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Decoding Procedure

• The BCH/RS codes decoding has four steps:

1. Syndrome computation

2. Solving the key equation for the error-locator

polynomial Λ(x)

3. Searching error locations given the Λ(x) polynomial

by simply finding the inverse roots

4. (Only nonbinary codes need this step) Determine the

error magnitude at each error location by

error-evaluator polynomial Ω(x)

• The decoding procedure can be performed in time or

frequency domains.

• This lecture only considers the decoding procedure in
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time domain. The frequency domain decoding can be

found in [1, 2].
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Syndrome Computation

• Let α, α2, . . . , α2t be the 2t consecutive roots of the

generator polynomial for the BCH/RS code, where α is

an element in finite field GF (qm) with order n.

• Let y(x) be the received vector. Then define the

syndrome Sj , 1 ≤ j ≤ 2t, as follows:

Sj = y(αj) = c(αj) + e(αj) = e(αj)

=

n−1∑
i=0

ei(α
j)i

=
v∑

k=1

eikα
ikj ,

(1)
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where n is the code length and it is assumed that v errors

occurred in locations corresponding to time indexes

i1, i2, . . . , iv.

• When n is large one can calculate syndromes by the

minimum polynomial for αj .

• Let ϕj(x) be the minimum polynomial for αj . That is,

ϕj(α
j) = 0. Let y(x) = q(x)ϕj(x) + rj(x), where rj(x) is

the remainder and the degree of rj(x) is less than the

degree of ϕj(x), which is at most m.

• Sj = y(αj) = q(αj)ϕj(α
j) + rj(α

j) = rj(α
j).

• For ease of notation we reformulate the syndromes as

Sj =

v∑
k=1

YkX
j
k, for 1 ≤ j ≤ 2t,
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where Yk = eik and Xk = αik .

• The system of equations for syndromes is

S1 = Y1X1 + Y2X2 + · · ·+ YvXv

S2 = Y1X
2
1 + Y2X

2
2 + · · ·+ YvX

2
v

S3 = Y1X
3
1 + Y2X

3
2 + · · ·+ YvX

3
v

...

S2t = Y1X
2t
1 + Y2X

2t
2 + · · ·+ YvX

2t
v .
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Key Equation

• Recall that the error-locator polynomial is

Λ(x) = (1− xX1)(1− xX2) · · · (1− xXv) = Λ0 +

v∑
i=1

Λix
i,

where Λ0 = 1.

• Define the infinite degree syndrome polynomial (though

we only know the first 2t coefficients) as

S(x) =

∞∑
j=0

Sj+1x
j

=
∞∑
j=0

xj

(
v∑

k=1

YkX
j+1
k

)
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=

v∑
k=1

YkXk

1− xXk
.

• Define the error-evaluator polynomial as

Ω(x)
△
= Λ(x)S(x)

=

v∑
k=1

YkXk

v∏
j=1
j ̸=k

(1− xXj).

• The degree of the error-evaluator polynomial is less than

v.

• Actually we only know the first 2t terms of S(x) such

that we have
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Λ(x)S(x) ≡ Ω(x) mod x2t. (2)

• Since the degree of Ω(x) is at most v − 1 the terms of

Λ(x)S(x) from xv through x2t−1 are all zeros.

• Then
v∑

k=0

ΛkSj−k = 0, for v + 1 ≤ j ≤ 2t. (3)

• The above system of equations is the same as the key

equation given previously if we only consider those

equations up to j = 2v (remember that v ≤ t).

• Thus, (2) is also known as key equation.

• Solving key equation to determine the coefficients of the
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error-locator polynomial is a hard problem and it will be

mentioned later.

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Decoding BCH/RS Codes 10

Chien Search

• The next important decoding step is to find the actual

error locations X1 = αi1 , X2 = αi2 , . . . , Xv = αiv .

• Note that Λ(x) has roots

X−1
1 = α−i1 , X−1

2 = α−i2 , . . . , X−1
v = α−iv .

• Observe that an error occurs in position i if and only if

Λ(α−i) = 0 or
v∑

k=0

Λkα
−ik = 0.

• Then

Λ(α−(i−1)) =

v∑
k=0

Λkα
−ik+k =

v∑
k=0

(
Λkα

−ik
)
αk.
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• This suggests that the potential error locations are tested

in succession starting with time index n− 1.

Summing all terms of Λ(α−i) at index i tests to see if Λ(α−i) =

0.

Then to test at index i − 1 only requires multiplying the kth

term of Λ(α−i) by αk for all k and summing all terms again.

This procedure is repeated until index 0 is reached.

The initial value for kth term is Λkα
−nk.

This procedure is known as Chien Search.
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Forney’s Formula

• For nonbinary BCH or RS codes one still needs to

determine the error magnitude for each error location.

• These values, Y1, Y2, . . . , Yv, can be obtained by utilizing

the error-evaluator polynomial. This step is known as

Forney’s formula.

• By substituting X−1
k = α−ik into the error-evaluator

polynomial we have

Ω(X−1
k ) = YkXk

v∏
j=1
j ̸=k

(1−X−1
k Xj).

• By taking the formal derivative of Λ(x) and also
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evaluating it at x = X−1
k we have

Λ′(X−1
k ) = −Xk

v∏
j=1
j ̸=k

(1−X−1
k Xj)

=
−1

Yk
Ω(X−1

k ).

• Thus the error magnitude Yk is given by

Yk = −
Ω(X−1

k )

Λ′(X−1
k )

= − Ω(α−ik)

Λ′(α−ik)
. (4)

• Clearly, the above formula can be determined by a search

procedure similar to Chien Search.

• Usually, Ω(x) can be obtained by solving the key
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equation.
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The Euclidean Algorithm [1]

• Euclidean algorithm is a recursive technology to find the

greatest common divisor (GCD) of two numbers or two

polynomials.

• The Euclidean algorithm is as follows. Let a(x) and b(x)

represent the two polynomials, which

deg [a(x)] ≥ deg [b(x)]. Divide a(x) by b(x). If the

remainder, r(x), is zero, then GCD d(x) = b(x). If the

remainder is not zero, then replace a(x) with b(x),

replace b(x) with r(x), and repeat.

• Considering a simple example, where a(x) = x5 + 1 and

b(x) = x3 + 1. Then
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x5 + 1 = x2(x3 + 1) + (x2 + 1)

x3 + 1 = x(x2 + 1) + (x+ 1)

x2 + 1 = (x+ 1)(x+ 1) + 0

• Since d(x) divides x5 + 1 and x3 + 1 it must also divide

x2 + 1. Since it divides x3 + 1 and x2 + 1 it must also

divide x+ 1. Consequently, x+ 1 = d(x).

• The useful aspect of this process is that, at each

iteration, a set of polynomials fi(x), gi(x), and ri(x) are

generated such that

fi(x)a(x) + gi(x)b(x) = ri(x). (5)

• A way to obtain fi(x) and gi(x) is as follows.
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• Define qi(x) to be the quotient polynomial that is

produced by dividing ri−2(x) by ri−1(x). Then, for i ≥ 1,

ri(x) = ri−2 − qi(x)ri−1(x)

fi(x) = fi−2 − qi(x)fi−1(x)

gi(x) = gi−2 − qi(x)gi−1(x),

where the initial values are

f−1(x) = g0(x) = 1

f0(x) = g−1(x) = 0

r−1(x) = a(x)

r0(x) = b(x).

(6)

• There are two useful properties of the algorithm:
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1. deg [ri(x)] < deg [ri−1(x)];

2. deg [gi(x)] + deg [ri−1(x)] = deg [a(x)].
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The Sugiyama Algorithm for Solving Key Equation [1]

• The Sugiyama algorithm utilizes Euclidean algorithm to

solve the key equation. Hence, the Sugiyama algorithm is

also called Euclidean algorithm.

• (5) can be written as

gi(x)b(x) ≡ ri(x) mod a(x).

• Comparing (2) with the above equation, they are

equivalent when

a(x) = x2t, b(x) = S(x)

gi(x) = Λi(x), ri(x) = Ωi(x).

• The Euclidean algorithm produces a sequence of

solutions to the key equation.
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• When v ≤ t one needs to know which solutions produced

is the desired solution. It can be determined as follows.

• By the property of Euclidean algorithm, we have

deg [gi(x)] + deg [ri−1(x)] = 2t

and

deg [gi(x)] + deg [ri(x)] < 2t.

If v ≤ t, then deg [Ω(x)] < deg [Λ(x)] ≤ t. There exists

only one polynomial Λ(x) with degree no greater than t

which satisfies the key equation.

If deg [ri−1] ≥ t and thus deg [gi(x)] ≤ t and

deg [ri(x)] < t, then deg [gi+1(x)] > t.

This means that the results at the ith step provide the

only solution to the key equation that is of interest.
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Summary of the Sugiyama Decoding algorithm

1. Apply Euclidean algorithm to a(x) = x2t and b(x) =

S(x).

2. Use the initial conditions of (6).

3. Stop when deg [rn(x)] < t.

4. Set Λ(x) = gn(x) and Ω(x) = rn(x).

• Note that the algorithm will give an error-locator

polynomial no matter whether v ≤ t or not. Thus, a

circuit to check for valid error-locator polynomial must

be performed during Chien search.

• One can check whether the number of roots found by
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Chien search is the same as the degree of the

error-locator polynomial or not. If they are agreed, the

valid error-locator polynomial is assumed. Otherwise,

too-many-error alert is reported.
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Example

Consider the triple-error-correcting BCH code where

generator polynomial has α, α2, . . . , α6 as roots and α is a

primitive element of GF (24) with α4 = α+ 1. Let the

received vector y(x) = x7 + x2. We now want to find the

error locations of the received vector.

First we need to calculate the syndrome coefficients. By (1),

we have

S(x) = x4 + α3x3 + α9x+ α12.

Next we perform Sugiyama algorithm as follows:
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i Λi(x)(gi(x)) Ωi(x)(ri(x)) qi(x)

−1 0 x6 −

0 1 S(x) −

1 x2 + α3x+ α6 α11x+ α3 x2 + α3x+ α6

Thus, Λ(x) = x2 + α3x+ α6. By performing Chien search we

can find the roots of Λ(x) are α−7 and α−2 and consequently,

e(x) = x7 + x2.

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Decoding BCH/RS Codes 25

The Berlekamp-Massey Algorithm for Solving Key

Equation [3]

• For simplicity, we only consider binary BCH codes.

• The Berlekamp-Massey (BM) algorithm builds the

error-locator polynomial by requiring that its coefficients

satisfy a set of equations called the Newton identities

rather than (3). The Newton identities are:

S1 + Λ1 = 0,

S2 + Λ1S1 + 2Λ2 = 0,

S3 + Λ1S2 + Λ2S1 + 3Λ3 = 0,

...

Sv + Λ1Sv−1 + · · ·+ Λv−1S1 + vΛv = 0,
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and for j > v:

Sj + Λ1Sj−1 + · · ·+ Λv−1Sj−v+1 + ΛvSj−v = 0.

• It turns out that we only need to look at the first, third,

fifth,...of these equations. For notation ease, we number

these Newton identities as (noting that iΛi = Λi when i

is odd):
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1) S1 + Λ1 = 0,

2) S3 + Λ1S2 + Λ2S1 + Λ3 = 0,

3) S5 + Λ1S4 + Λ2S3 + Λ3S2 + Λ4S1 + Λ5 = 0,

...

µ) S2µ−1 + Λ1S2u−2 + Λ2S2µ−3 + · · ·+ Λ2µ−2S1 + Λ2µ−1 = 0,

...

(7)

• Define a sequence of polynomials Λ(µ)(x) of degree dµ

indexed by µ as follows:

Λ(µ)(x) = 1 + Λ
(µ)
1 x+ Λ

(µ)
2 x2 + · · ·+ Λ

(µ)
dµ

xdµ.
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• The polynomial Λ(µ)(x) is calculated to be the minimum

degree polynomial whose coefficients satisfy all of the first

µ numbered equations of (7).

• For each polynomial, its discrepancy ∆µ, which measures

how far Λ(µ)(x) is from satisfying the µ+ 1st identity, is

defined as

∆µ = S2µ+1 + Λ1S2u + Λ2S2µ−1 + · · ·+ Λ2µS1 + Λ2µ+1. (8)

• One starts with two initial polynomials, Λ(−1/2)(x) = 1

and Λ(0)(x) = 1, and then generate Λ(µ) iteratively in a

manner that depends on the discrepancy.

• The discrepancy ∆−1/2 = 1 by convention and the

remaining discrepancies are calculated.
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• The Berlekamp-Massey algorithm is as follows:

1. Λ(−1/2)(x) = 1, Λ(0)(x) = 1, and ∆−1/2 = 1.

2. Start from µ = 1 and repeat the next two steps until

µ = t.

3. Calculate ∆µ according to (8). If ∆µ = 0, then

Λ(µ+1)(x) = Λ(µ)(x).

4. If ∆µ ̸= 0, find a value −(1/2) ≤ ρ < µ such that

∆ρ ̸= 0 and 2ρ− dρ is as large as possible. Then

Λ(µ+1)(x) = Λ(µ)(x) + ∆µ∆
−1
ρ x2(µ−ρ)Λ(ρ)(x).
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• The error-locator polynomial is Λ(x) = Λ(t)(x).

• If this polynomial had degree greater than t, more than t

errors have been made, and uncorrectable alert should be

declared.
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Example

Consider the same BCH code and received vector as in the

previous example. Then

S(x) = x4 + α3x3 + α9x+ α12.

Next we perform Berlekamp-Massey algorithm as follows:
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µ Λ(µ)(x) ∆µ dµ 2µ− dµ

-1/2 1 1 0 -1

0 1 α12 0 0

1 1 + α12x α6 1 1 (take ρ = −1/2)

2 1 + α12x+ α9x2 0 2 2 (take ρ = 0)

3 1 + α12x+ α9x2 - - -

1 + α12x+ α9x2 has the same roots as α6 + α3x+ x2 which

was found by the Sugiyama algorithm.
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LFSR Interpretation of Berlekamp-Massey Algorithm[4]

• Newton’s Identity:

Sj = −
v∑

i=1

ΛiSj−i, j = v + 1, v + 2, . . . , 2t.

• The formula describes the output of a linear feedback

shift register (LFSR) with coefficients Λ1, Λ2, . . . , Λv.

• The problem to find the error locator polynomial is then

equivalent to find the smallest number of coefficients of

an LFSR such that it can produce S1, S2, . . . , S2t, i.e.,

to find a shortest such LFSR.

• In the Berlekamp-Massey algorithm, one builds the LFSR

that produces the entire sequence of syndromes by
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successively modifying an existing LFSR. This procedure

starts with an LFSR that could produce S1 and end at

an LFSR that produces the entire sequence of syndromes.

• Let Lk denote the length of the LFSR produced at stage

k of the algorithm.

• Let

Λ[k](x) = 1 + Λ
[k]
1 x+ · · ·+ Λ

[k]
Lk
xLk

be the connection polynomial at stage k, indicating the

connections for the LFSR capable of producing the

output sequence {S1, S2, . . . , Sk}. That is

Sj = −
Lk∑
i=1

Λ
[k]
i Sj−i, j = Lk + 1, Lk + 2, . . . , k.
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• Assume that we have a connection polynomial Λ[k−1](x)

of length Lk−1 that produces {S1, S2, . . . , Sk−1} for

some k − 1 < 2t.

• Then Ŝk = −
Lk−1∑
i=1

Λ
[k−1]
i Sk−i.

• If Ŝk is equal to Sk, then there is no need to update the

LFSR, so Λ[k](x) = Λ[k−1](x) and Lk = Lk−1.

• Otherwise, there is some nonzero discrepancy associated

with Λ[k−1](x),

dk = Sk − Ŝk = Sk +

Lk−1∑
i=1

Λ
[k−1]
i Sk−i =

Lk−1∑
i=0

Λ
[k−1]
i Sk−i.

In this case, we update the connection polynomial using
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the formula

Λ[k](x) = Λ[k−1](x) +AxℓΛ[m−1](x), (9)

where A is some element in the finite field, ℓ is an integer,

and Λ[m−1](x) is one of the prior connection polynomials

produced by our processes associated with nonzero

discrepancy dm.

• The new discrepancy is then

d′k =

Lk∑
i=0

Λ
[k]
i Sk−i =

Lk−1∑
i=0

Λ
[k−1]
i Sk−i+A

Lm−1∑
i=0

Λ
[m−1]
i Sk−i−ℓ.

• We can find an A and an ℓ to make the new discrepancy

zero as follows. Let
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ℓ = k −m.

Then the second summation gives

A

Lm−1∑
i=0

Λ
[m−1]
i Sm−i = Adm.

If we choose

A = −d−1
m dk,

then

d′k = dk − d−1
m dkdm = 0.

• We still need to prove that such selection indeed makes a

shortest LSFR.
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Characterization of LFSR Length

• Suppose that an LFSR with connection polynomial

Λ[k−1](x) of length Lk−1 produces the sequence

{S1, S2, . . . , Sk−1}, but not {S1, S2, . . . , Sk}. Then
any connection polynomial that produces the latter

sequence must have a length Lk satisfying Lk ≥ k−Lk−1.

• This can be proved as follows. We assume that

Lk−1 < k − 1; otherwise, it is trivial. We then prove it by

contradiction with assuming that Lk ≤ k − 1− Lk−1. We

can observe that

−
Lk−1∑
i=1

Λ
[k−1]
i Sj−i

 = Sj j = Lk−1 + 1, Lk−1 + 2, . . . , k − 1

̸= Sk j = k

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Decoding BCH/RS Codes 39

and

−
Lk∑
i=1

Λ
[k]
i Sj−i = Sj j = Lk + 1, Lk + 2, . . . , k.

In particular, we have

Sk = −
Lk∑
i=1

Λ
[k]
i Sk−i.

Since k − Lk ≥ Lk−1 + 1, all values of Sj involved in the

above summation can be substituted by

−
∑Lk−1

i=1 Λ
[k−1]
i Sj−i. Hence,

Sk = −
Lk∑
i=1

Λ
[k]
i Sk−i =

Lk∑
i=1

Λ
[k]
i

Lk−1∑
j=1

Λ
[k−1]
j Sk−i−j .
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Interchanging the order of summation we have

Sk =

Lk−1∑
j=1

Λ
[k−1]
j

Lk∑
i=1

Λ
[k]
i Sk−i−j .

However, we have

Sk ̸= −
Lk−1∑
i=1

Λ
[k−1]
i Sk−i.

By the assumption, Lk + 1 ≤ k − Lk−1,

Sk ̸=
Lk−1∑
j=1

Λ
[k−1]
j

Lk∑
i=1

Λ
[k]
i Sk−i−j ,

which contradicts to what we just derived.

• Since the shortest LFSR that produces the sequence
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{S1, S2, . . . , Sk} must also produce the first part of that

sequence, we must have Lk ≥ Lk−1. Thus, we have

Lk ≥ max(Lk−1, k − Lk−1).

• In the update procedure, if Λ[k](x) ̸= Λ[k−1](x), then a

new LFSR can be found whose length satisfies

Lk = max(Lk−1, k − Lk−1).

• It can be proved by induction on k. When k = 1 we take

L0 = 0 and Λ[0](x) = 1. We find that d1 = S1. If S1 = 0,

then no update is necessary. If S1 ̸= 0, then we take

Λ[m](x) = Λ[0](x) = 1, so that ℓ = 1− 0 = 1. Also take

dm = 1. The updated polynomial is

Λ[1](x) = 1 + S1x,
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which has degree L1 = max(L0, 1− L0) = 1.

Now let Λ[m−1](x), m < k − 1, denote the last connection

polynomial before Λ[k−1](x) with Lm−1 < Lk−1 that can

produce the sequence {S1, S2, . . . , Sm−1} but not the

sequence {S1, S2, . . . , Sm}. Then Lm = Lk−1. By the

inductive hypothesis,

Lm = m− Lm−1 = Lk−1, or −m+ Lm−1 = −Lk−1.

Since ℓ = k −m, we have

Lk = max(Lk−1, k −m+ Lm−1) = max(Lk−1, k − Lk−1).

• In the update step if 2Lk−1 ≥ k, the connection

polynomial is updated, but there is no change in length.
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Welch-Berlekamp Key Equation

• Welch-Berlekamp (WB) key equation was invented in

1983.

• It is no need to calculate syndromes.

• It uses coefficients of a remainder polynomial to represent

errors (syndromes).

• There are several methods to solve WB key equation

such as Welch-Berlekamp algorithm, Lagrange-Euclidean

algorithm, and Modular approach.
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Notations

• The generator polynomial for an (n, k) RS code can be

written as

g(x) =

2t∏
i=1

(x− αi).

• Let Lc = {0, 1, . . . , 2t− 1} be the index set of the check

locations. Let Lαc = {αk, 0 ≤ k ≤ 2t− 1}.

• Let Lm = {2t, 2t+ 1, . . . , n− 1} be the index set of the

message locations. Let Lαm = {αk, 2t ≤ k ≤ n− 1}.

• Define remainder polynomial as

r(x) = y(x) mod g(x)
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and

r(x) =

2t−1∑
i=0

rix
i.

• Let E(x) be the error pattern. It can be proved that

r(x) ≡ E(x) mod g(x)

and

r(αk) = E(αk) for k ∈ {1, 2, . . . , 2t}.
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Errors in Message Location

• Assume that e ∈ Lm with error value Y .

• r(αk) = E(αk) = Y (αk)e = Y Xk, k ∈ {1, 2, . . . , 2t},
where X = αe is the error locator.

• Define u(x) = r(x)−Xr(α−1x) which has degree less

than 2t.

• u(αk) = r(αk)−Xr(α−1αk) = Y Xk −XYXk−1 = 0 for

k ∈ {2, 3, . . . , 2t}.

• u(x) has roots at α2, α3, . . . , α2t, so that u(x) is divisible

by

p(x) =

2t∏
k=2

(x− αk) =

2t−1∑
i=0

pix
i.
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• Thus, u(x) = ap(x), where a ∈ GF (qm).

• Equating coefficients between u(x) and p(x) we have

ri(1−Xα−i) = api, i = 0, 1, . . . , 2t− 1.

That is,

ri(α
i −X) = aαipi, i = 0, 1, . . . , 2t− 1.

• Define the error locator polynomial as

Wm(x) = x−X = x− αe.

• Since r(α) = E(α) = Y X,

Y = X−1r(α) = X−1
2t−1∑
i=0

riα
i
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= X−1
2t−1∑
i=0

aαipi
Wm(αi)

αi = aX−1
2t−1∑
i=0

α2ipi
(αi −X)

.

• Define f(x) = X−1
∑2t−1

i=0
α2ipi
(αi−x)

for x ∈ Lαm . f(x) can

be pre-computed for all values of x ∈ Lαm .

• Y = af(X) and

ri =
Y αipi

f(X)Wm(αi)
.

• Assume that there are v ≥ 1 errors, with error locators

Xi and corresponding error values Yi for i = 1, 2, . . . , v.

• By linearity we have

rk = pkα
k

v∑
i=1

Yi
f(Xi)(αk −Xi)

, k = 0, 1, . . . , 2t− 1.
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• Define

F (x) =

v∑
i=1

Yi
f(Xi)(x−Xi)

having poles at the error locations.

• Let

F (x) =

v∑
i=1

Yi
f(Xi)(x−Xi)

=
Nm(x)

Wm(x)
,

where Wm(x) =
∏v

i=1(x−Xi) is the error locator

polynomial for the errors among the message locations.

Note that the error locator polynomial defined here is

different from previously defined by Peterson.

• It is clear that deg(Nm(x)) < deg(Wm(x)).
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• We have

Nm(αk) =
rk

pkαk
Wm(αk), k ∈ Lc = 0, 1, . . . , 2t− 1.

• Nm(x) and Wm(x) have the degree constraints

deg(Nm(x)) < deg(Wm(x)) and deg(Wm(x)) ≤ t.
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Errors in Check Locations

• For a single error occuring in a check location e ∈ Lc,

r(x) = E(x).

• u(x) = r(x)−Xr(α−1x) = 0.

• We have

rk =

 Y k = e

0 otherwise.
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WB Key Equation

• Let Em = {i1, i2, . . . , ivl} ⊂ Lm denote the error locations

among the message locations.

• Let Ec = {ivl+1, ivl+2, . . . , iv} ⊂ Lc denote the error

locations among the check locations.

• The (error location, error value) pairs are (Xi, Yi),

i = 1, 2, . . . , v.

• By linearity,

rk = pkα
k

vl∑
i=1

Yi
f(Xi)(αk −X − i)

+

 Yj if error locator Xj is in check location k

0 otherwise.
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• We have

Nm(αk) =
rk

pkαk
Wm(αk), k ∈ Lc \Ec.

• Let Wc(x) =
∏

i∈Ec
(x− αi) be the error locator

polynomial for errors in check locations.

• Let N(x) = Nm(x)Wc(x) and W (x) = Wm(x)Wc(x).

• Since N(αk) = W (αk) = 0 for k ∈ Ec, we have

N(αk) =
rk

pkαk
W (αk), k ∈ Lc = {0, 1, . . . , 2t− 1}. (10)

• (10) is the Welch-Berlekamp (WB) key equation subject

to the conditions

deg(N(x)) < deg(W (x)) and deg(W (x)) ≤ t.
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• We write (10) as

N(xi) = W (xi)yi, i = 1, 2, . . . , 2t (11)

for “points” (xi, yi) = (αi−1, ri−1/(pi−1α
i−1)),

i = 1, 2, . . . , 2t.
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Finding the Error Values

• Denote the error values corresponding to an error locator

Xi as Y [Xi].

• By definition,

vl∑
i=1

Y [Xi]

f(Xi)(x−Xi)
=

Nm(x)Wc(x)

Wm(x)Wc(x)
=

N(x)∏
i∈Ecm

(x−Xi)
,

where Ecm = Ec ∪ Em.

• Suppose we want determine Y [Xk] at message location.

Multiplying both sides of the above equation by

W (x) =
∏

i∈Ecm
(x−Xi) and evaluate at x = Xk, we have

Y [Xk]
∏

i̸=k
i∈Ecm

(Xk −Xi)

f(Xk)
= N(Xk).
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• Taking the formal derivative, we obtain

W ′(x) =
∑

j∈Ecm

∏
i̸=j

(x−Xi)

and

W ′(Xk) =
∏
i̸=k

i∈Ecm

(Xk −Xi).

• Thus,

Y [Xk] = f(Xk)
N(Xk)

W ′(Xk)
.

• When the error is in a check location, Xj = αk for

k ∈ Ec, we have

rk = Y [Xj ]+pkα
k

vl∑
i=1

Y [Xi]

f(Xi)(αk −Xi)
= Y [Xj ]+pkXj

N(Xj)

W (Xj)
.
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Thus,

Y [Xj ] = rk − pkXj
N(Xj)

W (Xj)
.

• Both N(Xj) = Nm(Xj)Wc(Xj) and

W (Xj) = Wm(Xj)Wc(Xj) (Since Wc(Xj) = 0) are 0 so a

“L’Hopitial’s rule” must be used. Since

N ′(Xj) = Nm(Xj)W
′
c(Xj)+N ′

m(Xj)Wc(Xj) = Nm(Xj)W
′
c(Xj)

and

W ′(Xj) = Wm(Xj)W
′
c(Xj)+W ′

m(Xj)Wc(Xj) = Wm(Xj)W
′
c(Xj),

so
N ′(Xj)

W ′(Xj)
=

Nm(Xj)

Wm(Xj)
̸= 0.

• Then
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Y [Xj ] = rk − pkXj
N ′(Xj)

W ′(Xj)
.
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Rational Interpolation Problem

• Given a set of points (xi, yi), i = 1, 2, . . . ,m over some

field F, find polynomials N(x) and W (x) with

deg(N(x)) < deg(W (x)) satisfying

N(xi) = W (xi)yi, i = 1, 2, . . . ,m. (12)

• A solution to the rational interpolation problem provides

a pair [N(x),W (x)] satisfying (12).
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Welch-Berlekamp Algorithm

• We are interested in a solution satisfying

deg(N(x)) < deg(W (x)) and deg(W (x)) ≤ m/2.

• The rank of a solution [N(x),W (x)] is defined as

rank[N(x),W (x)] = max{2 deg(W (x)), 1 + 2deg(N(x))}.

• WB algorithm constructs a solution to the rational

interpolation problem of rank≤ m and show that it is

unique.

• Since the solution is unique, by the definition of the rank,

the degee of N(x) is less than the degree of W (x).

• Let P (x) be an interpolation polynomial such that

P (xi) = yi, i = 1, 2, . . . ,m.
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• The equation N(xi) = W (xi)yi is equivalent to

N(x) = W (x)P (x) (mod (x− xi)).

• By Chinese remainder theorem we have

N(x) = W (x)P (x) (mod Π(x)), (13)

where Π(x) =
∏m

i=1(x− xi).

• Suppose [N(x),W (x)] is a solution to (12) and that N(x)

and W (x) shares a common factor f(x), such that

N(x) = n(x)f(x) and W (x) = w(x)f(x). If [n(x), w(x)]

is also a solution to (12), the solution [N(x),W (x)] is

said to be reducible. Otherwise, it is irreducible.

• There exists at least one irreducible solution to (13) with

rank≤ m.
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• Proof: Let S = {[N(x),W (x)]| rank(N(x),W (x)) ≤ m}
be the set of polynomial meeting the rank specification.

For [N(x),W (x)] ∈ S and [M(x), V (x)] ∈ S and f a

scalar value, define

[N(x),W (x)] + [M(x), V (x)] = [N(x) +M(x),W (x) + V (x)]

f [N(x),W (x)] = [fN(x), fW (x)].

Then S is a module over F[x].

• A basis for the N(x) component is

{1, x, . . . , x⌊(m−1)/2⌋} (1 + ⌊(m− 1)/2⌋ dimensions).

• A basis for the W (x) component is

{1, x, . . . , x⌊m/2⌋} (1 + ⌊m/2⌋ dimensions).

• So the dimension of the Cartesian product is

1 + ⌊(m− 1)/2⌋+ 1 + ⌊m/2⌋ = m+ 1.
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• Let

N(x)−W (x)P (x) = Q(x)Π(x) +R(x).

• Define the mapping

E : S −→ {h ∈ F[x]| deg(h(x)) < m} (14)

by E([N(x),W (x)]) = R(x).

• The dimension of the range of E is m.

• E is a linear mapping from a space of dimension m+ 1 to a

space of dimension m, so the dimension of its kernel is > 0. �

• We say that [N(x),W (x)] satisfy the interpolation(k) problem

if

N(xi) = W (xi)yi, i = 1, 2, . . . k.

• We also express the interpolation(k) problem as

N(x) = W (x)Pk(x) (mod Πk(x)),
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where Πk(x) =
∏k

i=1(x− xi) and Pk(x) is a polynomial that

interpolations the first k points, Pk(xi) = yi, i = 1, 2, . . . , k.

• The WB- algorithm finds a sequence of solution [N(x),W (x)]

of minimum rank satisfying the interpolation(k) problem, for

k = 1, 2, . . . ,m.

• If [N(x),W (x)] is an irreducible solution to the

interpolation(k) problem and [M(x), V (x)] is another solution

such that rank[N(x),W (x)] + rank[M(x), V (x)] ≤ 2k, then

[M(x), V (x)] can be reduced to [N(x),W (x)].

• Proof: By assumption, there exist two polynomials Q1(x) and

Q2(x) such that

N(x)−W (x)Pk(x) = Q1(x)Πk(x)

M(x)− V (x)Pk(x) = Q2(x)Πk(x). (15)

Recall that N(xi) = yiW (xi) and M(xi) = yiV (xi) for

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Decoding BCH/RS Codes 65

i = 1, . . . , k. Hence

N(xi)V (xi) = M(xi)W (xi), i = 1, . . . , k

which implies

Πk(x)|(N(x)V (x)−M(x)W (x)). (16)

• From the definition of the rank we have

deg(N(x)V (x)) = deg(N(x)) + deg(V (x))

≤ rank[N(x),W (x)]− 1

2
+

rank[M(x), V (x)]

2
< k

and

deg(M(x)W (x)) = deg(M(x)) + deg(W (x))

≤ rank[M(x), V (x)]− 1

2
+

rank[N(x),W (x)]

2
< k.
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• Then deg(N(x)V (x)−M(x)W (x)) < k. From (16), we have

N(x)V (x)−M(x)W (x) = 0. (17)

• Let d(x) = GCD(W (x), V (x)). Then there exist two

polynomials which are relatively prime such that

W (x) = d(x)w(x), V (x) = d(x)v(x). (18)

• Substituting (18) into (17), we have

N(x)d(x)v(x) = M(x)d(x)w(x)

and

w(x)|N(x), v(x)|M(x).

• Let N(x)
w(x) = M(x)

v(x) = h(x), so

N(x) = h(x)w(x) and M(x) = h(x)v(x). (19)

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Decoding BCH/RS Codes 67

• Substituting (18) and (19) into (15), we have

h(x)w(x)− d(x)w(x)Pk(x) = Q1(x)Πk(x)

and

h(x)v(x)− d(x)v(x)Pk(x) = Q2(x)Πk(x).

• Since GCD(w(x), v(x)) = 1, there exists two polynomials

s(x), t(x) such that s(x)w(x) + t(x)v(x) = 1.

• Thus, we obtain

h(x)− d(x)Pk(x) = (s(x)Q1(x) + t(x)Q2(x))Πk(x).

The above equation shows that [h(x), d(x)] is also a solution.

From (18) and (19), both [N(x),W (x)] and [M(x), V (x)] can

be reduced to [h(x), d(x)]. Since [N(x),W (x)] is irreducible,

we have deg(w(x)) = 0. �

• If [N(x),W (x)] and [M(x), V (x)] are two solutions of
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interpolation(k) such that

rank[N(x),W (x)] + rank[M(x), V (x)] = 2k + 1,

then both of them are irreducible solutions, and

N(x)V (x)−M(x)W (x) = fΠk(x) for some scalar f .

• Proof: Assume that the first conclusion is not correct. Then

there exist two irreducible solutions, [n(x), w(x)] and

[m(x), v(x)], such that

N(x) = f(x)n(x), W (x) = f(x)w(x),

M(x) = g(x)m(x), V (x) = g(x)v(x),

and deg(f(x)) + deg(g(x)) > 0. Then

rank[n(x), w(x)] + rank[m(x), v(x)]

= 2k + 1− 2(deg(f(x)) + deg(g(x))) < 2k.

By the previous result, [n(x), w(x)] and [m(x), v(x)] at most
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differ by a constant common factor. Hence,

rank[n(x), w(x)] + rank[m(x), v(x)] is even. Contradiction.

• Next we prove the second conclusion. It is easy to see that one

of rank[N(x),W (x)] and rank[M(x), V (x)] is even and the

other is odd. There are two cases:

Case 1: rank[N(x),W (x)] is odd. We have

2k + 1 = rank[N(x),W (x)] + rank[M(x), V (x)]

= (1 + 2deg(N(x)) + 2 deg(V (x))

> 2 deg(W (x)) + (1 + 2deg(M(x))).

Thus, deg(N(x)V (x)) = k and deg(W (x)M(x)) < k.

Case 2: rank[N(x),W (x)] is even. We have

2k + 1 = rank[N(x),W (x)] + rank[M(x), V (x)]

= 2 deg(W (x)) + (1 + 2deg(M(x)))
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> (1 + 2 deg(N(x))) + 2 deg(V (x)).

Thus, deg(N(x)V (x)) < k and deg(W (x)M(x)) = k.

In either case,

deg(N(x)V (x)−M(x)W (x)) = k.

We have proved that Πk(x)|N(x)V (x)−M(x)W (x) and then,

N(x)V (x)−M(x)W (x) = fΠk(x). �

• Let [N(x),W (x)] and [M(x), V (x)] be two solutions of

interpolation(k) such that

rank[N(x),W (x)] + rank[M(x), V (x)] = 2k + 1

and N(x)V (x)−M(x)W (x) = fΠk(x) for some scalar f . Then

[N(x),W (x)] and [M(x), V (x)] are complementary.

• If [N(x),W (x)] is an irreducible solution to the

interpolation(k) problem and [M(x), V (x)] is one of its
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complements. Then for any a, b ∈ F with b ̸= 0,

[bM(x)− aN(x), bV (x)− aW (x)] is also one of its

complements.

• Proof: It is easy to show that

[bM(x)− aN(x), bV (x)− aW (x)] is also a solution. Since

[M(x), V (x)] cannot be reduced to [N(x),W (x)],

[bM(x)− aN(x), bV (x)− aW (x)] is also cannot be reduced to

[N(x),W (x)]. Hence,

rank[N(x),W (x)]+rank[bM(x)−aN(x), bV (x)−aW (x)] = 2k+1,

and [bM(x)− aN(x), bV (x)− aW (x)] is a complement of

[N(x),W (x)]. �

• Suppose that [N(x),W (x)] and [M(x), V (x)] are two

complementary solutions of interpolation(k) problem. Suppose

also that [N(x),W (x)] is the solution of lower rank. Let

b = N(xk+1)− yk+1W (xk+1) and a = M(xk+1)− yk+1V (xk+1).
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If b = 0, then [N(x),W (x)] and

[(x− xk+1)M(x), (x− xk+1)V (x)] are two complementary

solutions of the interpolation(k + 1) problem and [N(x),W (x)]

is the solution with lower rank. If b ̸= 0, then

[(x− xk+1)N(x), (x− xk+1)W (x)]

and

[bM(x)− aN(x), bV (x)− aW (x)]

are two complementary solutions. The solution with lower

rank is the solution to the interpolation(k + 1) problem.

• Proof: If b = 0, it is clear that [N(x),W (x)] is a solution to

the interpolation(k + 1) problem. Also

M(x) ≡ V (x)Pk(x) (mod Πk(x)) such that we have

(x− xk+1)M(x) ≡ (x− xk+1)V (x)Pk+1(x) (mod Πk+1(x)).

Since
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rank[(x− xk+1)M(x), (x− xk+1)V (x)] = rank[M(x), V (x)] + 2

we have

rank[N(x),W (x)] + rank[(x− xk+1)M(x), (x− xk+1)V (x)]

= 2k + 1 + 2 = 2(k + 1) + 1.

Now consider b ̸= 0. Since [N(x),W (x)] satisfies

N(x) ≡ W (x)Pk+1(x) (mod Πk(x))

it follows that

(x− xk+1)N(x) ≡ (x− xk+1)W (x)Pk+1(x) (mod Πk+1(x)).

Thus, [(x− xk+1)N(x), (x− xk+1)W (x)] is a solution to the

interpolation(k + 1) problem.

• From previous result, [bM(x)− aN(x), bV (x)− aW (x)] is a

complementary solution of [N(x),W (x)] to interpolation(k)

problem. To show that [bM(x)− aN(x), bV (x)− aW (x)] is
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also a solution at the point (xk+1, yk+1), substituting a and b

into the following to show that equality holds:

bM(xk+1)− aN(xk+1) = (bV (xk+1)− aW (xk+1)) yk+1.

It is clear that

rank[(x− xk+1)N(x), (x− xk+1)W (x)]

+ rank[bM(x)− aN(x), bV (x)− aW (x)] = 2(k + 1) + 1.

�

• The initial condition for WB algorithm is

N(x) = V (x) = 0,W (x) = M(x) = 1.
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Algorithm 1 Welch-Belekamp Algorithm

1: N (0)(x) := V (0)(x) := 0; M (0)(x) := W (0)(x) := 1;
2: D := 0;
3: for k = 0, 1, 2, . . . , 2t− 1 do
4: bk := αkpkN

(k)(1)− rkW
(k)(1);

5: ak := αkpkM
(k)(1)− rkV

(k)(1);
6: if bk = 0 then ak := 1;
7: end if
8: if bk = 0 OR (ak ̸= 0 AND 2D > k) then
9: N (k+1)(x) := akN

(k)(αx)− bkM
(k)(αx);

10: W (k+1)(x) := akW
(k)(αx)− bkV

(k)(αx);
11: M (k+1)(x) := (αx− 1)M (k)(αx);
12: V (k+1)(x) := (αx− 1)V (k)(αx);
13: else
14: M (k+1)(x) := akN

(k)(αx)− bkM
(k)(αx);

15: V (k+1)(x) := akW
(k)(αx)− bkV

(k)(αx);
16: N (k+1)(x) := (αx− 1)N (k)(αx);
17: W (k+1)(x) := (αx− 1)W (k)(αx);
18: D := D + 1;
19: end if
20: end for
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