Introduction to Reed-Solomon Codes[1]

Yunghsiang S. Han

Graduate Institute of Communication Engineering, National Taipei University Taiwan

E-mail: yshan@mail.ntpu.edu.tw

Reed-Solomon Codes Construction (1)

- The first construction of Reed-solomon (RS) codes is simply to evaluate the information polynomials at all the non-zero elements of finite field $GF(q^m)$.
- Let α be a primitive element in $GF(q^m)$ and let $n = q^m 1$.
- Let $u(x) = u_0 + u_1 x + \dots + u_{k-1} x^{k-1}$ be the information polynomial, where $u_i \in GF(q^m)$ for all $0 \le i \le k-1$.
- The encoding is defined by the mapping $\rho: u(x) \longrightarrow \mathbf{v}$ by $(v_0, v_1, \dots, v_{n-1}) = (u(1), u(\alpha), u(\alpha^2), \dots, u(\alpha^{n-1})).$
- The RS code of length n and dimensional k over $GF(q^m)$ is the image under all polynomials in $GF(q^m)[x]$ of

degree less than or equal to k-1.

- The minimum distance of an (n, k) RS code is $d_{min} = n k + 1$. It can be proved by follows.
- Since u(x) has at most k-1 roots, there are at most k-1 zero positions in each nonzero codeword. Hence, $d_{min} \geq n-k+1$. By the Singleton bound, $d_{min} \leq n-k+1$. So $d_{min} = n-k+1$.

Reed-Solomon Codes Construction (2)

- The RS codes can be constructed by finding their generator polynomials.
- In $GF(q^m)$, the minimum polynomial for any element α^i is simply $(x \alpha^i)$.
- Let $g(x) = (x \alpha^b)(x \alpha^{b+1}) \cdots (x \alpha^{b+2t-1})$ be the generator polynomial for the RS code. Since the degree of g(x) is exactly equal to 2t, by the BCH bound, $n = q^m 1$, n k = 2t, and $d_{min} \ge n k + 1$.
- Again, by the Singleton bound, $d_{min} = n k + 1$.
- Considering GF(8) with the primitive polynomial

 $x^3 + x + 1$. Let α be a root of $x^3 + x + 1$. Then

$$g(x) = (x - \alpha)(x - \alpha^{2})(x - \alpha^{3})(x - \alpha^{4}) = x^{4} + \alpha^{3}x^{3} + x^{2} + \alpha x + \alpha^{3}x^{4} + \alpha^{3}x^{4$$

will generate a (7,3) RS code with $d_{min} = 2 \times 2 + 1 = 5$.

The number of codewords of this code is $8^3 = 512$.

Encoding Reed-Solomon Codes

- RS codes can be encoded just as any other cyclic code.
- The systematic encoding process is

$$v(x) = u(x)x^{n-k} - \left[u(x)x^{n-k} \mod g(x)\right].$$

• Typically, the code is over $GF(2^m)$ for some m. The information symbols u_i can be formed by grabbing m bits of data, then interpreting these as the vector representation of the $GF(2^m)$ elements.

Weight Distributions for RS Codes

- A code is called maximum distance separable (MDS) code when its d_{min} is equal to n k + 1. A family of well-known MDS nonbinary codes is Reed-Solomon codes.
- The dual code of any (n, k) MDS code C is also an (n, n k) MDS code with $d_{min} = k + 1$.
- It can be proved as follows: We need to prove that the (n, n-k) dual code \mathbb{C}^{\perp} , which is generated by the parity-check matrix \mathbf{H} of \mathbf{C} , has $d_{min} = k+1$. Let $\mathbf{c} \in \mathbb{C}^{\perp}$ have weight $w, 0 < w \le k$. Since $w \le k$, there are at least n-k coordinates of \mathbf{c} are zero. Let \mathbf{H}_s be an $(n-k) \times (n-k)$ submatrix formed by any collection of n-k columns of \mathbf{H} in the above coordinates. Since the

row rank of \mathbf{H}_s is less than n-k and consequently the column rank is also less than n-k. Therefore, we have found n-k columns of \mathbf{H} are linear dependent which contradicts to the facts that d_{min} of \mathbf{C} is n-k+1 and then any combination of n-k columns of \mathbf{H} is linear independent.

- Any combination of k symbols of codewords in an MDS code may be used as information symbols in a systematic representation.
- It can be proved as follows: Let G be the $n \times k$ generator matrix of an MDS code C. Then G is the parity check matrix for C^{\perp} . Since C^{\perp} has minimum distance k+1, any combination of k columns of G must be linearly independent. Thus any $k \times k$ submatrix of G must be

nonsingular. So, by row reduction on G, any $k \times k$ submatrix can be reduced to the $k \times k$ identity matrix.

• The number of codewords in a q-ary (n, k) MDS code C of weight $d_{min} = n - k + 1$ is

$$A_{n-k+1} = (q-1)\binom{n}{n-k+1}.$$

• It can be proved as follows: Select an arbitrary set of k coordinates as information positions for an information u of weight 1. The systemic encoding for these coordinates thus has k-1 zeros in it. Since the minimum distance of the code is n-k+1, all the n-k parity check symbols must be nonzero. Since there are $\binom{n}{k-1} = \binom{n}{n-k+1}$

different ways of selecting the k-1 zero coordinates and q-1 ways of selecting the nonzero information symbols,

$$A_{n-k+1} = (q-1) \binom{n}{n-k+1}.$$

• The number of codewords of weight j in a q-qry (n, k) MDS code is

$$A_{j} = \binom{n}{j} (q-1) \sum_{i=0}^{j-d_{min}} (-1)^{i} \binom{j-1}{i} q^{j-d_{min}-i}.$$

References

[1] T.K. Moon, Error Correction Coding: Mathematical Methods and Algorithms, Hoboken, NJ: John Wiley & Sons, Inc., 2005.