparts [3], [4]. The other class encompasses extensions

the images [1]. . . . . . S
To restore the original image, a model of the original imag%f t;lrllr;(:ismultlchannel one-dimensional (1-D) signal estimation

and a degradation model are first assumed. The original ime{a .

may also be regarded as either a deterministic or stochasti ecen_tly, Tongtal.[8], [.9] proposedanovelalgorlthmto es-

signal. Itis blurred by a linear or nonlinear process. An additi\}gnate blind 1-D C?’T‘m“”'ca“o” channels.. They aSS.””.‘ed that

or multiplicative noise process may be generated in the acqu nal§ grgdetermmlsuc, the channels are I|negr spatial invariant
) finite impulse response (FIR) functions with known length

tion of the images. Because constraints on the degradation N g :
the original image vary with the application, many differenim that the noise is additive. They oversampled the received
algorithms exist ’ -D communication signal temporally, spatially, or both tem-
Many conventional approaches have been developed to co?ﬁ[a"y and spatially. The oversampled signal could be mod-
eled as the output of a multichannel system driven by the same

pensate for the blur function when it is known [2]. More com-

monly, however, the blur function is unknown. It is not prac§!gnal' Based on the second-order statistics of the oversampled

tical to assume the availability éfaining images either. In such signal, the channel was estimated using algebraic techniques. In

cases, a model of the blur is often assumed, for instance, a |inggpe-free cases, the channels could be exactly recovered, up to

space-invariant filter. When the blur is unknown, the probler"?u scalar m_u_ItipIier. In noisy cases, thg algorithm also obtained
is calledblind image restorationlt is a very difficult problem very promising results. The original signal was extracted by a

since there are two unknowns, the original image and the b pssical signal estimation algorithm, for instance, using Wiener

and only one equation, the blur model. lltering based on the estlmgted channel. o .
Several approaches, which followed this idea, for multi-
channel 1-D blind signal deconvolution have been proposed
to identify the channel [10]-[12]. One of them is the so-called
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of the input from one of the outputs should be equal to thaf the constrained optimization problem, the direct deconvolver
estimate from another output. estimation algorithm is equal to the new algorithm.

Based on the Bezout identity for coprime polynomials [17], The remainder of this paper is organized as follows. Section Il
Slocket al.[13], [18] proposed an algorithm to estimate equaldescribes a model for a multichannel imaging system and de-
izers. The channel and the equalizer could be considered agiaes notation. In Section I, we address the different optimiza-
analysis and synthesis filter bank. By convolving the degradédn problems and propose a new algorithm. The implementa-
image with the equalizer, the original image could be estimatdan issues of the new algorithm are discussed in Section IV.
In [19], using ideas similar to the least-squares approach in tBection V derives the relation between the new algorithm and
channel estimation, a direct estimation of the equalizer was ptbe direct deconvolver estimation algorithm. Simulation results
posed. using the new algorithm are reported in Section VI. Finally, we

By extending the least-squares approach and the algorithriefly conclude our contributions in Section VII.
of Slocket al. to two dimensions, Harikumaat al. [20], [21]
developed an algorithm for multichannel blind image restora- [I. PROBLEM STATEMENT
t?on. The algoritr_]m estimated the blur func_tigns _first and/or As shown in Fig. 1, the output of thith channel in an
find restorapon filters ((_jeconyolver). The or.lgmal image was,_-nannel EIR LTI image system is given by
restored using conventional image restoration methods or by
convolving the observed image with the restoration filter. Gi- 20 = B0 g 4 @ 1)
annakiset al.[22] proposed two algorithms at about the same
time. One algorithm is similar to the algorithm of Harikunear where

al. The other is a direct deconvolver estimation algorithm which = ith observedn; —1; +1) x (n2 — > + 1) degraded
is an extension of the direct equalizer estimation algorithm [19]. image;

In the noise-free case, the algorithms developed by Harikumar:') ith Iy x I3 blur function;

et al. and Giannakigt al. can obtain the orignal image, upto s n1 X n2 original image;

a scalar multiplier, as their 1-D counterparts. However, in the ¢®” additive noise.

noisy case, the obtained image suffers from noise amplificatidror convenience, let), A, s andc(® be indexed fromig —
Instead of identifying the channel or estimating the equalizér, /2 — 1) to (n1 — 1,n2 — 1), from (0,0) to (L — 1,12 — 1),

an algorithm was proposed to estimate the original 1-D sigrf&®®m (0,0) to (ny — 1,n> — 1) and from {; — 1,i> — 1) to

directly in [23]. It employed the null space of a special matrikt1 — 1,72 — 1), respectively.

constructed by the original signal. Another algorithm was then In this paper, all lowercase characters are scalars. All vectors

proposed by exploiting the column space of the special matake column vectors and denoted by boldface lowercase charac-

[24]. The estimated signals of both algorithms are the same.!@s. Uppercase and boldface uppercase characters denote ma-

[25], the variants of these two algorithms and the direct equéliices. The largest/smallest eigenvalue means the eigenvalue of

izer estimation algorithm were shown to be equivalent. In addhe largest/smallest magnitude. Other notation used is as fol-

tion, these two algorithms result in better signal estimation thé@WSiT

the channel identification algorithms. : transpose;
In [26]-[28], using the null space approach, Raial. pro- |-l _Frob_enius norm,
posed an algorithm for direct multichannel blind image restora-1I identity matrix;
tion. This algorithm and the direct deconvolver estimation al- diag{ A} main diagonal ofA
gorithm aredirect multichannel blind image restoration algo- N{A} null space ofA
rithmsbecause they do not require other algorithms to estimateR{A} range ofA (i.e., column space o).

the original image. In the noise-free case, the original image c4/¢ also abuse notation and wrif¢{A}/R{A} to mean
be exactly restored, up to a scalar ambiguity. On the other haAdMatrix whose columns form an orthonormal basis for the

there is no noise amplification in the noisy case. null/column space oA
In this paper, we first pose the restoration problem in noisy
cases using the null space as a variety of nonlinear optimiza- lll. SUBSPACEAPPROACHES

tion problems with different constraints. By properly choosing, Review of the Null Space Approach

the constraints, these optimization problems can be solved using . , .
matrix operations. Moreover, in the noise-free case, their solu-g‘S in [26]-{28], define (see the equation at the bottom of the

tions are equal to the original image. We then formulate a ngvxei‘Xt page)lwhirel ande a(;efrjun;bebrs of Sh'f;S X and.,,,
constrained optimization problem for image restoration usiriﬁzp;cr:y;mi;—n %m;gltfgﬁme(lln)e Tﬁeosvi(::;;folr{m::;grzferesent
the column space. This new problem is similar to but diﬁ‘erelat termined b P dk.. Theref Co th ise.f

from the one in [24]. A new algorithm using matrix operationstoe ermined by:; andk,. Therefore, in the noise-free case
solve the new problem is proposed and its implementation issues X — HS.

are discussed. Secondly, we compare the new algorithm with the

direct deconvolver estimation algorithm by techniques similar Definer;, = I3 + k1 — 2 andry = Iy + k2 — 2. Notice
to [25]. The direct deconvolver estimation algorithm can also lieat the matriceX, H andS aremki ks x (n1 — r1)(na — r2),
formulated as a constrained optimization problem. Using a dif+k1 k2 % (r14+1)(r2+1) and(r1+1)(r2+1) x (n1—r1 ) (na—rs2)
ferent constraint and a different weighting on the object functianatrices, respectively. [H has full column rank by properly
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1)

e choosingk; andks, then A {X} = A{S}. Notice that\'{S}
8 20 s an((ns —r2)(n2 - 72)— (12 + D)(r2-+ 1)) X (3 — 1) (2~

e r2) matrix. Letvy, o, andv, ., be the(q, ) entry of V{S}
B2 a5 22 and N {X} respectively. Define (see the equation shown at the

bottom of the next page). Notice that the mat¥ixs an((n; —
7’1)(712 — 7‘2) — (7’1 + 1)(7’2 + 1))7’17‘2 X nino matrix. v/

: . i p1.p2’
elm V! andV’ are defined with!, = asv,, ,,, Vp, andV with
<. (™) Vg .42~ IN the noise-free cas®{V’'} = R{V}. Thus,
Fig. 1. Single-input multiple-outputimage-blur model. The blurring functions
RO A3 h™) are assumed to be LTI FIR filters. Vs=0. (2)
—[p(D) (2) (m) 1T
Xpype =T psr Tpypsr -+ Ly o]
Xp1,lp—1 Xp1,lo T Xp1,no—ko
Xp1,le Xpy,la+1 o Xpyng—ko+1
Xy, = . . . :
Xpilotke—2  Xpylotke—1 " Xp1,ne—1
ng —ly — ko +2 blocks
X1 Xy, e Xy
Xy, X1 0 Xkt
X= . ) . .
R Xogrb—2 Xygr—1 - Xp1
ny — {1 — k1 + 2 blocks
—[pM) (2) (m) 1T
hPl P2 _[hm D27 hP1 P2t hPl 7172]
hP1 da—1 hP1 A2—2 T hP1 ,0 0 0
g | 9 by by o hp o0 0
b1 —
Lo e 0 byt hy o hy, 0
I3 + k2 — 1 blocks
_Hl1—1 Hl1—2 Ho 0 0
H-— 0 H,_1 H,_» - Hy 0
Lo 0 Hy 1 Hy o2 Hy
I + k1 — 1 blocks
T
S 2[30,0, 50,15+ +-750,n2—1,51,0,- -+ Snlfl,nzfl]
[ Sp1,0 Sp1,1 T Sprme—la—ka+1
Spy,1 Sp1,2 o Spyng—lo—ke 42
Sp, = .
LSpilatke—2  Spilathks—1 7" Sp1,nz—1
ng —ly — ko +2 blocks
o So S1 e S k4L
Sl 52 Tt S’nl—ll—kl—l—Q
S = . . : .
L Sti4k—2  Sttk—1 - Sni—1

ny — 1l — k: + 2 blocks
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If the dimension of the null space & is equal to one, then the Wher&s]f1 po andyfhpz are the p172+p2)throw of S andyY, re-

original image can be exactly restored. For convenience, exapectively. The difference between (3) and (4) is the constraint.
restoration means up to a scalar ambiguity. Throughout our di3bviously, in the noise-free case, these two problems have the

cussion, we assume original image as their solution. Actually, we can find the solu-
Al) [ andl, are known; tion of (3) by solving (2). The Lagrangian of (4) is
A2) H has full column rank;
A3) dimension of the null space &f is equal to one. oo
Several approaches can be found in [21] and [22] to determind YA {X}||? + Z Z (s e A I ()
[, andl,. The other assumptions can be satisfied under some p1=0 p2=0

mild conditions [28].
28] where),, ,, are called Lagrange multipliers. However, it is im-

possible to find the optimal solution of the problem because the

sy, .0 ||? terms are unknown. To release the constraint in (4) by
In noisy cases)V{X} is an estimate oV {S} and, usually, setting),, ,, = A, (5) becomes

the matrix/\/{X} is an((nl — 7’1)(712 — 7’2) — mk‘ll{ig) X (711 —

B. Formulation of Optimization Problems

r1)(ng — o) matrix. R{V'} # R{V}. Exact restoration is IYN{XHIZ + MY = [1S]P)- (6)
impossible. We can estimate the original imad®y solving the
following optimization problem Therefore, we obtain another constrained optimization problem

arg min || YA{X}|?
arg min ||[YA{X}||? S I (X3l
y

subject to|| Y]|? = 1. 7
subject tofy||> = 1 (3)
Lemma 1: Equation (7) has as the unique solution in the
whereY andy are corresponding matricesgfss istoS and noise-free case.
s, respectively. The solution of (3) is equal to the right singular ~ Proof: See Appendix A-1.

vector corresponding to the smallest singular valu¥ oAlter- Thus, the original image can also be restored by solving (7).
natively, the original image can also be estimated by solving theOn the other hand, if the matrBd has full column rank, then
following optimization problem: the column spac®{X7 } of X* is equal to the column space

R{S7} of ST in the noise-free case. In the noisy caR¢ X7 }
isan(ny—r1)(na—re)x (r1+1)(r2+1) matrix and an estimate

of R{S7 }. Following the same argument as above, we form the
optimization problem

argmin |[YA{X}|?
y

subject tol|y,, 4, 1> = lIsp, p |7
prope pope arg max ||Y’R{XT}||2
Y

forp, =0,1,...,r andpy, = 0,1,...,79 4) subject to|| Y||? = 1. (8)

Vp1.p2 =(nr2—r2)p1+p2,01 U(no—ra)p1+p2,1s -+ >

V(ng—rg)pr4pz,(ni—r1)(ng—rs)—(r1+1) (2 +1)—1]T

V.0 Vpio1 e Vpi,no—ra—1 0 ... 0
V = 0 Vp170 VPI:I o VPl:TLz—Tz—l . 0
P —
- 0 - 0 Vp1,0 Vpi,1 T Vping—re—1
no blocks
rVo V1. an—rl—l 0 0
V _ 0 VO ‘/1 an—’l’l—l .. 0
LO --- 0 Vo i an—rl—l

~

n1 blocks
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C. Matrix Operations
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Proof: See Appendix A-3.

T
Now, we would like to solve the optimization problems (7% Letug, 4, be the(qi, g2) entry of R{X* } and (see the equa-

and (8). Define

Wpy,ps =Wp1Wps,

ion shown at the bottom of the page). Notice thgf ,,, U,,
andU are defined similar t&,, ,,, V,,, andV. The matrixU

is an(r; + 1)2(ry + 1)? x nyny matrix. LetU = UW.,

Lemma 4: The right singular vector corresponding to the

Wp10 0 0 largest singular value o' is equal to the product of the ma-
W — 0 Wp, 1 0 trix W—1 and the unique solution of (8).
L : . Proof: See Appendix A-4.
(') 0w In other words, the product of the matrW and the right
- pin2—l singular vector corresponding to the largest singular valug of
Wo 0 - 0 is equal to the unique solution of (8).
W = 0 W, . 0
: . . . IV. | MPLEMENTATION
L O 0 W, A. Two Algorithms
where Based on the derivation in the section above, two algorithms
for direct multichannel blind image restoration are summarized
p1+1 0<p; <7 —1 as follows. The first algorithm exploits the null space of the
wp1 = \/ﬁ < <ng—r—1 matrix X of the blurred images.
1 n—r <p1 <np—1 1) ConstructX from the blurred images.
v TR 0< 0 <1 2) Estimate the null spack’{S} of S from the null space
Vet =P2=727 N{X} of X.
wpr =S Tt 2Sp2Snz—r2—1. 3) Construct the matri®% from the orthonormal basidlg
\/ﬁ ne —19o <pp<ng—1 of estimatedV {S}.
4) Obtain the matrix¥ by multiplying V with the diagonal
Notice thathW is annin, x nin» matrix. LetV = VW. The matrix W.

next lemma implies a method to obtain the unique solution of 5) Find the product oW and the right singular vector cor-
(7) using matrix operations. responding to the smallest singular valuévaf

Lemma 2: The r|ght Singu|ar vector Corresponding to the The product is the restored image. The second algorithm is
smallest singular value 3f is equal to the product of the matrixbased on the column spaceXf
W ! and the unique solution of (7). 1) ConstructX from the blurred images.

Proof: See Appendix A-2. 2) Estimate the column spa@&{S7 } of S from the column

In other words, the product of the matr®W and the right spaceR{X7} of X.
singular vector corresponding to the smallest singular value of 3) Construct the matriXJ from the orthonormal basBgr
V is equal to the unique solution of (7). of estimatedR {S7 }.

Lemma 3: Equation (8) has as the unique solution in the  4) Obtain the matrixU by multiplying U with the diagonal

noise-free case. matrix W
= T
Up, .ps —[U/(nz—rz)Pl-I-Pz,Oa U(ng —rg)pr4pa,ls- -+ ,U(n2_7,2)p1+p27(7,1_1_1)(1,2_1_1)_1]
Up, 0 Up1 Up, o —rp—1 0 o 0
0 w0 Uy, u 1" 0
— P1, P1, P1, Mg —7
]Jp1 = . 1 . 1 1,2 —"T2
L 0 . 0 U, 0 Uy, 1 Wy, ny—rp—1
ns blocks
UO Ul Unlf’l‘lfl 0 . 0
v=|9 Uo U Uy ro1 0
LO --- 0 Uy U, U, Cro1

n, blocks
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5) Find the product oW and the right singular vector cor-Sincel/ is a unitary matrix and — D is a diagonal matrix,

responding to the largest singular valuelf
Again, the product is the restored image.

the eigenvalue decomposition 82V equalsUZ(I — D)U.
Thus, the eigenvector corresponding to the smallest eigenvalue

In the noise-free case, both algorithms exactly restore the UTU equals the eigenvector corresponding to the largest
original image, up to a scalar ambiguity. In practice, the noiségenvalue ofvV7V.

termse(® in (1) cannot be ignored. Define

—[o(1) (2) (m) 1T
€p1,p2 _[ePhPZ »Cpriper o Cpy 7P2]
Cp1lz—1 Cp1.lz Cp1.nz—ko
Cp1,lz Cp1,la+1 Cp1ng—ka+1
Epl = . .
L€py latka—2  ©pylotka—1 ©p1.na—1
[ Eu1 Ey, Eny iy
Ey, By T A
E= . . .
LBy +—2 Bk —1 B
Therefore
X=HS+E.

Generally, becaus#’{X} # N{S} andR{X7} # R{S7}

Remarks 1:Since VIV is also positive semidefinite, all
of its eigenvalues are nonnegative. Therefore, all eigenvalues
of UTU and VTV are less than or equal to one. In fact, the
smallest eigenvalue oVTV and the largest eigenvalue of
UTU are zero and one, respectively, in the noise-free case
because of the unique solution of (7).

B. Computational Complexity
Define

n =nine
ne. =(ng —r1)(n2 — 72)
r=(r1+1)(r2+1)

k =kiks.

We useLAPACK]30] to do matrix operations. The bashgs
andRgr aren,. x n, —r andn,. x » matrices respectively. We

when there is noise, exact restoration of the original imageassume that there is noise throughout the rest of this section.

impossible. The basé¥g andRgr are estimated fronX and

TheQR decompositiof81] is used to estimatNg andRgr.

(Ns)TRgr = 0. The results of both algorithms are the leastTable | shows the computational complexities of these two al-
squares estimates of the original image. In fact, the results 8&ithms using the QR decomposition in Step 2. Notice that one

the same as shown in the following lemma.

flop and oneword are, respectively, equal to one floating point

Lemma 5: The right singular vector corresponding to th@peration and the number of bytes required for aflo_ating point
smallest singular value & is equal to the right singular vectornumber. Whem... —r > r, the computational complexity of the

corresponding to the largest singular valud bf
Proof: From the definition oRg+ andNg, [Rgr Ng]is
a unitary matrix. That is

As a result
Rgr(Rgr)” + Ng(Ng)" =1 9

Recalling thafU andV are constructed froRgr andNg re-
spectively, we obtain

UTU+ VIV = (W 1)?
based on (9). Therefore

WIUTUw 4+ Wivivw
=WH(W™)2W
= U'U+VIvV=L

Assume thesigenvalue decompositiai UZU equalsU” DU,

second algorithm is lower than the first one.

The matricesV andU constructed in Step 3 of these two
algorithms arg(n,. — r)r x n andr? x n, respectively. The
storage requirements for explicitly storing these two matrices
are huge. In addition, the computational costs of Step 5 of both
algorithms are unacceptable because of the required operations
on the huge matrices.

Rather, we use thpower method31] to implement Steps 4
and 5. This method computes the eigenvector corresponding to
the largest eigenvalue &§7'U without explicitly constructing
the matricedJ andU7Z U. The eigenvector actually is the right
singular vector corresponding to the largest singular vallié.of

From Remark |, the largest eigenvalue\of V is less than or
equal to one. As a result, this method computes the eigenvector
corresponding to the largest eigenvalud/dtv —I without ex-
plicitly constructing the matrice¥ andVZV — I. The eigen-
vector actually is the right singular vector corresponding to the
smallest singular value &. Table Il shows the computational
complexities of these two algorithms in Steps 4 and 5. Again,
whenn, — r > r, the computational complexity of the second
algorithm is lower than the first one. Notice that the computa-
tional cost in Table Il is estimated based on each iteration of

wherel7 s a unitary matrix and) is a diagonal matrix. Becausethe power method. The number of iterations is dependent on the
U~ U is positive semidefinitell of its eigenvalues are nonneg-aig hetween the largest and the second largest singular values

ative [29]. Then
D+UVIVUT =1
=UVIvuT =1-D
=VIV =UT(1- D)U.

of the matricedJ”U andVT'V —1I. In simulations, the number
of iterations is typically around 70.
From Tables | and Il, because in practiegis greater than
2r, the computational complexity of the first algorithm is greater
than the second one. When we have more blurred versions of
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TABLE |

COMPUTATIONAL COMPLEXITIES OF STEP 2
IN THE FIRST AND SECOND ALGORITHMS USING THE QR DECOMPOSITION

First Algorithm

Second Algorithm

Computational Cost (flops)

dn, (ny —r)?
~4((n — 7P = 1)
+ 3r2(n, —r)

4n,r? — %73

Storage Requirement (words)

ne(n, —r) + 12

[

TABLE 1l

COMPUTATIONAL COMPLEXITIES OF STEPS4 AND 5 IN THE FIRST AND SECOND
ALGORITHMS USING THE POWER METHOD

First Algorithm

Second Algorithm

Computational Cost (flops)

2n,(n, — )2

2,12

Storage Requirement (words)

(ne +r)(n, —7r)+n

nrr+n+r2

1H

Fig. 2. Original infrared images of an M60 tank: 200 tank image.
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Fig. 3. Four 5x 7 blur functions.

Define anmky ka(r1 + 1)(r2 + 1) x 1 vectorz,,, to be the left
singular vector corresponding to the largest singular valié.of
Thereforezfth = Yopt IN Other words

the original imagek; andk- can be smaller, thus lowering the

complexity. Ifr? =~ mlog, n, the computational complexity of

the second algorithm is close to the FFT complexity, log, n.

Furthermore, Lemma 5 shows that the results of both algorithms
are the same. Thus, we will use the second algorithm for discus-

sion in the following sections.

V. CONNECTIONS TO THE RESTORATION
FILTER ESTIMATION ALGORITHM

The connection between the least-squares and the subspace

Zopt =arg max 2" U|?
zj2=1
=arg max 2. UUYZ

(11)
727z=1

Let @ be the estimated basRgr of R{S7 }. Define (see the
first equation shown at the bottom of the next page) wixese
is defined as in Section IlI-A. Thus

Zopt = arg max FTRYWWIYTRT ;.
R

zlz=1

approaches to blind channel estimation was established in [32].
In [25], the relation between the direct least-squares approdait g = R” 2. Because
[19] to the blind multichannel equalizer identification and the

subspace intersection method to the blind multichannel signal
estimation [24] was studied. In this section, we compare the

RT'R=RTQTQR

second algorithm in the last section with the algorithm proposed
by Giannakiset al. based on the idea in [25].

Let

X' = QR

: QR decomposition

where Q:(n1 — r1)(n2 — r2) x mkiks matrix with mk; ko

orthonormal columns an&: mki ks x mki ko upper triangular

matrix @ is a base ofR{X7}, that is, a basis estimate ofWhere

R{ST}.

In Step 5 of the second algorithm, the right singular vector
Yopt COrresponding to the largest singular valuelbfcan be

written as follows:

Fop = arg max [0
I¥7II2=1

(10)

=XXT
we obtain
77=1
=g RT(R)g=1
—=gloxg=1
XXT 0o
T
Cx = 0 XX
0 -0 XXT

~

(r1+ 1)(7>2Y+ 1) blocks
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Therefore, from (11) where s(11:%2) is a shifted version ofs, that is s =
Spy—qu,pa—qo- AS @ result
= _ T T~ Ii—17-1
Sopt = arg max g TyWwTy (12) 1 2) (Z 0 a2)
87 Cxg=1 leyi;)qzz _Z Z Z xpl —J1.p2—J2 11712
i j1=072=0
That is,¥y.p: in (10) is equal tog:—fthW. The restored image —s B
obtained from the second algorithm is equagf, xW?. As a prodube T
result.g., can be regarded as a vector of the restoration filters. L-1bk-1 (£.0.0)
In [22], from (1), Giannakiset al. seek to find restoration —Z Z Z pl g—ivpr—az—ia9irge . (14)

filters ¢(%91:42)  such that

%

Z @ 5 glhane) — Z s % B0 x glha2)

i §1=0 j2=0

Therefore, (see the second equation shown at the bottom of the
page). Defind, = k,,l> = k, and (see the equation shown at
the bottom of the next page). Notice that the first zero block row
inthe definition ofX,,, ,,, has enough rows such th%g,, ,,, has
mkik2(r1+1)(r2+1) rows. In the noise-free case, we can find

=g % h(z) * g(i:(h,qz)
zi: the unique solution for

:3((117(12) (13) gTX =0 (15)
XPl
XP1+1
Xp1 = .
XP1+k1—1
ns — 12 COlUMNS
_Xpl o .- 0
0 0
XP1 = Xpl
| 0 N |
ny columns
M XlL—1 X4 Xnq—k; 0 s 0
Lo 0 xu-1 Xt Xni—k,
niny columns
_(R§T)_l 0 e 0
R — 0 (R§T)*1 0
i 0 0 (R;F(T)_l
(r1 + 1)(r2 + 1) blocks
I1—11—1
(4,0,0) (%) (4,q1,92)
ZZZ(IH —q1—J1,p2—92—J27J1,J2 _'Tpl —J1,p2 12911122) 0

i §1=0j2=0
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That is, every pair of outputs of the restoration filters corrédere, we use guadratic constrainbn the restoration filters.
sponding to the same pixel in the original image must have theDefine (see equation shown at the bottom of the next page)
same value. For example, the first columnXifcorresponds wherew,, ,,, are defined as in Section I1l-B. L& = XW.
$r - The product ofy” and the first column is the differenceThat is, we put different weights on different columnsXf
between two restoration filters fay., ,,. The difference must The columns corresponding to the same pixel have the same
be zero. Notice that there may be several columrX @brre- weight. If the number of columns corresponding to the same
sponding to the same pixel of the original image. pixel is larger, the weight is smaller. Furthermore, rather than
In the noisy case, there is no solution for (15). All pairs afising the quadratic constraint on the restoration filters, we
outputs are different. We would like to minimize the summahoose a quadratic constraint on the restored image, that is,
tion of the squares of all differences. The left singular vegtor gl'Cxg = 1. A vectorg,,; of different restoration filters can
corresponding to the smallest singular valueXtould be an be found as follows:
estimate of the vectar of the restoration filters. That is

g1 = arg mln gTXX%g (16) Eopt = arg miTn Cxg = 1g7XX"%g. a7)
Tg=1 g
[Xp1,lz—1 Xpy,le T Xp1,nz—kz—qz
(22) _ Xp1,lz Xprlo+1 7 Xping—ks—qa+1
N Xp1,r2 Xpy,rz+1 0 Xp1,ne—g2—1
Ng — T2 — Q2 blocks
[ x(22) (@) ., (g2)
Xlﬁ 5} X( ) X(”ﬁ_kl_ql
q2 q2 q2
X (a1,22) — X X X a1+l
('12) (42) . . (¢2)
L X’Il Xrl—f—l anfqlfl
ny—7r—q blocks
[Xp1otgz—1 Xp1la+qe T Xp1 ,nz—ko
<(gq2) Xpilo+ge Xprla+q2+1 7 Xprng—ka+1
Xl | T . .
o Xp1,r2+q2 Xpirotge+1l T Xp1,na—1
Ng — T — Q2 blocks
~(a2) ~(a2) ~(q2)
X11+(11 1 X11+(11 T )((nafkl
~ \42
X(ql’qz) — X11+(11 X11+(11+1 e Xn1—k1+1
< (2) (’12) ] < (1)
= X7’1+(11 X7 1+(11+1 T an—l
ny—7r1—4q blocks
T . . . . 0 7
X(Ofl) . X(Of”? _p2) X(]‘:O) . )(("’1 —P1,72 —pz)
T=—(0,1 - - -
<Y ) . . . 0
XPl D2 = : .. _X(Oﬂ‘z —pz)
(1,0
50
L el

(r1 —p1+1)(r2 —pg + 1) — 1 blocks

X =[X0.0, X0, X1,05 s Xt my—1]
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In the noise-free casngX 0 from (15) and (16). There-
fore, gopt = agp since ag’{XWWTXTgla = 0, where
o = (g} ngl)l/2 From the definitions oK, x, W andCx,
we obtaln the following relation:

XXT 4+ xWWTyT = 0x
—=gT XX g +gTxWWTxTg = gTCxg
— g XX g =gTOxg — gTxWWTx g,

Thus

min g’XXTg= min (g¥Cxg—
g7 Cxg=1 gTCxg=1
g' xWW'xTg)

—> min TXXT =1— max glxWWTyTg
g7 Cxg=1 g7 Cxg=1

Thereforeg,,, in (17) is equal t@g,,,; in (12). That s, if we put
different weights on the columns & and uses”Cxg = 1 as
the constraint in the algorithm of Giannakital., the restored b}
image is the same as the one using the second algorithm.

VI. COMPUTER SIMULATIONS

In Section IV, we proposed two multichannel blind image
restoration algorithms based on the developments in Section
The relation between these two algorithms and their connecti
to the direct restoration filter estimation algorithm were derived
The implementation issues and limitations of these two alg
rithms were also studied. In this chapter, we conduct compu
simulations to demonstrate the second algorithm. €)

In all the simulations, we use zero-mean white additive
Gaussian noise. Recalling that, ,, are noise terms andFig. 4. Blurred images in the noisy cases: (a) SNR10 dB, (b) SNR =
Ty p. are blurred images at spatial positiop; (p2), the 0dBand (c) SNR= 60 dB.

signal-to-noise ratio (SNR) is given by
L L First, we use the four blurs shown in Fig. 3 to obtain the
ny— ng ) 2 . . . . .
E Epl:zl 1 Epz_zz 1(@pips) blurred images in each case. Every blur function is a Gaussian
dB. . . ; . o
™ Zm:ll D ll 1(6p1)7p2)2 filter with perturbation randomly generated with normal distri-
pr=hmt e bution. The noise is added and the SNR is 10, 40, and 60 dB for
The images we use to conduct the simulations are given in Figeach case. We choose = 4 andk» = 6.

SNR= 10log

[ 1%17’12 0 0
ngz) _ 0 w§17q2+1 0
—P1
o 0 T 0 wglynZ —rg—1
'ﬂéﬁ“ 0 0
w(fn,qz) _ 0 ﬂgﬁl 0
) 0 W(q?) .
—_—Nn1 =71 —

Wpl,pz :[ﬂ(o’l), .. W(OJ’?_P?) W(l 0) 7&(7’1 —p 71‘2—P2)]T
W_[WOO"" W0727W107 W1112 l]T
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Fig. 5. Restored images in the different noisy cases: (a) SNR0 dB, (b)
SNR = 40 dB and (c) SNR= 60 dB. Fig. 6.

(a) One of the noisy images “blurred” by a scalar, where SNR) dB,
(b) the restored image using the second algorithm, and (c) the restored image
_Itweaveraging the noisy images.

Fig. 4 shows one of the noisy blurred images in each case.
restored images are given in Fig. 5. We can see that the high(reorblems are formulated. One of them can also be solved b
the SNR is, the clearer the restored image is. Furthermore,%o : y

noise amplification appears in the low SNR cases. The resto{)%gm).( operations. A d'ﬁeref“ ngllspace_:-based multichannel
. . : Ind image restoration algorithm is obtained.
images in the low SNR cases are just as unclear as the blurre he formulation of the different optimization problems im-

image since solving the optimization problem tends to smooth . :
S . . lies a new column-space-based algorithm. The restored images

the noise in the low SNR cases and this smoothing causes . . .

image blurred by this new algorithm and by the different nullspace-based one

Second, we use four &1 blur functions to obtain four are the same. This new algorithm has the same advantage as the

“blurred” images. That is, each of these blurred images is eqLTei\ I'Ispe'lce-based one, such as exact re§torat|on gnd No noise am-
ification. Furthermore, the new algorithm requires less com-

gad':jheedc{[rcl)gtlﬂzl gE?rge% it:ﬁatgezsviﬁlharsm“f(;ed; hgr?glif tﬁeth%ﬁtational complexity than the nullspace-based one. Actually,

noisy blurred images is shown in Fig. 6(a). Fig. 6(b) and (& nder some mild conditions, the complexity of this new algo-

. . : rithm is equal to FFT complexity.
are the restored images obtained by the second algorithm anizother eigenstructure-based direct multichannel blind

averaging these four noisy blurred images respectively. Thelrsnea e restoration algorithm is direct deconvolver estimation
two restored images are quite similar. Again, there is no noi 9 9 '

amplification using the second algorithm. We also fo_rmulate itas an optimization proble_m. We then make
a connection between it and the new algorithm. By using a
different constraint and putting some weighting on the objective
function of the optimization problem, the direct deconvolver
We solved a nullspace-based multichannel blind imagstimation approach is equivalent to the new algorithm.
restoration problem using matrix operations before. Actually, We have thoroughly studied eigenstructure-based techniques
this problem can be regarded as an constrained optimizatfon direct multichannel blind image restoration. The LTI FIR
problem. By using different constraints, different optimizatiomodel was used and the size of the blur channels are assumed

VIl. CONCLUSION



PAI AND BOVIK: ON EIGENSTRUCTURE-BASED DIRECT MULTICHANNEL BLIND IMAGE RESTORATION 1445

in these techniques. These limitations should be removed in & 4, ,,, = Yp, poWp, p. TOrp1 =0,1,...,n; — 1 andp, =
future. Further, we should move to solve nonlinear and/or no®i-1, ..., ns — 1. (18) can be rewritten as
time-invariant problems.

arg min Z Z IN{X Yy oI

APPENDIX

p1=0p2=0
PROOFS OFLEMMAS IN SECTION I )
In this sectiont is ann; x ns image.T andt are the corre- given Z Z 1Yo 1" = (19)
sponding matrices afass is to S ands, respectively. Further- pr=0p2=0
more,t]  is the(pyra + p2)th row of T. Comparing (19) with (7), the solutions of these two optimization
problems are the same. As a result, the produd®ofnd the
A. Proof of Lemma 1 null vector of V is the same as the solution of (7). O
If ¢ is a solution of (7), then
™ C. Proof of Lemma 3
argmyin IYN{X}|]? For anyt
subject to]| Y||* = 1. IRAXT Ypy o 1P < Nl I
That is forpl:0,1,...,7’1,1)2:0,1,...,7’2. (20)
1 If ¢ is a solution of (8), then
Z Z ||N{X}tp1 D2 || =Y 1 1
2
pr=0p2=0 Z Z 6., pz” Z Z lIspr.pel
This implies that o pEOpe=0 p1=0p2=0
T 2 2
||N{X}tp1 . ||2 =0, forp;=0,1,...,r and Z Z ||R{X }tm 7P2|| - Z Z ||SP1 7P2|| :
’ p1=0p2=0 p1=0 p2=0
p1:0,1,...,7‘2. L .
From (20), this implies
Therefore, the null space & must includeN{X} = A {S}, 9
. T 2
which means thaR{T?} c R{ST}. From [26],t = as, [RAXE Hp o |7 = llp1 eI
whereq is a nonzero scalar. O pr=0,1,....,7m1 p2=0,2,...,7m
B. Proof of Lemma 2 Therefore,tphpz € R{XT} = R{ST} for P1L = 0, 1, ceey L
Let andp, = 0,1,...,75. This means thaR{T?} c R{ST}.
€ From [26],t = as, wherea is a nonzero scalar. O
[y O e 0
. D. Proof of Lemma 4
W) = 0 Wpgr 0 The definitions of W ®1-72) and ,, ,,, are the same as in
Lemma 2. Since
L 0 T 0 Wpy,ng—rs—14gq2 1 -
W0 0 Oyl =Y Z IRXTIWE Py, )
(22) . p1=0p2=0
x7(q1,92) 0 Wq1112+1 i 0 . . . .
w = the right singular vector corresponding to the largest singular
: . . . value ofU is the unique solution of the following optimization
) 0 Wfff),l Lt problem:

™ o

i XV (q1,q2) - . _ -
Notice that the matri¥V isan(ny —r1)(na—7r2) X (n1 argmym Z Z ||R{XT}W(F17P2)YP1,P2||27 given||y||2 _

r1)(n2 — r2) matrix. Since

p1=0p2=0
oo (21)
IVyl? = Z Z IV{XJWPLr2y )2 Using the definition ofy,, ,,, (21) can be rewritten as
p1=0p2=0
- ar mln R{xX* ,
the null vector ofV is the unique solution of the following op-  ° plz_:og_:o IRAXT 5 I
timization problem e
rLooT2 given Z Z ||3~’p1,p2||2 =1 (22)
arg min SN W ey, P1=0p2=0
p1=0p2=0 Comparing (22) with (8), the solutions of these two optimization

given||y||2 =1. (18) problems are the same. As a result, the produddofind the
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right singular vector corresponding to the largest singular valug4] A. J. van der Veen, S. Talwar, and A. Paulraj, “A subspace approach

of U is the same as the solution of (8).
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