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Abstract. In this work, two soft-decision fusion rules, which are re-
spectively named the maximum a priori (MAP) and the suboptimal
minimum Euclidean distance (MED) fusion rules, are designed based on
a given employed sensor code and associated local classification. Their
performance comparison with the distributed classification fusion using
soft-decision decoding (DCSD) proposed in an earlier work is also per-
formed. Simulations show that when the number of faulty sensors is
small, the MAP fusion rule remains the best at either low sensor ob-
servation signal-to-noise ratios (OSNRs) or low communication channel
signal-to-noise ratios (CSNRs), and yet, the DCSD fusion rule gives the
best performance at middle to high OSNRs and high CSNRs. However,
when the number of faulty sensor nodes grows large, the least complex
MED fusion rule outperforms the MAP fusion rule at high OSNRs and
high CSNRs.

1 Introduction

One of the general emerging visions for future applications is to deploy a large
number of self-sustained wireless sensors to perform, e.g., environmental mon-
itoring, battle field surveillance and health care maintenance. These wireless
sensor nodes are typically battery-powered and made by economical techniques,
and hence are vulnerable if they are employed in a harsh environment [1]. This
makes energy efficiency and fault-tolerance capability becoming critical design
factors in wireless sensor networks (WSNs). Another factor that distinguishes
a WSN from other communication networks is that its end goal is to draw a
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discrete decision out of several possible events of interest, but not to convey in-
formation. For these reasons, research on collaborative signal processing, and in
particular, collaborative detection and classification has been studied extensively
in WSNs [2–5].

In order to achieve the desired robustness against sensor faults under lim-
ited energy support, a distributed classification fusion using error correcting
codes (DCFECC) has been proposed to be used in WSNs [6]. In the DCFECC
approach, the fusion center makes multi-hypotheses decision by receiving only
one-bit information from each sensor to minimize the local energy consumption.
As contrary to the hard decision decoding used in the DCFECC approach, a
soft-decision DCSD approach was later proposed in [7]. It is suggested by the
investigation on the DCSD approach in [7] that employing soft-decision can
markedly enhance the fault-tolerance capability of the same code in WSNs. This
motivates our further investigation on the design of soft-decision-based fusion
rules in this work.

Three soft-decision fusion rules are investigated in this paper: The maximum
a priori (MAP) fusion rule, the minimum Euclidean distance (MED) fusion rule,
and the previously proposed DCSD fusion rule. It is obvious that the MAP fusion
rule provides the best classification performance if no sensor nodes are faulty.
However, when some faulty sensors do not follow the local classification rules
that are mutually pre-agreed between the fusion center and the local sensors,
the MAP fusion rule is expected to degrade considerably since among the three
soft-decision fusion rules considered, it is the one that mostly trusts the local
classification. Therefore, the DCSD and the MED, although suboptimal in per-
formance at a fault-free situation, may be more robust, if several sensor faults
are present. Our simulations do match our anticipation. Details will be given
subsequently.

The paper is organized as follows. The distributed classification problem is
described in the next section. The MAP and the MED fusion rules, as well as
the DCSD fusion rule, are introduced in Section 3. Simulations on these soft-
decision fusion rules are presented and remarked in Section 4. Conclusion is given
in Section 5

2 System Model

Fig. 1 depicts a parallel fusion structure in which a number of sensors respectively
make sensor measurements z = {zj}

N
j=1 given that one of the M hypotheses is

true, where N is the number of sensors. The sensor measurement {zj}
N
j=1 are

conditionally independent given each hypothesis. Each sensor makes a prelim-
inary decision x = {xj}

N
j=1, where xj ∈ {−1, 1}, about the true hypothesis

uncooperatively according to a pre-specified local classification rule, and sends
the result to the fusion center. The received vector y = {yj}

N
j=1 may be subject

to transmission errors due to the incorporation of link fading and interference. It
is assumed that given {xj}

N
j=1, {yj}

N
j=1 are independent across sensors given each

hypothesis. Also assume equal prior on the M hypotheses. Denote by h
(j)
ℓ|i the



probability of classifying measurement zj to Hℓ given that the true hypothesis
is Hi.
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Fig. 1. System model for a WSN with distributed classification code.

In the coded distributed detection system considered, a M × N binary dis-
tributed classification code C is designed in advance. This code can be obtained
based on the misclassification error criterion as used in [6] or by the efficient code
search algorithm proposed in [8, 9]. In the code matrix, each row is associated
with one hypothesis, and forms the codeword corresponding to this hypothesis.
Specifically, the ℓth codeword in C is given by cℓ , (cℓ,1, cℓ,2, . . . , cℓ,N ), where
cℓ,j ∈ {0, 1}. On the other hand, the column vector in C provides the local bi-
nary output according to the classified hypothesis at the respective sensor. Thus,
if the jth sensor makes a local classification in favor of hypothesis Hℓ, it will
transmit a binary decision whose value equals (−1)cℓ,j . As a result of the above
setting,

Pr{xj = −1|Hi} =

M−1
∑

ℓ=0

cℓ,jh
(j)
ℓ|i , (1)

and

Pr{xj = 1|Hi} = 1 − Pr{xj = −1|Hi} =
M−1
∑

ℓ=0

(1 − cℓ,j)h
(j)
ℓ|i . (2)

The communication channel between sensors and fusion center is assumed
flat fading due to the assumption of very low bit rate. Perfect phase coherence
is also assumed since the transmission range is usually small in most WSNs.
Therefore, yj can be expressed as

yj = αjxj

√

Eb + nj , (3)



where αj is the attenuation factor that models the fading channel, Eb is the
energy per channel bit, and nj is a noise sample from a white Gaussian process
with single-sided power spectral density N0. Our objective then becomes to
investigate the robustness of the fusion rules given the local classification rules
associated with the employed code C.

3 Soft-decision fusion rules

3.1 MAP fusion rule

The MAP fusion rule makes the decision in favor of Hi if Pr(Hi|y) is maximal
for 0 ≤ i ≤ M − 1. It can be derived as

i = arg max
0≤ℓ≤M−1

Pr(Hℓ|y)

= arg max
0≤ℓ≤M−1

Pr(y|Hℓ) (4)

= arg max
0≤ℓ≤M−1

∑

x∈{−1,1}N

Pr(x,y|Hℓ)

= arg max
0≤ℓ≤M−1

∑

x∈{−1,1}N

Pr(x|Hℓ) Pr(y|x,Hℓ)

= arg max
0≤ℓ≤M−1

∑

x∈{−1,1}N

Pr(x|Hℓ) Pr(y|x)

= arg max
0≤ℓ≤M−1

∑

x∈{−1,1}N





N
∏

j=1

Pr(xj |Hℓ)



 Pr(y|x) (5)

= arg max
0≤ℓ≤M−1

∑

x∈{−1,1}N





N
∏

j=1

Pr(xj |Hℓ) Pr(yj |xj)



 (6)

= arg max
0≤ℓ≤M−1

N
∑

j=1

log





∑

xj∈{−1,1}

Pr(xj |Hℓ) Pr(yj |xj)



 (7)

where (4) follows from the assumption of equally likely hypotheses, (5) is valid
since the local measurements are assumed spatially conditionally independent
given each hypothesis and xj is determined uncooperatively across sensors, and
(6) follows from the assumption of spatially independent communication channel
statistics between local sensors and the fusion center. Notably, Pr(xj |Hℓ) and
Pr(yj |xj) in (7) are given by (1), (2) and (3).



3.2 DCSD fusion rule

For a given binary code C, the DCSD fusion rule proposed in [7] chooses Hi as
the final decision, if

i = arg max
0≤ℓ≤M−1

N
∑

j=1

log





∑

xj∈{−1,1}

g(xj |s = cℓ,j) Pr(yj |xj)





= arg min
0≤ℓ≤M−1

N
∑

j=1

(φj − (−1)cℓ,j )2,

where φj is the bit log-likelihood ratio defined as

φj , log

∑

xj∈{−1,1} Pr(yj |xj) · g(xj |s = 0)
∑

xj∈{−1,1} Pr(yj |xj) · g(xj |s = 1)
,

and

g(xj |s) ≡

∑M−1
ℓ=0 1{cℓ,j = s} · Pr(xj |Hℓ)

∑M−1
k=0 1{ck,j = s}

,

and 1{·} is the indicator function. Since the DCSD fusion rule is not equivalent
to the MAP fusion rule, it is suboptimal when there are no faulty sensors.

3.3 MED fusion rule

The DCSD fusion rule can be treated as averaging Pr(xj |Hℓ) with respect to
the adopted code. The MED fusion rule however is originated from an obser-
vation that the local classification is in general accurate. This observation can
be mathematically termed as Pr{xj = (−1)cℓ,j |Hℓ} ≫ Pr{xj 6= (−1)cℓ,j |Hℓ},
which immediately implies the approximation that Pr{xj = (−1)cℓ,j |Hℓ} ≈ 1
and Pr{xj 6= (−1)cℓ,j |Hℓ} ≈ 0. Taking this approximation to (7), we obtain:

i = arg max
0≤ℓ≤M−1

N
∑

j=1

log





∑

xj∈{−1,1}

Pr(xj |Hℓ) Pr(yj |xj)





≈ arg max
0≤ℓ≤M−1

N
∑

j=1

log [Pr(yj |xj = (−1)cℓ,j )]

= arg min
0≤ℓ≤M−1

N
∑

j=1

(ϕj − (−1)cℓ,j )2,

where

ϕj = log
Pr (yj |xj = 1)

Pr (yj |xj = −1)
.



4 Simulation on robustness

In this section, we study the performance of the three aforementioned fusion
rules through simulations. Both fault-free (without stuck-at faults) and faulty
situations (sensors in the presence of stuck-at faults) are simulated. The hy-
pothesis number M and the sensor number N are four and ten, respectively. We
further assume that all sensor measurements have the same distribution given
each hypothesis, and are randomly drawn from a unit-variance Gaussian distri-
bution with means 0, V , 2V and 3V corresponding to hypotheses H0, H1, H2 and
H3, respectively. Throughout this section, OSNR is defined as 20 log10(V ), while
CSNR is given by Eb/N0 × E[α2

j ]. Moreover, attenuation factor αj is assumed
to be Rayleigh distributed.

The code employed in this simulation is obtained by the pruned exhaustive

search algorithm for the code with minimum decision error, which is listed in Ta-
ble 1 [8]. It can be easily verified that the minimum pair-wise Hamming distance
in this code is 5.

Table 1. The code obtained by the pruned exhaustive search algorithm.

H0 1 1 1 1 1 0 0 0 0 0

H1 1 1 1 1 1 1 1 1 1 1

H2 0 0 0 0 0 1 1 1 1 1

H3 0 0 0 0 0 0 0 0 0 0

In our simulations, 105 Monte Carlo runs are performed for each OSNR and
CSNR. The faulty sensors are uniformly drawn from the ten deployed sensor
nodes, and always send one regardless of the local measurements.

Figures 2 and 3 summarize the performance of the three fusion rules at
CSNR = 5 dB. From Fig. 2, we observe that the MAP fusion rule has the
best performance among all three rules at fault-free situation as anticipated.
In addition, the DCSD fusion rule outperforms the MED fusion rule when no
sensors are faulty. This can be justified by the fact that the MED fusion rule is
simplified from the MAP fusion by making a “hard” assumption that the local
classification is 100% accurate, while the DCSD “softly” approximates the MAP
by replacing Pr(xj |Hℓ) by its average counterpart g(xj |s = cℓ,j). From Fig. 3,
we notice that when one faulty sensor is present, the DCSD fusion rule becomes
the best at high OSNRs. The least complex MED fusion rule remains the worst
among the three. Hence, we remark that at high OSNRs, the DCSD replacement
g(xj |s = cℓ,j) is sufficient to compensate the impact due to the faulty sensor.
When two faulty nodes are present, the robustness of the DCSD fusion rule
extends to middle to high OSNRs.

Figure 4 presents the simulated performance when the number of faulty nodes
further increases to 3. It can be seen that the least complex MED fusion rule



becomes better than the MAP fusion rule at high OSNRs. This figure also shows
that the DCSD fusion rule still possesses the best fault-tolerance capability at
most simulated OSNRs.
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Fig. 2. Performance of the MAP rule, the DCSD rule, and the MED rule at CSNR=5
dB in fault-free situation.

Repeating the simulations with fault-free case, two faulty nodes, and three
faulty nodes as in Figs. 2, 3 and 4 but fixing CSNR at 0 dB, we result Figs. 5
and 6. Figures 5 and 6 indicate that the DCSD fusion rule still provides the best
performance at faulty situation at high OSNRs, but the OSNR range at which
the DCSD performs the best decreases.

Figures 7 and 8 presents the simulation results corresponding to the situa-
tion when OSNR is fixed at 5 dB, and CSNR ranges from −10 dB to 10 dB.
We observe from these two figures that the MAP fusion rule provides the best
performance at low CSNRs either in the anticipated fault-free situation or in the
sensor-faulty situation. The DCSD approach however performs the best at high
CSNRs.

5 Conclusion

In this paper, we introduce two soft-decision fusion rules, and compare their
robustness with the previously proposed DCSD fusion by simulations. We con-
clude our simulations that i) the MAP fusion rule gives the best performance in
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Fig. 3. Performance of the MAP rule, the DCSD rule, and the MED rule at CSNR=5
dB when one or two sensors suffer stuck-at fault.

fault-free situation as well as at low OSNRs or low CSNRs; ii) the DCSD fusion
rule has a better fault-tolerance capability at middle to high OSNRs and at high
CSNRs; iii) the MED fusion rule, although least complex, can perform better
than the MAP fusion rule only when the number of faulty nodes is large, but
is always worse than the DCSD fusion rule. These results can serve as a guide
when the determination of suitable fusion rules for coding approach in wireless
sensor networks is necessary.
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Fig. 5. Performance of the MAP rule, the DCSD rule, and the MED rule at CSNR=0
dB in fault-free situation.
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Fig. 6. Performance of the MAP rule, the DCSD rule, and the MED rule at CSNR=0
dB when two or three sensors are faulty.
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Fig. 7. Performance of the MAP rule, the DCSD rule, and the MED rule at OSNR=5
dB in fault-free situation.
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dB when one or two sensors are faulty.


