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Description of BCH Codes

• The Bose, Chaudhuri, and Hocquenghem (BCH) codes form a

large class of powerful random error-correcting cyclic codes.

• This class of codes is a remarkable generalization of the

Hamming code for multiple-error correction.

• We only consider binary BCH codes in this lecture note.

Non-binary BCH codes such as Reed-Solomon codes will be

discussed in next lecture note.

• For any positive integers m ≥ 3 and t < 2m−1, there exists a

binary BCH code with the following parameters:

Block length: n = 2m − 1

Number of parity-check digits: n− k ≤ mt

Minimum distance: dmin ≥ 2t+ 1.
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• We call this code a t-error-correcting BCH code.

• Let α be a primitive element in GF (2m). The generator

polynomial g(x) of the t-error-correcting BCH code of length

2m − 1 is the lowest-degree polynomial over GF (2) which has

α,α2,α3, . . . ,α2t

as its roots.

• g(αi) = 0 for 1 ≤ i ≤ 2t and g(x) has α,α2, . . . ,α2t and their

conjugates as all its roots.

• Let φi(x) be the minimal polynomial of αi. Then g(x) must be

the least common multiple of φ1(x),φ2(x), . . . ,φ2t(x), i.e.,

g(x) = LCM{φ1(x),φ2(x), . . . ,φ(x)2t}.

• If i is an even integer, it can be expressed as i = i′2!, where i′ is
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odd and " > 1. Then αi =
(
αi′

)2!
is a conjugate of αi′ . Hence,

φi(x) = φi′(x).

• g(x) = LCM{φ1(x),φ3(x), . . . ,φ2t−1(x)}.

• The degree of g(x) is at most mt. That is, the number of

parity-check digits, n− k, of the code is at most equal to mt.

• If t is small, n− k is exactly equal to mt.

• Since α is a primitive element, the BCH codes defined are usually

called primitive (or narrow-sense) BCH codes.
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Example

• Let α be a primitive element of GF (24) such that 1 + α+ α4 = 0.

The minimal polynomials of α,α3, and α5 are

φ1(x) = 1 + x+ x4,

φ3(x) = 1 + x+ x2 + x3 + x4,

φ5(x) = 1 + x+ x2,

respectively. The double-error-correcting BCH code of length

n = 24 − 1 = 15 is generated by

g(x) = LCM{φ1(x),φ3(x)}
= (1 + x+ x4)(1 + x+ x2 + x3 + x4)

= 1 + x4 + x6 + x7 + x8.

n− k = 8 such that this is a (15, 7,≥ 5) code. Since the weight of
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the generator polynomial is 5, it is a (15, 7, 5) code.

• The triple-error-correcting BCH code of length 15 is generated by

g(x) = LCM{φ1(x),φ3(x),φ5(x)}
= (1 + x+ x4)(1 + x+ x2 + x3 + x4)(1 + x+ x2)

= 1 + x+ x2 + x4 + x5 + x8 + x10.

n− k = 10 such that this is a (15, 5,≥ 7) code. Since the weight

of the generator polynomial is 7, it is a (15, 5, 7) code.

• The single-error-correcting BCH code of length 2m − 1 is a

Hamming code.
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Examples of Finite Fields
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BCH Codes of Lengths Less than 210 − 1 (1)
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BCH Codes of Lengths Less than 210 − 1 (2)
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Minimal Polynomials of the Elements in GF (26)
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Generator Polynomials of All BCH Codes of Length 63
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Parity-Check Matrix of a BCH Code

• We can define a t-error-correcting BCH code of length

n = 2m − 1 in the following manner: A binary n-tuple

v = (v0, v1, . . . , vn−1) is a code word if and only if the polynomial

v(x) = v0 + v1x+ · · ·+ vn−1xn−1 has α,α2, . . . ,α2t as roots.

• Since αi is a root of v(x) for 1 ≤ i ≤ 2t, then

v(αi) = v0 + v1α
i + v2α

2i + · · ·+ vn−1α
(n−1)i = 0.
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• This equality can be written as a matrix product as follows:

(v0, v1, . . . , vn−1)





1

αi

α2i

...

α(n−1)i





= 0 (1)

for 1 ≤ i ≤ 2t.
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• Let

H =





1 α α2 α3 · · · αn−1

1 (α2) (α2)2 (α2)3 · · · (α2)n−1

1 (α3) (α3)2 (α3)3 · · · (α3)n−1

...
...

1 (α2t) (α2t)2 (α2t)3 · · · (α2t)n−1





. (2)

• From (1), if v = (v0, v1, . . . , vn−1) is a code word in the

t-error-correcting BCH code, then

v ·HT = 0.

• If an n-tuple v satisfies the above condition, αi is a root of the

polynomial v(x). Therefore, v must be a code word in the

t-error-correcting BCH code.
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• H is a parity-check matrix of the code.

• If for some i and j, αj is a conjugate of αi, then v(αj) = 0 if and

only if v(αi) = 0.

• The H matrix can be reduced to

H =





1 α α2 α3 · · · αn−1

1 (α3) (α3)2 (α3)3 · · · (α3)n−1

1 (α5) (α5)2 (α5)3 · · · (α5)n−1

...
...

1 (α2t−1) (α2t−1)2 (α2t−1)3 · · · (α2t−1)n−1





.

• If each entry of H is replaced by its corresponding m-tuple over

GF (2) arranged in column form, we obtain a binary parity-check

matrix for the code.
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BCH Bound

• The t-error-correcting BCH code defined has minimum distance

at least 2t+ 1.

Proof: We need to show that no 2t of fewer columns of H sum

to zero. Suppose that there exists a nonzero code vector v with

weight δ ≤ 2t. Let vj1 , vj2 , . . . , vjδ be the nonzero components of

v. Then

0 = v ·HT

= (vj1 , vj2 , . . . , vjδ) ·





αj1 (α2)j1 · · · (α2t)j1

αj2 (α2)j2 · · · (α2t)j2

αj3 (α2)j3 · · · (α2t)j3

...
...

...

αjδ (α2)jδ · · · (α2t)jδ
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= (1, 1, . . . , 1) ·





αj1 (αj1)2 · · · (αj1)2t

αj2 (αj2)2 · · · (αj2)2t

αj3 (αj3)2 · · · (αj3)2t

...
...

...

αjδ (αjδ )2 · · · (αjδ )2t





.

The equality above implies the following equality:

(1, 1, . . . , 1) ·





αj1 (αj1)2 · · · (αj1)δ

αj2 (αj2)2 · · · (αj2)δ

αj3 (αj3)2 · · · (αj3)δ

...
...

...

αjδ (αjδ )2 · · · (αjδ )δ





= 0,
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which the second matrix on the left is a δ × δ square matrix. To

satisfy the above equality, the determinant of the δ × δ matrix

must be zero. That is,
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αj1 (αj1)2 · · · (αj1)δ

αj2 (αj2)2 · · · (αj2)δ

αj3 (αj3)2 · · · (αj3)δ

...
...

...

αjδ (αjδ )2 · · · (αjδ )δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.
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Then

αj1+j2+···+jδ ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 αj1 · · · αj1(δ−1)

1 αj2 · · · αj2(δ−1)

1 αj3 · · · αj3(δ−1)

...
...

...

1 αjδ · · · αjδ(δ−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

The determinant in the equality above is a Vandermonde

determinant which is nonzero. Contradiction!

• The parameter 2t+ 1 is usually called the designed distance of

the t-error-correcting BCH code.

• The true minimum distance of the code might be larger than

2t+ 1.
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Syndrome Calculation

• Let

r(x) = r0 + r1x+ r2x
2 + · · ·+ rn−1x

n−1

be the received vector and e(x) the error pattern. Then

r(x) = v(x) + e(x).

• The syndrome is a 2t-tuple,

S = (S1, S2, . . . , S2t) = r ·HT ,

where H is given by (2).

•
Si = r(αi) = r0 + r1α

i + r2α
2i + · · ·+ rn−1α

(n−1)i

for 1 ≤ i ≤ 2t.
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• Dividing r(x) by the minimal polynomial φi(x) of αi, we have

r(x) = ai(x)φi(x) + bi(x),

where bi(x) is the remainder with degree less than that of φi(x).

• Since φi(α
i) = 0, we have

Si = r(αi) = bi(α
i).

• Since α1,α2, . . . ,α2t are roots of each code polynomial, v(αi) = 0

for 1 ≤ i ≤ 2t.

• Then Si = e(αi) for 1 ≤ i ≤ 2t.

• We now consider a general case that is also good for non-binary

case.

• Suppose that the error pattern e(x) has v errors at locations
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0 ≤ j1 < j2 < · · · < jv ≤ n. That is,

e(x) = ej1x
j1 + ej2x

j2 + · · ·+ ejvx
jv .

•

S1 = ej1α
j1 + ej2α

j2 + · · ·+ ejvα
jv

S2 = ej1(α
j1)2 + ej2(α

j2)2 + · · ·+ ejv (α
jv )2

S3 = ej1(α
j1)3 + ej2(α

j2)3 + · · ·+ ejv (α
jv )3

...

S2t = ej1(α
j1)2t + ej2(α

j2)2t + · · ·+ ejv (α
jv )2t, (3)

where ej1 , ej2 , . . . , ejv , and αj1 ,αj2 , . . . ,αjv are unknown.

• Any method for solving these equations is a decoding algorithm

for the BCH codes.

• Let Yi = eji , Xi = αji , 1 ≤ i ≤ v.
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• (3) can be rewritten as follows:

S1 = Y1X1 + Y2X2 + · · ·+ YvXv

S2 = Y1X
2
1 + Y2X

2
2 + · · ·+ YvX

2
v

S3 = Y1X
3
1 + Y2X

3
2 + · · ·+ YvX

3
v

...

S2t = Y1X
2t
1 + Y2X

2t
2 + · · ·+ YvX

2t
v . (4)

• We need to transfer the above set of non-linear equations into a

set of linear equations.

• Consider the error-locator polynomial

Λ(x) = (1−X1x)(1−X2x) · · · (1−Xvx)

= 1 + Λ1x+ Λ2x
2 + · · ·+ Λvx

v. (5)

• Multiplying (5) by YiX
j+v
i , where 1 ≤ j ≤ v, and set x = X−1

i
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we have

0 = YiX
j+v
i

(
1 + Λ1X

−1
i + Λ2X

−2
i + · · ·+ ΛvX

−v
i

)
.

for 1 ≤ i ≤ v.

• Summing all above v equations, we have

0 =
v∑

i=1

Yi

(
Xj+v

i + Λ1X
j+v−1
i + · · ·+ ΛvX

j
i

)

=
v∑

i=1

YiX
j+v
i + Λ1

v∑

i=1

YiX
j+v−1
i + · · ·+ Λv

v∑

i=1

YiX
j
i

= Sj+v + Λ1Sj+v−1 + Λ2Sj+v−2 + · · ·+ ΛvSj .

• We have

Λ1Sj+v−1 + Λ2Sj+v−2 + · · ·+ ΛvSj = −Sj+v

for 1 ≤ j ≤ v.

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han BCH codes 27

• Putting the above equations into matrix form we have




S1 S2 · · · Sv−1 Sv

S2 S3 · · · Sv Sv+1

...

Sv Sv+1 · · · S2v−2 S2v−1









Λv

Λv−1

...

Λ1




=





−Sv+1

−Sv+2

...

−S2v




. (6)

• Since v ≤ t, S1, S2, . . . , S2v are all known. Then we can solve for

Λ1,Λ2, . . . ,Λv.

• We still need to find the smallest v such that the above system of

equations has a unique solution.
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• Let the matrix of syndromes, M , be defined as follows:

M =





S1 S2 · · · Su

S2 S3 · · · Su+1

...
...

...

Su Su+1 · · · S2u−1




.

• M is nonsingular if u is equal to v, the number of errors that

actually occurred. M is singular if u > v.

Proof: Let

A =





1 1 · · · 1

X1 X2 · · · Xu

...
...

...

Xu−1
1 Xu−1

2 · · · Xu−1
u
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with Aij = Xi−1
j and

B =





Y1X1 0 · · · 0

0 Y2X2 · · · 0
...

...
...

0 0 · · · YuXu





with Bij = YiXiδij , where

δij =





1 i = j

0 i %= j
.

We have

(
ABAT

)
ij

=
u∑

!=1

Xi−1
!

u∑

k=1

Y!X!δ!kX
j−1
k
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=
u∑

!=1

Xi−1
! Y!X!X

j−1
!

=
u∑

!=1

Y!X
i+j−1
! = Mij .

Hence, M = ABAT . If u > v, then det(B) = 0 and then

det(M) = det(A) det(B) det(AT ) = 0. If u = v, then det(B) %= 0.

Since A is a Vandermonde matrix with Xi %= Xj , i %= j,

det(A) %= 0. Hence, det(M) %= 0.
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The Peterson-Gorenstein-Zierler Algorithm
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Example

Consider the triple-error-correcting (15, 5) BCH code with

g(x) = 1 + x+ x2 + x4 + x5 + x8 + x10. Assume that the received

vector is r(x) = x2 + x7. The operating finite field is GF (24). Then

the syndromes can be calculated as follows:

S1 = α7 + α2 = α12

S2 = α14 + α4 = α9

S3 = α21 + α6 = 0

S4 = α28 + α8 = α3

S5 = α35 + α10 = α0 = 1

S6 = α42 + α12 = 0.
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Set v = 3, we have

det(M) =

∣∣∣∣∣∣∣∣

S1 S2 S3

S2 S3 S4

S3 S4 S5

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

α12 α9 0

α9 0 α3

0 α3 1

∣∣∣∣∣∣∣∣
= 0.

Set v = 2, we have

det(M) =

∣∣∣∣∣∣
S1 S2

S2 S3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
α12 α9

α9 0

∣∣∣∣∣∣
%= 0.
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We then calculate

M−1 =



 0 α6

α6 α9



 .

Hence, [
Λ2

Λ1

]
= M−1

[
0

α3

]
=

[
α9

α12

]

and

Λ(x) = 1 + α12x+ α9x2

=
(
1 + α2x

) (
1 + α7x

)

= α9
(
x− α8

) (
x− α13

)
.

Since 1/α8 = α7 and 1/α13 = α2, we found the error locations.
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