BCH Codes

Yunghsiang S. Han

Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw

Description of BCH Codes

- The Bose, Chaudhuri, and Hocquenghem (BCH) codes form a large class of powerful random error-correcting cyclic codes.
- This class of codes is a remarkable generalization of the Hamming code for multiple-error correction.
- We only consider binary BCH codes in this lecture note. Non-binary BCH codes such as Reed-Solomon codes will be discussed in next lecture note.
- For any positive integers $m \geq 3$ and $t < 2^{m-1}$, there exists a binary BCH code with the following parameters:

Block length: $n = 2^m - 1$ Number of parity-check digits: $n - k \leq mt$ Minimum distance: $d_{min} > 2t + 1$.

- We call this code a *t-error-correcting* BCH code.
- Let α be a primitive element in $GF(2^m)$. The generator polynomial $g(x)$ of the *t*-error-correcting BCH code of length $2^m - 1$ is the *lowest-degree polynomial* over $GF(2)$ which has

$$
\alpha, \alpha^2, \alpha^3, \ldots, \alpha^{2t}
$$

as its roots.

- $g(\alpha^i) = 0$ for $1 \leq i \leq 2t$ and $g(x)$ has $\alpha, \alpha^2, \dots, \alpha^{2t}$ and their conjugates as all its roots.
- Let $\phi_i(x)$ be the minimal polynomial of α^i . Then $g(x)$ must be the least common multiple of $\phi_1(x), \phi_2(x), \ldots, \phi_{2t}(x)$, i.e.,

$$
\boldsymbol{g}(x) = \text{LCM}\{\boldsymbol{\phi}_1(x), \boldsymbol{\phi}_2(x), \dots, \boldsymbol{\phi}(x)_{2t}\}.
$$

• If *i* is an even integer, it can be expressed as $i = i'2^{\ell}$, where *i'* is

odd and $\ell > 1$. Then $\alpha^i =$ $\sqrt{ }$ $\alpha^{i^\prime}\big)^{2\ell}$ is a conjugate of $\alpha^{i'}$. Hence, $\phi_i(x) = \phi_{i'}(x).$

- $g(x) = \text{LCM}\{\phi_1(x), \phi_3(x), \dots, \phi_{2t-1}(x)\}.$
- The degree of $g(x)$ is at most mt. That is, the number of parity-check digits, $n - k$, of the code is at most equal to mt.
- If t is small, $n k$ is exactly equal to mt.
- Since α is a primitive element, the BCH codes defined are usually called primitive (or narrow-sense) BCH codes.

Example

• Let α be a primitive element of $GF(2^4)$ such that $1 + \alpha + \alpha^4 = 0$. The minimal polynomials of α, α^3 , and α^5 are

$$
\begin{aligned}\n\phi_1(x) &= 1 + x + x^4, \\
\phi_3(x) &= 1 + x + x^2 + x^3 + x^4, \\
\phi_5(x) &= 1 + x + x^2,\n\end{aligned}
$$

respectively. The double-error-correcting BCH code of length $n = 2⁴ - 1 = 15$ is generated by

$$
g(x) = LCM{\phi_1(x), \phi_3(x)}
$$

= $(1 + x + x^4)(1 + x + x^2 + x^3 + x^4)$
= $1 + x^4 + x^6 + x^7 + x^8$.

 $n - k = 8$ such that this is a $(15, 7, \geq 5)$ code. Since the weight of

the generator polynomial is 5, it is a $(15, 7, 5)$ code.

• The triple-error-correcting BCH code of length 15 is generated by

$$
g(x) = LCM{\phi_1(x), \phi_3(x), \phi_5(x)}
$$

= $(1+x+x^4)(1+x+x^2+x^3+x^4)(1+x+x^2)$
= $1+x+x^2+x^4+x^5+x^8+x^{10}$.

 $n - k = 10$ such that this is a $(15, 5, \ge 7)$ code. Since the weight of the generator polynomial is 7, it is a (15, 5, 7) code.

• The single-error-correcting BCH code of length $2^m - 1$ is a Hamming code.

Graduate Institute of Communication Engineering, National Taipei University

Y. S. Han BCH codes 8

BCH Codes of Lengths Less than $2^{10} - 1$ (1)

m	$\mathbf n$	\mathbf{k}	t	m	$\mathbf n$	$\bf k$	t	m	$\mathbf n$	$\mathbf k$	t	$\mathbf n$	$\mathbf k$	t	$\mathbf n$	$\mathbf k$	t
3	7	$\overline{4}$	$\mathbf{1}$		63	24	$\overline{7}$		127	50	13	255	187	9	255	71	29
$\overline{4}$	15	11	$\mathbf{1}$			18	10			43	14		179	10		63	30
		7	$\overline{2}$			16	11			36	15		171	11		55	31
		5	3			$\overline{10}$	$\overline{13}$			29	21		163	12		47	42
5	31	26	$\mathbf{1}$			$\overline{7}$	15			22	23		155	13		45	43
		21	$\overline{2}$	$\overline{7}$	127	120	1			15	27		147	14		37	45
		16	$\overline{3}$			113	$\overline{2}$			8	31		139	15		29	47
		11	5			106	3	8	255	247	$\mathbf{1}$		131	18		21	55
		6	τ			99	4			239	$\overline{2}$		123	19		13	59
6	63	57	$\mathbf{1}$			92	5			231	$\overline{3}$		115	21		9	63
		51	$\overline{2}$			85	6			223	$\overline{4}$		107	22	511	502	$\mathbf{1}$
		45	$\overline{3}$			78	$\overline{7}$			215	5		99	23		493	$\overline{2}$
For t small		39	$\overline{4}$			71	9			207	6		91	25		484	$\overline{3}$
$n - k = mt$		36	5			64	10			199	$\overline{7}$		87	26		475	$\overline{4}$
		30	6			57	11			191	8		79	27		466	5

Graduate Institute of Communication Engineering, National Taipei University

Y. S. Han BCH codes 9

BCH Codes of Lengths Less than $2^{10} - 1$ (2)

	GALOIS FIELD GF(2 ⁶) WITH $p(\alpha) = 1 + \alpha + \alpha^6 = 0$				
0	0	(000000)	α^{15}	a^3 $+\alpha^5$	(0 0 0 1 0 1)
1	1	(100000)	\mathfrak{a}^{16}	$+\alpha^4$ $1 + \alpha$	(110010)
α	α		α ¹⁷	$\alpha + \alpha^2$ $+\alpha^5$	(0 1 1 0 0 1)
a ²	a ²	(0 1 0 0 0 0)	α^{18}	$1 + \alpha + \alpha^2 + \alpha^3$	(111100)
a ³	\mathfrak{a}^3	(001000)	α^{19}	$\alpha + \alpha^2 + \alpha^3 + \alpha^4$	(011110)
a ⁴	α^4	(000100)	α^{20}	α^2 + α^3 + α^4 + α^5	(0 0 1 1 1 1)
a ⁵	α5	(000001)	a^{21}	$+\alpha^3+\alpha^4+\alpha^5$ $1+\alpha$	(110111)
\mathfrak{a}^6	$1 + \alpha$	(110000)	a^{22}	$+\alpha^2$ $+\alpha^4+\alpha^5$ 1	(101011)
a ⁷	$\alpha + \alpha^2$	(011000)	\mathbf{a}^{23}	$+a^3$ 1 $+\alpha^5$	(100101)
\mathfrak{a}^8	α^2 + α^3	(001100)	a^{24}	1 $+\alpha^4$	(100010)
\mathfrak{a}^9	$\alpha^3 + \alpha^4$	(000110)	α^{25}	$+\alpha^5$ α	(0 1 0 0 0 1)
α^{10}	α^4 + α^5	(000011)	α^{26}	$1 + \alpha + \alpha^2$	(111000)
α^{11}	$1+\alpha$	(110001)	a^{27}	$\alpha + \alpha^2 + \alpha^3$	(011100)
α ¹²	$+\alpha^2$ 1	(101000)	α^{28}	α^2 + α^3 + α^4	(0 0 1 1 1 0)
\mathbf{a}^{13}	$+a^3$ α	(010100)	a^{29}	$\alpha^3 + \alpha^4 + \alpha^5$	(000111)
α^{14}	a ² $+\alpha^4$	(0 0 1 0 1 0)	a^{30}	$+\alpha^4+\alpha^5$ $1+\alpha$	(110011)

Graduate Institute of Communication Engineering, National Taipei University

\mathbf{a}^{31}	$+\alpha^5$ 1 $+a^2$	(101001)	α^{47} $+\alpha^5$ $1 + \alpha + \alpha^2$	(111001)
q^{32}	$+a^3$ 1	(100100)	α^{48} $+a^2+a^3$ 1	(101100)
α^{33}	$+\alpha^4$ α	(0 1 0 0 1 0)	α^{49} $+a^3+a^4$ α	(010110)
$\mathsf{\alpha}^{34}$	α^2 $+\alpha^5$	(0 0 1 0 0 1)	a ² \mathbf{a}^{50} $+\alpha^4+\alpha^5$	(0 0 1 0 1 1)
$\mathsf{\alpha}^{35}$	$+a^3$ $1 + \alpha$	(110100)	$+a^3$ \mathfrak{a}^{51} $+\alpha^5$ $1 + \alpha$	(110101)
α^{36}	$\alpha + \alpha^2$ $+\alpha^4$	(0 1 1 0 1 0)	1 $+\alpha^2$ α^{52} $+\alpha^4$	(101010)
$\mathsf{\alpha}^{37}$	$\alpha^2 + \alpha^3$ $+\alpha^5$	(0 0 1 1 0 1)	$+\alpha^3$ α^{53} $+\alpha^5$ α	(010101)
q^{38}	$+\alpha^3+\alpha^4$ $1 + \alpha$	(110110)	α^{54} $1 + \alpha + \alpha^2$ $+\alpha^4$	(111010)
α^{39}	$\alpha + \alpha^2$ $+\alpha^4+\alpha^5$	(011011)	a^{55} $\alpha + \alpha^2 + \alpha^3$ $+a^5$	(011101)
α^{40}	$+\alpha^5$ $1 + \alpha + \alpha^2 + \alpha^3$	(111101)	\mathfrak{a}^{56} $1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4$	(111110)
α^{41}	$+\alpha^2+\alpha^3+\alpha^4$ 1.	(101110)	α^{57} $\alpha + \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5$	(011111)
q^{42}	$+\alpha^3+\alpha^4+\alpha^5$ α	(010111)	α^{58} $1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5$	(111111)
q^{43}	$1 + \alpha + \alpha^2$ $+\alpha^4+\alpha^5$	(111011)	α^{59} $+\alpha^2+\alpha^3+\alpha^4+\alpha^5$ 1.	(101111)
q^{44}	$+\alpha^2+\alpha^3$ $+\alpha^5$ 1.	(101101)	\mathbf{a}^{60} 1 $+\alpha^3 + \alpha^4 + \alpha^5$	(100111)
α^{45}	$+\alpha^3 + \alpha^4$ 1	(100110)	α^{61} $+\alpha^4 + \alpha^5$ 1	(100011)
α^{46}	$+\alpha^4+\alpha^5$ α	(010011)	α^{62} 1 $+\alpha^5$	(100001)

Graduate Institute of Communication Engineering, National Taipei University

Minimal Polynomials of the Elements in $GF(2^6)$

Elements	Minimal polynomials
α , α^2 , α^4 , α^8 , α^{16} , α^{32}	$1 + X + X^6$
α^3 , α^6 , α^{12} , α^{24} , α^{48} , α^{33}	$1 + X + X2 + X4 + X6$
α^5 , α^{10} , α^{20} , α^{40} , α^{17} , α^{34}	$1 + X + X2 + X5 + X6$
α^7 , α^{14} , α^{28} , α^{56} , α^{49} , α^{35}	$1 + X^3 + X^6$
α^9 , α^{18} , α^{36}	$1 + X^2 + X^3$
α^{11} , α^{22} , α^{44} , α^{25} , α^{50} , α^{37}	$1 + X^2 + X^3 + X^5 + X^6$
α^{13} , α^{26} , α^{52} , α^{41} , α^{19} , α^{38}	$1 + X + X3 + X4 + X6$
α^{15} , α^{30} , α^{60} , α^{57} , α^{51} , α^{39}	$1 + X^2 + X^4 + X^5 + X^6$
α^{21} , α^{42}	$1 + X + X^2$
α^{23} , α^{46} , α^{29} , α^{58} , α^{53} , α^{43}	$1 + X + X4 + X5 + X6$
α^{27} , α^{54} , α^{45}	$1 + X + X^6$
α^{31} , α^{62} , α^{61} , α^{59} , α^{55} , α^{47}	$1 + X^5 + X^6$

Graduate Institute of Communication Engineering, National Taipei University

Generator Polynomials of All BCH Codes of Length 63

Parity-Check Matrix of a BCH Code

- We can define a *t*-error-correcting BCH code of length $n = 2^m - 1$ in the following manner: A binary *n*-tuple $v = (v_0, v_1, \ldots, v_{n-1})$ is a code word if and only if the polynomial $\boldsymbol{v}(x) = v_0 + v_1 x + \cdots + v_{n-1} x^{n-1}$ has $\alpha, \alpha^2, \ldots, \alpha^{2t}$ as roots.
- Since α^i is a root of $v(x)$ for $1 \leq i \leq 2t$, then

$$
\mathbf{v}(\alpha^i) = v_0 + v_1 \alpha^i + v_2 \alpha^{2i} + \cdots + v_{n-1} \alpha^{(n-1)i} = 0.
$$

$$
(v_0, v_1, \dots, v_{n-1})\begin{bmatrix}1\\ \alpha^i\\ \alpha^{2i}\\ \vdots\\ \alpha^{(n-1)i}\end{bmatrix} = 0 \qquad (1)
$$

for $1 \leq i \leq 2t$.

Graduate Institute of Communication Engineering, National Taipei University

• Let
\n
$$
\mathbf{H} = \begin{bmatrix}\n1 & \alpha & \alpha^2 & \alpha^3 & \cdots & \alpha^{n-1} \\
1 & (\alpha^2) & (\alpha^2)^2 & (\alpha^2)^3 & \cdots & (\alpha^2)^{n-1} \\
1 & (\alpha^3) & (\alpha^3)^2 & (\alpha^3)^3 & \cdots & (\alpha^3)^{n-1} \\
\vdots & & & & \vdots \\
1 & (\alpha^{2t}) & (\alpha^{2t})^2 & (\alpha^{2t})^3 & \cdots & (\alpha^{2t})^{n-1}\n\end{bmatrix}.
$$
\n(2)

• From (1), if $v = (v_0, v_1, \ldots, v_{n-1})$ is a code word in the t-error-correcting BCH code, then

$$
\boldsymbol{v}\cdot\boldsymbol{H}^T=\boldsymbol{0}.
$$

• If an *n*-tuple v satisfies the above condition, α^{i} is a root of the polynomial $v(x)$. Therefore, v must be a code word in the t-error-correcting BCH code.

- H is a parity-check matrix of the code.
- If for some *i* and *j*, α^j is a conjugate of α^i , then $\mathbf{v}(\alpha^j) = 0$ if and only if $\boldsymbol{v}(\alpha^i)=0.$
- The H matrix can be reduced to

$$
\mathbf{H} = \begin{bmatrix} 1 & \alpha & \alpha^2 & \alpha^3 & \cdots & \alpha^{n-1} \\ 1 & (\alpha^3) & (\alpha^3)^2 & (\alpha^3)^3 & \cdots & (\alpha^3)^{n-1} \\ 1 & (\alpha^5) & (\alpha^5)^2 & (\alpha^5)^3 & \cdots & (\alpha^5)^{n-1} \\ \vdots & & & & \vdots \\ 1 & (\alpha^{2t-1}) & (\alpha^{2t-1})^2 & (\alpha^{2t-1})^3 & \cdots & (\alpha^{2t-1})^{n-1} \end{bmatrix}
$$

• If each entry of H is replaced by its corresponding m-tuple over $GF(2)$ arranged in column form, we obtain a binary parity-check matrix for the code.

.

BCH Bound

• The *t*-error-correcting BCH code defined has minimum distance at least $2t + 1$.

Proof: We need to show that no 2t of fewer columns of H sum to zero. Suppose that there exists a nonzero code vector \boldsymbol{v} with weight $\delta \leq 2t$. Let $v_{j_1}, v_{j_2}, \ldots, v_{j_\delta}$ be the nonzero components of v. Then

$$
\mathbf{0} = \mathbf{v} \cdot \mathbf{H}^{T}
$$
\n
$$
= (v_{j_1}, v_{j_2}, \dots, v_{j_{\delta}}) \cdot \begin{bmatrix} \alpha^{j_1} & (\alpha^2)^{j_1} & \cdots & (\alpha^{2t})^{j_1} \\ \alpha^{j_2} & (\alpha^2)^{j_2} & \cdots & (\alpha^{2t})^{j_2} \\ \vdots & \vdots & & \vdots \\ \alpha^{j_{\delta}} & (\alpha^2)^{j_{\delta}} & \cdots & (\alpha^{2t})^{j_{\delta}} \end{bmatrix}
$$

Graduate Institute of Communication Engineering, National Taipei University

.

$$
= (1,1,\ldots,1) \cdot \begin{bmatrix} \alpha^{j_1} & (\alpha^{j_1})^2 & \cdots & (\alpha^{j_1})^{2t} \\ \alpha^{j_2} & (\alpha^{j_2})^2 & \cdots & (\alpha^{j_2})^{2t} \\ \alpha^{j_3} & (\alpha^{j_3})^2 & \cdots & (\alpha^{j_3})^{2t} \\ \vdots & \vdots & & \vdots \\ \alpha^{j_{\delta}} & (\alpha^{j_{\delta}})^2 & \cdots & (\alpha^{j_{\delta}})^{2t} \end{bmatrix}
$$

The equality above implies the following equality:

$$
(1,1,\ldots,1) \cdot \begin{bmatrix} \alpha^{j_1} & (\alpha^{j_1})^2 & \cdots & (\alpha^{j_1})^{\delta} \\ \alpha^{j_2} & (\alpha^{j_2})^2 & \cdots & (\alpha^{j_2})^{\delta} \\ \alpha^{j_3} & (\alpha^{j_3})^2 & \cdots & (\alpha^{j_3})^{\delta} \\ \vdots & \vdots & & \vdots \\ \alpha^{j_{\delta}} & (\alpha^{j_{\delta}})^2 & \cdots & (\alpha^{j_{\delta}})^{\delta} \end{bmatrix} = \mathbf{0},
$$

Graduate Institute of Communication Engineering, National Taipei University

which the second matrix on the left is a $\delta \times \delta$ square matrix. To satisfy the above equality, the determinant of the $\delta \times \delta$ matrix must be zero. That is,

$$
\begin{vmatrix}\n\alpha^{j_1} & (\alpha^{j_1})^2 & \cdots & (\alpha^{j_1})^{\delta} \\
\alpha^{j_2} & (\alpha^{j_2})^2 & \cdots & (\alpha^{j_2})^{\delta} \\
\alpha^{j_3} & (\alpha^{j_3})^2 & \cdots & (\alpha^{j_3})^{\delta} \\
\vdots & \vdots & & \vdots \\
\alpha^{j_{\delta}} & (\alpha^{j_{\delta}})^2 & \cdots & (\alpha^{j_{\delta}})^{\delta}\n\end{vmatrix} = 0.
$$

Then

$$
\alpha^{j_1+j_2+\cdots+j_{\delta}} \cdot \begin{vmatrix} 1 & \alpha^{j_1} & \cdots & \alpha^{j_1(\delta-1)} \\ 1 & \alpha^{j_2} & \cdots & \alpha^{j_2(\delta-1)} \\ 1 & \alpha^{j_3} & \cdots & \alpha^{j_3(\delta-1)} \\ \vdots & \vdots & & \vdots \\ 1 & \alpha^{j_{\delta}} & \cdots & \alpha^{j_{\delta}(\delta-1)} \end{vmatrix} = 0.
$$

The determinant in the equality above is a *Vandermonde* determinant which is nonzero. Contradiction!

- The parameter $2t + 1$ is usually called the *designed distance* of the t-error-correcting BCH code.
- The true minimum distance of the code might be larger than $2t + 1$.

Y. S. Han 22

Syndrome Calculation

• Let

।

$$
r(x) = r_0 + r_1 x + r_2 x^2 + \dots + r_{n-1} x^{n-1}
$$

be the received vector and $e(x)$ the error pattern. Then

$$
\boldsymbol{r}(x) = \boldsymbol{v}(x) + \boldsymbol{e}(x).
$$

• The syndrome is a $2t$ -tuple,

$$
\boldsymbol{S}=(S_1,S_2,\ldots,S_{2t})=\boldsymbol{r}\cdot\boldsymbol{H}^T,
$$

where H is given by (2).

$$
S_i = r(\alpha^i) = r_0 + r_1 \alpha^i + r_2 \alpha^{2i} + \dots + r_{n-1} \alpha^{(n-1)i}
$$

for $1 \leq i \leq 2t$.

• Dividing $r(x)$ by the minimal polynomial $\phi_i(x)$ of α_i , we have

$$
\boldsymbol{r}(x) = \boldsymbol{a}_i(x)\boldsymbol{\phi}_i(x) + \boldsymbol{b}_i(x),
$$

where $\mathbf{b}_i(x)$ is the remainder with degree less than that of $\phi_i(x)$.

• Since $\phi_i(\alpha^i) = 0$, we have

$$
S_i = \boldsymbol{r}(\alpha^i) = \boldsymbol{b}_i(\alpha^i).
$$

- Since $\alpha^1, \alpha^2, \dots, \alpha^{2t}$ are roots of each code polynomial, $v(\alpha^i) = 0$ for $1 \leq i \leq 2t$.
- Then $S_i = e(\alpha^i)$ for $1 \le i \le 2t$.
- We now consider a general case that is also good for non-binary case.
- Suppose that the error pattern $e(x)$ has v errors at locations

$$
0 \leq j_1 < j_2 < \cdots < j_v \leq n. \text{ That is,}
$$
\n
$$
e(x) = e_{j_1}x^{j_1} + e_{j_2}x^{j_2} + \cdots + e_{j_v}x^{j_v}.
$$
\n•\n
$$
S_1 = e_{j_1}\alpha^{j_1} + e_{j_2}\alpha^{j_2} + \cdots + e_{j_v}\alpha^{j_v}
$$
\n
$$
S_2 = e_{j_1}(\alpha^{j_1})^2 + e_{j_2}(\alpha^{j_2})^2 + \cdots + e_{j_v}(\alpha^{j_v})^2
$$
\n
$$
S_3 = e_{j_1}(\alpha^{j_1})^3 + e_{j_2}(\alpha^{j_2})^3 + \cdots + e_{j_v}(\alpha^{j_v})^3
$$
\n
$$
\vdots
$$
\n
$$
S_{2t} = e_{j_1}(\alpha^{j_1})^{2t} + e_{j_2}(\alpha^{j_2})^{2t} + \cdots + e_{j_v}(\alpha^{j_v})^{2t}, \qquad (3)
$$
\nwhere $e_{j_1}, e_{j_2}, \ldots, e_{j_v}$, and $\alpha^{j_1}, \alpha^{j_2}, \ldots, \alpha^{j_v}$ are unknown.\n• Any method for solving these equations is a decoding algorithm for the BCH codes.

• Let $Y_i = e_{j_i}$, $X_i = \alpha^{j_i}$, $1 \leq i \leq v$.

$$
S_1 = Y_1 X_1 + Y_2 X_2 + \dots + Y_v X_v
$$

\n
$$
S_2 = Y_1 X_1^2 + Y_2 X_2^2 + \dots + Y_v X_v^2
$$

\n
$$
S_3 = Y_1 X_1^3 + Y_2 X_2^3 + \dots + Y_v X_v^3
$$

\n:
\n:
\n
$$
S_{2t} = Y_1 X_1^{2t} + Y_2 X_2^{2t} + \dots + Y_v X_v^{2t}.
$$

- We need to transfer the above set of non-linear equations into a set of linear equations.
- Consider the error-locator polynomial

$$
\Lambda(x) = (1 - X_1 x)(1 - X_2 x) \cdots (1 - X_v x) \n= 1 + \Lambda_1 x + \Lambda_2 x^2 + \cdots + \Lambda_v x^v.
$$
\n(5)

• Multiplying (5) by $Y_i X_i^{j+v}$, where $1 \le j \le v$, and set $x = X_i^{-1}$

 (4)

we have
\n
$$
0 = Y_i X_i^{j+v} \left(1 + \Lambda_1 X_i^{-1} + \Lambda_2 X_i^{-2} + \dots + \Lambda_v X_i^{-v} \right).
$$
\nfor $1 \le i \le v$.
\n• Summing all above *v* equations, we have
\n
$$
0 = \sum_{i=1}^v Y_i \left(X_i^{j+v} + \Lambda_1 X_i^{j+v-1} + \dots + \Lambda_v X_i^j \right)
$$
\n
$$
= \sum_{i=1}^v Y_i X_i^{j+v} + \Lambda_1 \sum_{i=1}^v Y_i X_i^{j+v-1} + \dots + \Lambda_v \sum_{i=1}^v Y_i X_i^j
$$
\n
$$
= S_{j+v} + \Lambda_1 S_{j+v-1} + \Lambda_2 S_{j+v-2} + \dots + \Lambda_v S_j.
$$
\n• We have
\n
$$
\Lambda_1 S_{j+v-1} + \Lambda_2 S_{j+v-2} + \dots + \Lambda_v S_j = -S_{j+v}
$$
\nfor $1 \le j \le v$.

• Putting the above equations into matrix form we have

$$
\begin{bmatrix}\nS_1 & S_2 & \cdots & S_{v-1} & S_v \\
S_2 & S_3 & \cdots & S_v & S_{v+1} \\
\vdots & & & & \\
S_v & S_{v+1} & \cdots & S_{2v-2} & S_{2v-1}\n\end{bmatrix}\n\begin{bmatrix}\n\Lambda_v \\
\Lambda_{v-1} \\
\vdots \\
\Lambda_1\n\end{bmatrix} = \n\begin{bmatrix}\n-S_{v+1} \\
-S_{v+2} \\
\vdots \\
-S_{2v}\n\end{bmatrix}.
$$
\n(6)

- Since $v \leq t$, S_1, S_2, \ldots, S_{2v} are all known. Then we can solve for $\Lambda_1, \Lambda_2, \ldots, \Lambda_n$.
- We still need to find the smallest v such that the above system of equations has a unique solution.

Y. S. Han BCH codes 28

• Let the matrix of syndromes, M , be defined as follows:

$$
M = \begin{bmatrix} S_1 & S_2 & \cdots & S_u \\ S_2 & S_3 & \cdots & S_{u+1} \\ \vdots & \vdots & & \vdots \\ S_u & S_{u+1} & \cdots & S_{2u-1} \end{bmatrix}
$$

.

• M is nonsingular if u is equal to v , the number of errors that actually occurred. M is singular if $u > v$.

Proof: Let

$$
A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ X_1 & X_2 & \cdots & X_u \\ \vdots & \vdots & & \vdots \\ X_1^{u-1} & X_2^{u-1} & \cdots & X_u^{u-1} \end{bmatrix}
$$

Graduate Institute of Communication Engineering, National Taipei University

with
$$
A_{ij} = X_j^{i-1}
$$
 and
\n
$$
B = \begin{bmatrix} Y_1 X_1 & 0 & \cdots & 0 \\ 0 & Y_2 X_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & Y_u X_u \end{bmatrix}
$$
\nwith $B_{ij} = Y_i X_i \delta_{ij}$, where
\n
$$
\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}
$$
\nWe have
\n
$$
(ABA^T)_{ij} = \sum_{\ell=1}^u X_{\ell}^{i-1} \sum_{k=1}^u Y_{\ell} X_{\ell} \delta_{\ell k} X_k^{j-1}
$$

Graduate Institute of Communication Engineering, National Taipei University

$$
= \sum_{\ell=1}^{u} X_{\ell}^{i-1} Y_{\ell} X_{\ell} X_{\ell}^{j-1}
$$

$$
= \sum_{\ell=1}^{u} Y_{\ell} X_{\ell}^{i+j-1} = M_{ij}.
$$

Hence, $M = ABA^T$. If $u > v$, then $\det(B) = 0$ and then $\det(M) = \det(A) \det(B) \det(A^T) = 0$. If $u = v$, then $\det(B) \neq 0$. Since A is a Vandermonde matrix with $X_i \neq X_j$, $i \neq j$, $\det(A) \neq 0$. Hence, $\det(M) \neq 0$.

Graduate Institute of Communication Engineering, National Taipei University

Example

Consider the triple-error-correcting (15, 5) BCH code with $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$. Assume that the received vector is $r(x) = x^2 + x^7$. The operating finite field is $GF(2^4)$. Then the syndromes can be calculated as follows:

$$
S_1 = \alpha^7 + \alpha^2 = \alpha^{12}
$$

\n
$$
S_2 = \alpha^{14} + \alpha^4 = \alpha^9
$$

\n
$$
S_3 = \alpha^{21} + \alpha^6 = 0
$$

\n
$$
S_4 = \alpha^{28} + \alpha^8 = \alpha^3
$$

\n
$$
S_5 = \alpha^{35} + \alpha^{10} = \alpha^0 = 1
$$

\n
$$
S_6 = \alpha^{42} + \alpha^{12} = 0.
$$

Set $v = 3$, we have

$$
\det(M) = \begin{vmatrix} S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \\ S_3 & S_4 & S_5 \end{vmatrix}
$$

=
$$
\begin{vmatrix} \alpha^{12} & \alpha^9 & 0 \\ \alpha^9 & 0 & \alpha^3 \\ 0 & \alpha^3 & 1 \end{vmatrix} = 0.
$$

Set $v = 2$, we have

$$
\det(M) = \begin{vmatrix} S_1 & S_2 \\ S_2 & S_3 \end{vmatrix} = \begin{vmatrix} \alpha^{12} & \alpha^9 \\ \alpha^9 & 0 \end{vmatrix} \neq 0.
$$

Graduate Institute of Communication Engineering, National Taipei University

We then calculate

$$
M^{-1} = \left[\begin{array}{cc} 0 & \alpha^6 \\ \alpha^6 & \alpha^9 \end{array} \right].
$$

Hence,

$$
\begin{bmatrix} \Lambda_2 \\ \Lambda_1 \end{bmatrix} = M^{-1} \begin{bmatrix} 0 \\ \alpha^3 \end{bmatrix} = \begin{bmatrix} \alpha^9 \\ \alpha^{12} \end{bmatrix}
$$

and

$$
\Lambda(x) = 1 + \alpha^{12} x + \alpha^9 x^2
$$

=
$$
(1 + \alpha^2 x) (1 + \alpha^7 x)
$$

=
$$
\alpha^9 (x - \alpha^8) (x - \alpha^{13}).
$$

Since $1/\alpha^8 = \alpha^7$ and $1/\alpha^{13} = \alpha^2$, we found the error locations.

Graduate Institute of Communication Engineering, National Taipei University