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Flip CRC Modification for Message Length Detection
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Abstract—Cyclic redundancy check (CRC) bits that are conven-
tionally used for error detection have recently found a new ap-
plication in universal mobile telecommunications system standard
for message length detection of variable-length message commu-
nications. It was anticipated that the CRC bits, when they are
coworked with the inner convolutional code, can be used to de-
tect the receiver—unaware of the message length—without much
degradation in their error detection capability. This is unfortu-
nately not true when the offset or difference between the wrong de-
tected length and the true length is small. Two improvements, i.e.,
the DoCoMo’s reverse CRC method and the flip CRC method, were
accordingly proposed. In this paper, we revisited the flip CRC mod-
ification by considering the impact of joint decoding of the CRC
code and the convolutional code. By generalizing the condition for
the selection of the flip polynomials, we found that under error-
free transmission, the range of the length offsets, at which the false
length probability conditioning on the true message length can be
made exactly zero (and hence, is minimized), can be extended from
� − 1 to � + m − 1, where � and m are, respectively, the number
of the CRC bits and the memory order of the convolutional code.
In addition, an upper bound and a lower bound for the overall
false length probability with respect to a uniform pick of the true
message length over a candidate message length set are derived.
It is then confirmed numerically that the two bounds almost coin-
cide for moderate (� + m) value. Simulations show that the false
length probability obtained analytically under error-free transmis-
sion assumption only mildly degrades for moderate-to-high SNRs.
Interestingly, we also found that the system block error rate of the
flip CRC method can be well approximated by the performance
curve of the adopted convolutional code up to a certain SNR, and
approach an error floor determined well by the previously derived
false length probability bounds beyond this SNR, thereby facilitat-
ing the selection of the system parameters, such as the number of
CRC bits and the memory order of the convolutional code.

Index Terms—Blind rate detection, blind transport format
detection, cyclic redundancy check (CRC), length detection,
variable-length message.

I. INTRODUCTION

I T IS QUITE common in communication systems that the
length of transmitted message blocks varies. To help de-
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blocking the messages, block length information is often trans-
mitted either together with the messages or through an explicit
control channel. Usually, the integrity of message blocks are pro-
tected with an error-detecting code. An error correcting code is
then applied to recover channel errors.

The cyclic redundancy check (CRC) code is perhaps the most
frequently used error-detecting code. An �-bit CRC code can be
specified by its generator polynomial g�(x) that is commonly
required to satisfy g�(x) = (x + 1)b(x), where b(x) is a
primitive polynomial of order (� − 1) [2]. The (x + 1) factor
in the CRC generator polynomial ensures the detectability of
all odd-weight error patterns, while a primitive b(x) guarantees
that all double errors are detectable as long as the message
length is less than 2�−1.

Due to its feasibility, the convolutional code is prevalent in the
practice of error correcting coding technique. Conventionally,
a convolutional code is denoted by a three tuple (n, υ,m) in
which the three parameters indicate its realization of υ-input, n-
output linear sequential circuit with input memory m. Since the
inputs stay in the encoder for an additional m time units, adding
m zeros at the end can retrieve the encoder to the all-zero state.
In this paper, we will focus on (n, 1,m) convolutional codes.

In a variable-length-message communication system, the
transmission of message length information requires additional
system overhead. In some specific applications, the data rate is
so low that the transmission of such additional length informa-
tion may become an inefficient system burden. An example is the
adaptive multirate (AMR) mode of universal mobile telecom-
munications system (UMTS) wideband code-division multiple-
access (WCDMA) standard for compressed speech transmis-
sion, in which the transmission overhead for message length
could be as large as 3 kb/s, which consumes almost 25% of the
12.2 kb/s data rate. In such case, detection of message length
through the attached CRC bits with the help of inner convolu-
tional code decoder becomes a potential system alternative. It is
conceptually proposed in the blind transport format detection
using CRC in [12, pp. 56–58] that a length is accepted as a legal
candidate when a certain node on the decoding trellis of the
convolutional code gives the smallest metric among all nodes at
the same trellis time index, and meanwhile, the validity test of
the CRC bits is passed (cf., Fig. 1).

The original plan of the blind transport format detection using
CRC is to specialize a system that the block error rate (BLER)
and the undetected error rate (UER) are able to be, respectively,
made lower than their corresponding system requirements with-
out the length overhead. To achieve this objective, not only a
joint convolutional/CRC decoder is proposed, but also a candi-
date message length set K �

= {k1, k2, . . . , kp} consisting of all
block lengths that is allowed to be used by the transmitter is
specified. Intuitively, if the convolutional code decoder corrects
all channel errors, the probability that the �-bit CRC validity test
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Fig. 1. Block diagram and frame structure of the blind transport format de-
tection using CRC proposed in UMTS WCDMA standard. In the system, the
receiver only knows the set K �

= {k1, k2, . . . , kp } of message lengths possibly
used by the transmitter, but is not aware of the true message length k. The
receiver, therefore, has to detect the true message length through the attached
CRC bits with the help of convolutional decoder.

is passed for some false length ki is 2−� . Accordingly, it is rea-
sonable to anticipate that by choosing � large enough, the false
length probability, as well as the block error probability, shall be
made smaller than the system requirement. Unfortunately, such
anticipation is only possibly true when the length offset |k − ki |
is not less than �, where ki is a surmised wrong length and k is
the true length.

In [4], it is shown by simulations that the false length proba-
bility is markedly larger than 2−� when the length offset |k − ki |
is smaller than �, even if the convolutional coder perfectly re-
covers all channel errors. The NTT DoCoMo, thus, proposed to
reverse the CRC bits before they are attached at the end of the
message block, and showed by simulations that their proposal
can reduce the false length probability to the desired 2−� for
length offsets smaller than � under error-free transmission [4].

In [8], we proposed an alternative modification of the original
CRC method by selectively flipping some of the CRC bits. We
then derived a necessary and sufficient condition for the selec-
tion of flip polynomials, with which the false length probability
can be reduced to zero (and hence, is already minimized) for
every message length offset smaller than the number of CRC
bits under the assumption that the transmission is error free.

In this paper, we further extend our result in [8] by additionally
considering the effect of the inner convolutional coder. As a
result, the necessary and sufficient condition for the selection
of flip polynomials is generalized to include the impact of the
convolutional coder. We also found that the length offset range
of zero false length probability conditioning on the true message
length is extended from � − 1 to � + m − 1. Moreover, an upper
bound and a lower bound of the overall false length probability
with respect to a uniform pick of the true message length from a
candidate message length set K = {k1, k2, . . . , kp} are derived,
and subsequently, confirmed numerically that the two bounds
almost coincide for moderate (� + m) value. Comparison of the
block error performance between the proposed flip CRC method
and the DoCoMo’s reverse CRC method is also provided. Detail
discussion will be given in Section IV.

Fig. 2. Error-free path (solid line) of a convolutional codeword over its trellis
diagram. Parameters k, �, and m are the true message length, the number of
CRC bits, and the memory order of the convolutional code, respectively.

The rest of the paper is organized as follows. The system
model, the joint convolutional/CRC decoding strategy, and the
flip CRC method proposed are addressed in Section II. The
bounds for overall false length probability with respect to a uni-
form pick of the true message length is derived in Section III.
Section IV summarizes and remarks the simulation results. Sec-
tion V concludes the paper.

II. SYSTEM MODEL AND THE FLIP CRC MODIFICATION

Referring to Fig. 1, the candidate message length set K �
=

{k1, k2, . . . , kp} is priorly negotiated between the transmitter
and the receiver. Then, a true message block with k bits, where
k ∈ K, is CRC encoded by an �-bit CRC encoder, followed by
the encoding of an (n, 1,m) convolutional encoder. Additional
m zeros are padded after the CRC-encoded message block so as
to terminate the trellis of the convolutional code. To alleviate the
interference to other users, the transmission power is turned off
after the transmission of the encoded data is completed. Finally,
a Viterbi decoder and a CRC decoder jointly operate to decode
the message bits without the knowledge of the true message
block length k.

The idea behind the joint decoding of the convolutional de-
coder and the CRC decoder can be described as follows. Refer-
ring to the Viterbi decoding trellis in Fig. 2, since m zeros are
padded at the end of the CRC-encoded message block of length
(k + �), the path that gives the smallest metric should end at
the all-zero state at time index (k + � + m) under error-free
transmission. The CRC test, when applied to the convolutional
decoded message up to level (k + � + m), validates the integrity
of the message block, and implicitly confirms its length. As a
result, if the correct trellis path that corresponds to the transmit-
ted convolutional codeword ends at the all-zero state at some
time index (k2 + � + m) smaller than the correct time index
(k + � + m), the CRC test will be applied to invalidate the sur-
mised message block length k2. When an incorrect path ending
at the all-zero state at level (k1 + � + m) has smaller path met-
ric than the correct path due to the introduction of noise, the
result of the CRC decoder will be used to prevent from a wrong
estimate k1 of the true message length k. Accordingly, a false
length is claimed only when the convolutional decoder and the
CRC decoder simultaneously fail to indicate such fault.

In [7] and [9], variations of the length detection strategy
under the joint operation of the Viterbi decoder and the CRC
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decoder have been proposed. Okumura and Adachi [7] proposed
to perform a threshold test on a variable

δ(k)
�
= −10 log

(
λ0(k) − λmin(k)

λmax(k) − λmin(k)

)
(1)

where λmax(k) and λmin(k) are, respectively, the maximal and
the minimal path metric values among all survivors that end
at trellis time index (k + � + m) and λ0(k) is the path metric
value for the survivor path ending at the all-zero state at level
(k + � + m). It needs to be pointed out that in Okumura and
Adachi’s system, the Viterbi decoder searches for the convolu-
tional codeword that gives the largest path metric rather than the
smallest.

Apparently, δ(k) equals zero in noiseless transmission if k is
the true message length. However, δ(k) may be strictly greater
than zero in a noisy environment, and the probability of detection
may become unacceptably small due to a moderate noise if a
strict condition as that ki is a legitimate length for subsequent
CRC test only when δ(ki) = 0 is adopted by the convolutional
decoder. For this reason, Okumura and Adachi proposed to relax
the strict condition to that δ(ki) < ∆ for some positive ∆, where
∆ is a system design parameter. Specifically, if δ(ki) < ∆, the
Viterbi decoder traces back the trellis to find the message block
corresponds to the survivor path ending at the all-zero state at
level (ki + � + m), and the CRC test is subsequently applied to
the message block to check whether ki is a candidate detected
length. In the end, among all the candidate detected lengths,
the one with the smallest δ function value will be chosen as
the final estimate of the true message block length k.1 Notably,
since the input to the Viterbi decoder becomes pure noise after
the correct trellis time index (k + � + m), and since to output
a surmised message length larger than k requires its δ function
value strictly less than δ(k) with a valid CRC test result, it is
statistically unlikely to yield a length estimate larger than k.

From the jointly decoding strategy described previously, the
error events can be classified into two categories: undetected er-
ror and detected error. The former corresponds to the condition
that an estimate of the true message block length is found, but
a wrong message block is resulted. The latter concerns the situ-
ation that the joint decoder fails to find an estimate of the true
message block length, and thus, receiver generates no output.
The undetected error events can be further subdivided into that
a wrong length is claimed, and that a wrong message block with
correct length is resulted. We can, therefore, define four kinds
of errors as

DER
�
= N1/N

FLR
�
= N2/N

UER
�
= (N2 + N3)/N

1The choice of the threshold value ∆ will affect the BLER, the UER, and the
number of tracebacks in the Viterbi decoder. It was shown by simulations [9]
that as long as ∆ is sufficiently large, its influence on the BLER and the UER is
mild. Indeed, when ∆ = ∞, the receiver will examine the validity of the CRC
test for all candidate message lengths in K and output the CRC-valid one with
the smallest δ function value.

BLER
�
= (N1 + N2 + N3)/N

= DER + UER

where N , N1, N2, and N3 are the total number of message
block samples experimented, the number of samples for which
the receiver fails to output an estimate of the true message
block length, the number of samples for which the receiver
claims a wrong length, and the number of samples for which
the receiver claims a wrong message block with the correct
length, respectively, and DER and FLR are the detected error
rate and false length rate, respectively. In addition, we denote
by FLR(i|k) as the conditional false length rate of message
length offset i given that the true message length is k, where
the message length offset is defined as the difference between
the estimate message length and the true message length k.

In the following, a novel CRC modification by selectively
flipping part of the CRC bits is introduced. Specifically, for a
given �-bit CRC, we construct a flip polynomial of degree (� −
1), denoted by f�(x) = t�x

�−1 + · · · + t1, where tj ∈ {0, 1}
for 1 ≤ j ≤ �. Then, the jth parity bits pj is “flipped” (i.e.,
complemented) when tj = 1, and “unflipped” (i.e., unchanged)
otherwise. For clarity, the encoding and decoding rules of the flip
CRC modification with respect to CRC generator polynomial
g�(x) and its corresponding flip polynomial f�(x) are provided
next.

1) Encode a message block with k bits
a) For a message block [mk, . . . ,m1], determine

its corresponding � parity check bits [p�, . . . , p1]
such that g�(x)

∣∣(x�M(x) + P (x)
)

, where M(x) =
mkxk−1 + · · · + m1, P (x) = p�x

�−1 + · · · + p1, and
“a(x)|b(x)” means that a(x) divides b(x).

b) Flip the � parity check bits according to the flip poly-
nomial f�(x). The resultant parity check vector is
[p̄� , . . . , p̄1] = [p� ⊕ t� , . . . , p1 ⊕ t1], where “⊕” rep-
resents modulo-2 addition.

c) Attach the flipped � parity check bits at the end
of the k message bits to form a coded block of
[mk, . . . ,m1, p̄� , . . . , p̄1] for subsequent convolutional
encoding.

2) Decode a candidate block with (k̂ + �) bits that are passed
from the convolutional decoder
a) Upon the reception of a message block [rk̂+� , . . . , r1],

calculate the � parity check bits [p̂� , . . . , p̂1] for the
surmised message block [rk̂+� , . . . , r�+1].

b) If [p̂� ⊕ t� , . . . , p̂1 ⊕ t1] = [r�, . . . , r1], then the CRC
test for message length k̂ is passed; otherwise, it is not
passed.

In [8], we provide a necessary and sufficient condition for
the selection of flip polynomials that guarantee the conditional
FLR to be zero for all message length offsets in {1, 2, . . . , � − 1}
under error-free transmission and absence of convolutional cod-
ing protection. We further show that if the message block is
uniformly distributed given the message length, the conditional
FLR for our flip CRC modification is equal to 2−� for all mes-
sage length offsets not less than �.
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In this paper, we further enhance the result by considering
the performance of the joint decoding of the convolutional de-
coder and the CRC decoder. As mentioned before, two tests—δ
threshold test and CRC test—are simultaneously used to iden-
tify the message length. The next theorem then indicates that the
inner convolutional code can not only significantly reduce the
conditional FLR, but can also enlarge the zero-conditional-FLR
margin from � − 1 to � + m − 1 under error-free transmission.
Even though the following analysis is derived under the as-
sumption of error-free transmission, simulations show that at
moderate SNRs (≥5.5 dB, as shown in Fig. 4), where channel
transmission errors occur mildly during the convolutional de-
coding process, the conditional FLR remains almost intact as
the next theorem tells.

Theorem 1: Assume error-free transmission and a consec-
utive candidate message length set K = {k1, k2, k3, . . .} =
{k1, k1 + 1, k1 + 2, . . .}, where k1 ≥ � + m.2 Also assume that
the generator polynomial g�(x) satisfies gcd (g�(x), xi) = 1 for
each 0 ≤ i ≤ � + m − 1 and deg(g�(x)) = �. Let the message
block be uniformly distributed given the true message length k.
Then, the joint decoding of the convolutional code and the flip
CRC code gives the following3

1) FLR (i|k) = 0 for 1 ≤ i < � + m if and only if

deg
(

Remainder of
{

(1 + xi)f�(x)
g�(x)

})
≥ i − m

for 1 ≤ i < � + m. (2)

2) FLR (i|k) = 2−(�+m ) for � + m ≤ i < k.
Proof: Since δ(k) = 0 in the absence of channel noise, the

false length event can occur only possibly for k1 ≤ kj < k with
δ(kj ) = 0, regardless of the threshold value ∆.

Denote the input of the convolutional encoder by [ck+�+m ,
. . . , cm+1, cm , . . . , c1] = [ck+�+m , . . . , cm+1, 0, . . . , 0], where
the last m zeros are used to terminate the convolutional code. Let
C0(x)

�
=

∑k+�−1
j=0 cm+1+j x

j ; hence, g�(x)|(C0(x) + f�(x)).
Then

FLR(i|k)

= Pr {C′
ican pass the CRC test and δ(k − i) = 0}

= Pr {C′
ican pass the CRC test and C′′

i = 0}
= Pr {C′′

i = 0}Pr {C′
i can pass the CRC test|C′′

i = 0}

where 0
�
= [0, . . . , 0] is the all-zero vector, C′

i
�
=

[ck+�+m , . . . , cm+i+1],C′′
i

�
= [cm+i , . . . , ci+1], and 1 ≤ i < k.

By the three assumptions of: 1) uniformly distributed mes-
sage, 2) gcd(g�(x), xi) = 1 for 0 ≤ i ≤ � + m − 1, and 3)

2It can be verified that when k < � + m, FLR(i|k) = 0 for 1 ≤ i < k if and
only if deg (Remainder of {(1 + xi )f� (x)/g� (x)}) ≥ i − m for 1 ≤ i < k.
Since no existing standards have specified their candidate message lengths
smaller than the adopted (� + m), we exclude this case from Theorem 1 (and
its proof) to reduce the reading burden.

3The degree of a zero polynomial h(x) = 0 is treated as −∞; hence,
deg(Remainder of {(1 + xi )f� (x)/g� (x)}) ≥ i − m at 1 ≤ i ≤ m is equiv-
alent to state that (1 + xi )f� (x) cannot be divided by g� (x) at 1 ≤ i ≤ m.

deg(g�(x)) = �, we have4 Pr{C′′
i = 0} = 2−min{i,m} > 0.

Hence, FLR(i|k) = 0 if and only if Pr{C′
i can pass the CRC

test|C′′
i = 0} = 0.

Observe that for 1 ≤ i < � + m, C′
i can pass the CRC test

given that C′′
i = 0 if and only if

g�(x)|C ′
i(x) + f�(x)

⇔ g�(x)|xi (C ′
i(x) + f�(x))

⇔ g�(x)|C0(x) +
(
cm+ix

i−1 + · · · + cm+1

)
+ xif�(x)

⇔




g�(x)|[(xi + 1)f�(x)
+(cix

i−m−1 + · · · + cm+1)], if m + 1 ≤ i < � + m
g�(x)|(xi + 1)f�(x), if 1 ≤ i < m + 1

(3)

where the second step follows from gcd(g�(x), xi) = 1 for
0 ≤ i ≤ � + m − 1, and the last step holds since C′′

i = 0 and
g�(x)|(C0(x) + f�(x)). Thus, FLR(i|k) = 0 for every 1 ≤ i <
� + m if and only if (3) is violated for every 1 ≤ i < � + m,
which completes the proof of (2).

For � + m ≤ i < k, C′
i and C′′

i contain no parity check bits,
and therefore, are independent of each other. Consequently,

FLR(i|k)

= Pr {C′′
i = 0}Pr {C′

ican pass the CRC test}
= 2−m · 2−� = 2−(�+m ).

In the previous theorem, the candidate message length set K
is assumed to be consecutive so that the length offset i can be any
positive number. It can be similarly proved that if kj 	= kj−1 + 1
for some j, where K = {k1, k2, . . . , kp} with k1 < k2 < · · · <
kp , then the theorem statement should be modified as followings:

1) FLR(i|kj ) = 0 for all i 	∈ Kj
�
= {i : i = kj − ku for some

1 ≤ u < j} (since the receiver knows that the transmitter
will not use any length outside K).

2) FLR(i|kj ) = 0 for 1 ≤ i < � + m and i ∈ Kj if and only
if

deg
(

Remainder of

{
(1 + xi)f�(x)

g�(x)

})
≥ i − m

for 1 ≤ i < � + m and i ∈ Kj .

3) FLR(i|kj ) = 2−(�+m ) for � + m ≤ i < kj and i ∈ Kj .
For given m, �, and g�(x), the legitimate flip polynomial f�(x)

that satisfies (2) can be exhaustively searched by computers. For
an 8-bit CRC protection with g8(x) = x8 + x7 + x4 + x3 +
x + 1 and (2, 1, 8) convolutional codes, i.e., � = 8 and m = 8,
the number of flip polynomials satisfying (2) is 66. It is worth
mentioning that the conditional FLR formula in Theorem 1

4Because parity bits [cm +� , . . . , cm +1] are uniformly distributed under the

three assumptions, Pr
{
C′′

i = 0
}

= 2−min{i ,m } for 1 ≤ i < � and � + m ≤
i < k. It can also be shown under the same assumptions that for � ≤ i < � + m,
[c�+m , . . . , ci+1] is uniformly distributed given that [cm +i , . . . , c�+m +1] =
0. Hence, for � ≤ i < � + m, Pr{C′′

i = 0} = Pr{[cm +i , . . . , c�+m +1] =

0} × Pr{[c�+m , . . . , ci+1] = 0|[cm +i , . . . , c�+m +1] = 0} = 2−(i−�) ·
2−min{�,m −i+�} = 2−min{i ,m }.
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cannot be improved, and hence, is optimal under uniformly
distributed message and error-free transmission.

III. PERFORMANCE ANALYSIS FOR THE FLR

In the previous section, we derived the formula for the con-
ditional false length probability given the true message block
length k, and proved that the flip CRC modification can mini-
mize this probability for every i under error-free transmission.
In this section, we will further examine the overall false length
probability under uniformly distributed message length.

By assuming that the true message length is uniformly se-

lected from K �
= {k1, k2, . . . , kp},

FLR =
1
p

p∑
i=1

Pr(Ei) (4)

where Ei denotes the false length event given that the true
message length is ki .

Theorem 2: Assume error-free transmission and uniformly
distributed message given the true message length. The overall
false length rate under the assumption that the true message
length is uniformly selected from K �

= {k1, k2, . . . , kp}, where
k1 ≥ � + m, satisfies

FLR

≥ 1
p

p∑
i=1

⌊
k i −k 1
�+m

⌋
∑
t=1

(
2−t(�+m ) × S(ki − (� + m), t, � + m|K)

×
[
1 − 2−(�+m ) × [ki − k1 − (t + 1)(� + m) + 1]+

]+)
(5)

and

FLR ≤ 1
p · 2(�+m )

p∑
i=1

|{kj ∈ K : kj ≤ ki − � − m}| (6)

provided that a flip polynomial satisfying (2) is employed,
where S(u, t, d|K) is the number of choices of sets corre-
sponding to the condition that “choose t distinct numbers from
K ∩ {1, 2, . . . , u} such that any two must differ at least d,′′ and

[a]+
�
= max{a, 0}.

Proof: Observe that under error-free transmission, the false
length event for some kj not equal to the true message length
ki occurs only when δ(kj ) ≤ δ(ki) = 0 if k1 ≤ kj < ki , and
δ(kj ) < δ(ki) = 0 if ki < kj ≤ kp . Since δ(kj ) is nonnega-
tive, the aforementioned false length event can occur only
when δ(kj ) = 0 and k1 ≤ kj < ki . By Theorem 1, using a
flip polynomial satisfying (2) implies that FLR(ki − kj |ki) = 0
for ki − � − m < kj < ki , and FLR(ki − kj |ki) = 2−(�+m ) for
k1 ≤ kj ≤ ki − � − m.

1) Upper bound: Let Fj denote the event that kj is a le-
gitimate candidate detected length that validates both the
CRC test and δ(kj ) = 0, provided that the true message

length is ki ; thus, Pr(Fj ) = FLR(ki − kj |ki). Then

Pr(Ei)

= Pr


 ⋃

{kj ∈K: kj ≤ki −�−m}
Fj




≤
∑

{kj ∈K: kj ≤ki −�−m}
Pr(Fj ) (7)

= |{kj ∈ K : kj ≤ ki − � − m}| · 2−(�+m ). (8)

Substituting (8) into (4) immediately gives (6).
2) Lower bound: Let Lt,i denote the event that there are

t additional legitimate candidate detected lengths other
than the true message length ki . Then, the probability
lower bound of Pr(Lt,i) can be derived as follows.

Let At,i
�
= {kj1 , kj2 , . . . , kjt

} be one of the possible ap-
pearances of t additional candidate detected lengths for the
true message length ki , and assume without loss of gener-
ality that kj1 < kj2 < · · · < kjt

< ki . (Apparently, Lt,i is
the union of all such possible At,i .) Then, with probability
1, the lengths in At,i must differ by at least (� + m), and
are at most (ki − (� + m)) according to Theorem 1. Put

the (� + m) expanding set of At,i as Āt,i
�
= {k ∈ K : k̄ −

(� + m) < k < k̄ + (� + m) for some k̄ ∈ At,i}, and let
Bt,i = {k ∈ K : k ≤ ki − (� + m) and k 	∈ Āt,i}. Thus,

Pr(At,i)

= Pr





 ⋂

kj ∈At , i

Fj


 ⋂

 ⋂
kj ∈Bt , i

F c
j







=


 ∏

kj ∈At , i

Pr (Fj )


 × Pr


 ⋂

1≤j<j1,kj ∈Bt , i

F c
j




× Pr


 ⋂

j1<j<j2,kj ∈Bt , i

F c
j


 × · · ·

× Pr


 ⋂

jt <j<i,kj ∈Bt , i

F c
j




≥ 2−t(�+m )


1 −

∑
1≤j<j1,kj ∈Bt , i

Pr(Fj )




+

× · · ·

×


1 −

∑
jt <j<i,kj ∈Bt , i

Pr(Fj )




+

≥ 2−t(�+m )

× [1 − [kj1 − k1 − � − m + 1]+ · 2−(�+m )]+

× [1 − [kj2 − kj1 − 2� − 2m + 1]+ · 2−(�+m )]+

× · · ·
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× [1 − [ki − kjt
− 2� − 2m + 1]+ · 2−(�+m )]+

≥ 2−t(�+m )·
[1 − [ki − k1 − (t + 1)(� + m) + 1]+ · 2−(�+m )]+ (9)

where the first equality holds since Pr(Fc
j ) = 1 for

kj 	∈ At,i ∪ Bt,i and kj ≤ ki − � − m, the second
equality follows the independence between Fu and Fv

for |ku − kv | ≥ � + m, (9) holds by oversumming all the
integers outside Āt,i , and the last inequality holds since
[1 − [a1 − c]+ · b]+ × [1 − [a2 − c]+ · b]+ × · · · × [1 −
[at+1 − c]+ · b]+ ≥ [1 − [a1 + · · · + at+1 − c]+ · b]+
for nonnegative a1, a2, . . . , at+1, b, and c.5 As the earlier
lower bound depends only on t and ki ,

Pr(Lt,i)

≥ S(ki − � − m, t, � + m|K) × 2−t(�+m )

×
[
1 − [ki − k1 − (t + 1)(� + m) + 1]+ · 2−(�+m )

]+
.

Consequently,

Pr(Ei)

=
∞∑

t=1

Pr(Lt,i)

≥

⌊
k i −k 1
�+m

⌋
∑
t=1

S(ki − � − m, t, � + m|K) × 2−t(�+m )

×
[
1 − [ki − k1 − (t + 1)(� + m) + 1]+ · 2−(�+m )

]+
and

FLR

=
1
p

p∑
i=1

Pr(Ei)

≥ 1
p

p∑
i=1

⌊
k i −k 1
�+m

⌋
∑
t=1

S(ki − � − m, t, � + m|K)

× 2−t(�+m )

×
[
1 − [ki − k1 − (t + 1)(� + m) + 1]+ · 2−(�+m )

]+
.

Both the derivations of the upper and the lower bounds rely
on the union-bound argument, i.e., (7) and

Pr


 ⋂

j1<j<j2,kj ∈Bt , i

F c
j


 ≥


1 −

∑
j1≤j<j2,kj ∈Bt , i

Pr(Fj )




+

which, from subsequent (8) and (9), can be expected to become
loose when (� + m) is too small. By depicting the upper and the

5Specifically, we denote a1
�
= kj1 − k1, a2

�
= kj2 − kj1 − (� + m), . . .,

at
�
= kjt − kjt−1 − (� + m), at+1

�
= ki − kjt − (� + m), b

�
= 2−(�+m ),

and c
�
= � + m − 1. Notably, a1 ≥ 0, a2 ≥ 0, . . ., at ≥ 0, at+1 ≥ 0, with

probability 1.

Fig. 3. The upper and the lower bounds of the FLR for different (� + m)
values for nonconsecutive message length set {39, 42, 49, 55, 58, 61, 65, 75,
81} and consecutive message length set {101,102,. . .,300}.

lower bounds for K = {39, 42, 49, 55, 58, 61, 65, 75, 81} and
K = {101,102,. . .,300} in Fig. 3, where the former nonconsec-
utive candidate message length set is specified in the UMTS
WCDMA specification [14, Table B.1 of Annex B], we found
that the lower bound deviates from the upper bound only at small
(� + m), as expected, and this deviation becomes invisible when
(� + m) is beyond 10. In addition, the FLR decays exponentially
as (� + m) increases. It is worth mentioning that for a consecu-
tive candidate message length set K = {s, . . . , s + p − 1}, the
two bounds reduce to only functions of p, and are no longer
relevant to s.

All the previous analyses are done under the error-free as-
sumption, which results in FLR = UER = BLER; however,
these error rates are expectedly different in noisy communica-
tion. Their difference due to noise will be examined by simula-
tions in the next section.

IV. SIMULATION RESULTS

In this section, simulation results for antipodal transmission
over the additive white Gaussian noise (AWGN) channel are
presented. The (2,1,8) convolutional code with generator poly-
nomial [561,753] (in octal) is employed in all simulations in
Section IV-A and IV-B.

A. Simulations on Conditional FLR

In Fig. 4, the conditional FLRs for the DoCoMo’s reverse
CRC modification and the flip CRC modification are sim-
ulated at SNR = 5.5 dB. The convolutional memory order,
the CRC bit number, and the true message length are, re-
spectively, m = 8, � = 8, and k = 60, and the length offset
i can be any positive integer. Two flip polynomials are con-
sidered: f8(x) = x7 + x5 + x3 + x2 + 1 that satisfies (2), and
f8(x) = x7 + 1 that violates (2) at i =12, 13, 14, 15.
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Fig. 4. Simulated conditional FLR at uncoded SNR = 5.5 dB. The CRC code
with g8(x) = x8 + x7 + x4 + x3 + x + 1 are used. Two flip polynomials
are tested: f8(x) = x7 + x5 + x3 + x2 + 1 that satisfies (2) and f8(x) =
x7 + 1 that violates (2) at message length offsets 12, 13, 14, 15. No points are
drawn for the flip CRC methods at small length offsets, such as 1 · · · 15 for
f8(x) = x7 + x5 + x3 + x2 + 1 and 1 · · · 11 for f8(x) = x7 + 1, because
the numbers of their fault length errors are much less than 100 in 108 simulation
runs.

We first noted that at uncoded SNR = 5.5 dB, the perfor-
mance of the flip CRC method with f8(x) = x7 + x5 + x3 +
x2 + 1 is almost identical to the error-free performance in
Theorem 1. The figure also demonstrated the necessity of the
condition in Theorem 1. The flip polynomial f8(x) = x7 + 1
that violates condition (2) at i = 12, 13, 14, and 15 gives appar-
ently higher conditional FLR when the length offsets equal 12,
13, 14, and 15.

We have proved in [8] that in the absence of the inner convo-
lutional coder, the DoCoMo’s reverse CRC method flattens the
conditional FLR to a constant value 2−� for all message length
offset under error-free transmission. However, Fig. 4 indicates
that when the convolutional coder, as well as the AWGN noise, is
additionally introduced into the system, their conditional FLR
grows as the length offset decreases, and is markedly greater
than 2−(�+m ) at small length offset. The conditional FLR of
the proposed flip CRC method, on the contrary, remains un-
plotably small (i.e., smaller than the plot margin 10−6 of Fig. 4)
at uncoded SNR = 5.5 dB when the length offset is less than
(� + m).

B. Simulations on BLER, DER, UER, and FLR

In Figs. 5–8, we summarize the simulated BLER, DER, UER,
and FLR performances for the DoCoMo’s reverse CRC method
and the proposed flip CRC method for a nonconsecutive candi-
date message length set {39, 42, 49, 55, 58, 61, 65, 75, 81} and a
consecutive candidate message length set {33,34,. . .,232}. The
system simulated is set as in Fig. 1.

We first examined the BLER degradation due to lack of mes-
sage length information. In Fig. 5, the curve labeled “known
length” represents the simulated BLER given that the receiver

Fig. 5. Simulated BLERs for nonconsecutive message length set {39, 42, 49,
55, 58, 61, 65, 75, 81} with CRC generator polynomial g8(x) = x8 + x7 +
x4 + x3 + x + 1 and flip polynomial f8(x) = x7 + x5 + x3 + x2 + 1, and
consecutive message length set {33, 34, . . . , 232} with CRC generator polyno-
mial g12(x) = x12 + x11 + x3 + x2 + x + 1 and flip polynomial f12(x) =
x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x2 + x. The curve labeled
“known length” is the BLER given that the receiver knows the true message
length.

knows the true message length. We noted that when the SNR is
low (≤2.5 dB), both the flip CRC method and the DoCoMo’s
reverse CRC method perform close to that of known length sys-
tem. Since the block error events at low SNRs occur mainly
due to the failure of the convolutional decoder in correcting
the channel errors, and are irrelevant to whether the true mes-
sage length is known or not, it is reasonable that the BLER
degradation due to lack of true message length information is
small at low SNRs. When the SNR increases beyond 2.5 dB, the
difference between known length BLER and unknown length
BLERs, including those of the DoCoMo’s reverse CRC method
and the flip CRC method, becomes more evident, as anticipated.
The BLERs of both the DoCoMo’s reverse CRC method and
the flip CRC method approach a floor value as the SNR fur-
ther increases. However, the BLER error floor value of the flip
CRC method is significantly smaller than that of the DoCoMo’s
reverse CRC method. Fig. 5 also hints that the BLER error
floor value of the flip CRC method can be adjusted by adopting
different CRC bit numbers and candidate message length sets.

We depict the simulation results for the DER in Fig. 6. It shows
that the DER decreases exponentially fast as the SNR increases,
and is almost indifferent with respect to the CRC modification
methods. Another observation is that the DER dominates the
BLER at low SNR, and becomes negligible for the calculation
of the BLER when SNR grows beyond 5 dB (cf., Fig. 9).

The earlier observation can be further confirmed by the UER
curves in Fig. 7. The comparison between the curves in Fig. 6
and 7 shows that the UER is much smaller than the DER at low
SNR. However, the UER decreases at a much lower speed than
the DER as the SNR increases, and approaches a floor value
when the SNR is further increased. Therefore, it is the UER
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Fig. 6. Simulated results for the DER with the same setting as in Fig. 5.

Fig. 7. Simulation results for the UER with the same setting as in Fig. 5.

rather than the DER to decide the ultimate floor value of the
BLER.

In Fig. 8, we obtained similar behavior for the FLR to that of
the UER. Indeed, the FLR and the UER are close to each other
for all simulated SNRs (cf., Fig. 9). The theoretical upper and
the lower bounds6 for the FLR, derived based on the assumption
of error-free transmission, i.e., SNR = ∞, are also plotted for
comparison. As shown in the figure, the FLR floor value quickly
approaches the bounds at moderate SNR, such as 5 dB, and will
ultimately lie within the two bounds.

Finally, we summarized the previous simulated BLER, UER,
and FLR in Fig. 9. As mentioned before, the UER and the FLR

6The two bounds are actually indistinguishable in Fig. 8. For consecutive
message length set with � + m = 20, the upper bound and the lower bound are
7.7677 × 10−5 and 7.7672 × 10−5, respectively. For nonconsecutive message
length set with � + m = 16, the upper bound and the lower bound are 3.3908 ×
10−5 and 3.3906 × 10−5, respectively. Therefore, we simply plot the upper
bound for comparison with the simulated results in Fig. 8.

Fig. 8. Simulation results for the FLR with the same setting as in Fig. 5.

Fig. 9. Simulation results for the BLER, the UER, and the FLR with the same
setting as in Fig. 5.

almost coincide for all SNRs simulated, but deviate from the
BLER at low SNRs. In principle, the deviation of the BLER to
the UER, which is exactly the DER, can be eliminated by system
retransmission—a conventional system application of the CRC
technique; hence, it is practical to expect that the ideal BLER
curve for a system enhanced with retransmission scheme shall
follow the UER/FLER curve. Finally, the UER, the FLR, and
the BLER converge to the same floor value that can be a priori
determined by the theoretical bounds in Theorem 2.

C. Simulations for Different Convolutional/CRC Combinations

We have shown in the previous section that the error floor of
the BLER can be determined by the FLR bounds in Theorem 2,
which, according to Fig. 3, is in turn adjustable by the (� + m)
value. Fig. 10 further examined the impact of different convolu-
tional/CRC code combinations on the BLER when (� + m) is
fixed as 20. The candidate message length set simulated in this
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Fig. 10. Simulations for different convolutional/CRC combinations
with fixed � + m = 20. The generator polynomials of the convo-
lutional codes tested are [561 753], [46 72], and [75] (in oc-
tal) for m = 8, 4, and 2, respectively. The flip CRC codes
tested include: 1) g12(x) = x12 + x11 + x3 + x2 + x + 1 and f12(x) =
x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x2 + x, 2) g16(x) = x16 +
x12 + x5 + 1 and f16(x) = x15 + x14 + x13 + x12 + x11 + x10 + x9 +
x8 + x7 + x6 + x5 + x4 + x3 + x2 + x, 3) g18 = x18 + x17 + x15 +
x14 + x + 1 and f18(x) = x17 + x16 + x15 + x14 + x13 + x12 + x11 +
x10 + x9 + x8 + x7 + x6 + x5 + x4 + 1, 4) g20(x) = x20 + x19 + x6 +
x5 + x3 + 1 and f20(x) = x19 + x18 + x17 + x16 + x15 + x14 + x13 +
x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2. The candi-
date message length set is K = {33, 34, . . . , 232}.

section is {33, 34, . . . , 232}. Four different convolutional/CRC
code combinations are tested.

Several observations can be made from Fig. 10. First, it is
double confirmed that the BLER error floor is decided only by
the (� + m) value, and is independent of the convolutional/CRC
code combinations. Second, all convolutional/CRC code com-
binations perform close to their respective known length system
before they reach their BLER error floors. Notably, the BLER
performance of the known length system is actually given by
the performance of the convolutional codes. Third, the convo-
lutional/CRC code combination with larger m value can yield
better BLER performance. However, as the decoding complex-
ity (such as the Viterbi algorithm) for convolutional codes in-
creases exponentially with m, while the decoding complexity
for CRC codes grows only linearly with �, there is a tradeoff
between the BLER performance (that prefers larger m) and the
overall decoding complexity (that favors larger �).

In a usual blind-length communication system, the BLER that
equals the sum of the UER and the DER is often required to be
less than a certain value at some target operating SNR. It is also
common to specify a minimum UER requirement in order to
differentiate the detected error events and the undetected error
events for applications like automatic retransmission request
(ARQ). A specific example is that the blind transport format
detection of 3GPP WCDMA system particularizes the minimum
BLER and the minimum UER as 10−2 and 10−4, respectively
[13, p. 39]. It should be noted that the UER defined in this paper

is termed the false detection rate (FDR) in the 3GPP WCDMA
standard.

Since the BLER performance curve can, in fact, be approxi-
mately given by the performance of the respective known length
system and the FLR bounds (i.e., the BLER error floor), one may
decide the system parameters in the following fashion.

Give the candidate message length set, the operating SNR,
the minimum BLER, and the minimum UER required.

1) Search through all known length performance curves, and
find the one that gives the smallest memory order m such
that the BLER at the operating SNR (with appropriate
SNR margin) is lower than the minimum BLER required.7

2) After determining m, decide the minimum number of CRC
bits, i.e., �, such that the FLR upper bound is smaller than
the minimum UER required.

Through the aforementioned procedure, one can determine a
pair of appropriate m and � values that satisfy both the BLER
and the UER requirements with the lowest decoding complexity
for the joint convolutional/CRC decoder.

V. CONCLUSION

In this paper, we revisit our previously proposed flip CRC
modification by considering the impact of joint decoding of the
CRC code and the convolutional code. We found that the inner
convolutional coder can not only largely extend the offset range
of the zero conditional FLR, but can also exponentially reduce
the conditional FLR value at those offsets at which the condi-
tional FLR is not zero. A simple upper bound for the overall
FLR is also provided, and is numerically shown to be almost
tight for moderate (� + m) value by means of a lower bound.
Although the design criterion and the subsequent performance
analyses of the flip CRC modification are established under the
error-free assumption, their behaviors over a noisy environment
have been examined by simulations in Figs. 4–10. Our simu-
lations certify the feasibility of using CRC bits simultaneously
for length detection and error detection in some specific applica-
tions like the UMTS WCDMA. The final observation, for which
the BLER can be well approximated by the performance curve
of the convolutional code below a certain SNR value, and ap-
proach a floor value determined well by the FLR bound beyond
this SNR value, shall be useful in simplifying the design of the
UMTS WCDMA system.
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