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Groups

• Let G be a set of elements. A binary operation ∗ on G is a rule

that assigns to each pair of elements a and b a uniquely defined

third element c = a ∗ b in G.

• A binary operation ∗ on G is said to be associative if, for any a,

b, and c in G,

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

• A set G on which a binary operation ∗ is defined is called a group

if the following conditions are satisfied:

1. The binary operation ∗ is associative.

2. G contains an element e, an identity element of G, such that,

for any a ∈ G,

a ∗ e = e ∗ a = a.

3. For any element a ∈ G, there exists another element a′ ∈ G
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such that

a ∗ a′ = a′ ∗ a = e.

a and a′ are inverse to each other.

• A group G is called to be commutative if its binary operation ∗
also satisfies the following condition: for any a and b in G,

a ∗ b = b ∗ a.
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Properties of Groups

• The identity element in a group G is unique.

Proof: Suppose there are two identity elements e and e′ in G.

Then

e′ = e′ ∗ e = e.

• The inverse of a group element is unique.
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Example of Groups

• (Z,+). e = 0 and the inverse of i is −i.

• (Q− {0}, ·). e = 1 and the inverse of a/b is b/a.

• ({0, 1},⊕), where ⊕ is exclusive-OR operation.

• The order of a group is the number of elements in the group.

• Additive group: ({0, 1, 2, . . . ,m− 1},�), where m ∈ Z+, and

i� j ≡ i+ j mod m.

– (i� j)� k = i� (j � k).

– e = 0.

– ∀0 < i < m, m− 1 is the inverse of i.

– i� j = j � i.

• Multiplicative group: ({1, 2, 3, . . . , p− 1},�), where p is a prime

and i� j ≡ i · j mod p.
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Proof: Since p is a prime, gcd(i, p) = 1 for all 0 < i < p. By

Euclid’s theorem, ∃a, b ∈ Z such that a · i+ b · p = 1. Then

a · i = −b · p+ 1. If 0 < a < p, then a� i = i� a = 1. Assume

that a ≥ p. Then a = q · p+ r, where r < p. Since gcd(a, p) = 1,

r ̸= 0. Hence, r · i = −(b+ q · i)p+ 1, i.e., r � i = i� r = 1.
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Subgroups

• H is said to be a subgroup of G if (i) H ⊂ G and H ̸= ∅. (ii) H is

closed under the group operation of G and satisfies all the

conditions of a group.

• Let G = (Q,+) and H = (Z,+). Then H is a subgroup of G.
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Fields

• Let F be a set of elements on which two binary operations, called

addition “+” and multiplication “·”, are defined. The set F

together with the two binary operations + and · is a field if the

following conditions are satisfied:

1. (F,+) is a commutative group. The identity element with

respect to addition is called the zero element or the additive

identity of F and is denoted by 0.

2. (F − {0}, ·) is a commutative group. The identity element

with respect to multiplication is called the unit element or the

multiplicative identity of F and is denoted by 1.

3. Multiplication is distributive over addition; that is, for any

three elements a, b and c in F ,

a · (b+ c) = a · b+ a · c.
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• The order of a field is the number of elements of the field.

• A field with finite order is a finite field.

• a− b ≡ a+ (−b), where −b is the additive inverse of b.

• a÷ b ≡ a · b−1, where b−1 is the multiplicative inverse of b.
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Properties of Fields

• ∀a ∈ F, a · 0 = 0 · a = 0.

Proof: a = a · 1 = a · (1 + 0) = a+ a · 0.
0 = −a+ a = −a+ (a+ a · 0). Hence, 0 = 0 + a · 0 = a · 0.

• Let ∀a, b ∈ F and a, b ̸= 0. Then a · b ̸= 0.

• a · b = 0 and a ̸= 0 imply that b = 0.

• ∀a, b ∈ F , −(a · b) = (−a) · b = a · (−b).
Proof: 0 = 0 · b = (a+ (−a)) · b = a · b+ (−a) · b. Similarly, we

can prove that −(a · b) = a · (−b).

• Cancellation law: a ̸= 0 and a · b = a · c imply that b = c.

Proof: Since a ̸= 0, a−1 · (a · b) = a−1 · (a · c). Hence,
(a−1 · a) · b = (a−1 · a) · c, i.e., b = c.
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Examples of Fields

• (R,+, ·).

• ({0, 1},�,�), binary field (GF (2)).

• ({0, 1, 2, 3 . . . , p− 1},�,�), prime field (GF (p)), where p is a

prime.

• There is a prime field for any prime.

• It is possible to extend the prime field GF (p) to a field of pm

elements, GF (pm), which is called an extension field of GF (p).

• Finite fields are also called Galois fields.

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Finite fields 11

Properties of Finite Fields

• Let 1 be the unit element in GF (q). Since there are only finite

number of elements in GF (q), there must exist two positive

integers m and n such that m < n and

m∑
i=1

1 =
n∑

i=1

1.

Hence,
n−m∑
i=1

1 = 0.

• There must exist a smallest positive integer λ such that
λ∑

i=1

1 = 0.

This integer λ is called the characteristic of the field GF (q).

• λ is a prime.
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Proof: Assume that λ = km, where 1 < k,m < λ. Then(
k∑

i=1

1

)
·

(
m∑
i=1

1

)
=

km∑
i=1

1 = 0.

Then
k∑

i=1

1 = 0 or
m∑
i=1

1 = 0. Contradiction.

•
k∑

i=1

1 ̸=
m∑
i=1

1 for any k,m < λ and k ̸= m.

• 1 =
1∑

i=1

1,
2∑

i=1

1, . . . ,
λ−1∑
i=1

1,
λ∑

i=1

1 = 0 are λ distinct elements in

GF (q). It cab be proved that these λ elements is a field, GF (λ),

under the addition and multiplication of GF (q). GF (λ) is called

a subfield of GF (q).
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• If q ̸= λ, then q is a power of λ.

Proof: We have GF (λ) a subfield of GF (q). Let

ω1 ∈ GF (q)−GF (λ). There are λ elements in GF (q) of the form

a1ω1, a1 ∈ GF (λ). Since λ ̸= q, we choose ω2 ∈ GF (q) not of the

form a1ω1. There are λ2 elements in GF (q) of the form

a1ω1 + a2ω2. If q = λ2, we are done. Otherwise, we continue in

this fashion and will exhaust all elements in GF (q).

• Let a be a nonzero element in GF (q). Then the following powers

of a,

a1 = a, a2 = a · a, a3 = a · a · a, . . .

must be nonzero elements in GF (q). Since GF (q) has only finite

number of elements, there must exist two positive integers k and

m such that k < m and ak = am. Hence, am−k = 1.

• There must exist a smallest positive integer n such that an = 1.

n is called the order of the finite field element a.
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• The powers a1, a2, a3, . . . , an−1, an = 1 are all distinct.

• The set of these powers form a group under multiplication of

GF (q).

• A group is said to be cyclic if there exists an element in the

group whose powers constitute the whole group.

• Let a be a nonzero element in GF (q). Then aq−1 = 1.

Proof: Let b1, b2, . . . , bq−1 be the q − 1 nonzero elements in

GF (q). Since a · b1, a · b2, . . . , a · bq−1 are all distinct nonzero

elements, we have

(a · b1) · (a · b2) · · · (a · bq−1) = b1 · b2 · · · bq−1.

Then,

aq−1 · (b1 · b2 · · · bq−1) = b1 · b2 · · · bq−1,

and then aq−1 = 1.
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• If n is the order of a nonzero element a, then n|q − 1.

Proof: Assume that q − 1 = kn+ r, where 0 < r < n. Then

1 = aq−1 = akn+r = (an)k · ar = ar.

Contradiction.
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Primitive Element

• In GF (q), a nonzero element a is said to be primitive if the order

of a is q − 1.

• The powers of a primitive element generate all the nonzero

elements of GF (q).

• Every finite field has a primitive element.

Proof: Assume that q > 2. Let h = pr11 p
r2
2 · · · prmm be the prime

factor decomposition of h = q − 1. For every i, the polynomial

xh/pi − 1 has at most h/pi roots in GF (q). Hence, there is at

least one nonzero element in GF (q) that are not a root of this

polynomial. Let ai be such an element and set

bi = a
h/(pri

i )
i .

We have b
p
ri
i

i = 1 and the order of bi is a divisor of prii .
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On the other hand,

b
p
ri−1

i
i = a

h/pi

i ̸= 1.

And so the order of bi is p
ri
i . We claim that the element

b = b1b2 · · · bm has order h. Suppose that the order of b is a

proper divisor of h and is therefore a divisor of at least one of the

m integers h/pi, 1 ≤ i ≤ m, say of h/p1. Then we have

1 = bh/p1 = b
h/p1

1 b
h/p2

2 · · · bh/p1
m .

Now, for 1 < i, prii divides h/p1, and hence b
h/p1

i = 1. Therefore,

b
h/p1

1 = 1. This implies that the order of b1 must divide h/p1.

Contradiction.

• Consider GF (7). We have

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1.
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Hence, 3 is a primitive element. Since

41 = 4, 42 = 2, 43 = 1

the order of 4 is 3 and 3|7− 1.

• GF (q)− {0} is a finite cyclic group under multiplication.

• The number of primitive elements in GF (q) is ψ(q − 1), where ψ

is the Eulers function.
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Binary Field Arithmetic

• Let f(x) =
n∑

i=0

fix
i and g(x) =

m∑
i=0

gix
i, where fi, gi ∈ GF (2).

• f(x)� g(x) ≡ f(x) + g(x) with coefficients modulo by 2.

• f(x)� g(x) ≡ f(x) · g(x) with coefficients modulo by 2.

• f(x)� 0 = 0.

• f(x) is said to be irreducible if it is not divisible by any

polynomial over GF (2) of degree less than n but greater than

zero.

• x2, x2 + 1, x2 + x are reducible over GF (2).

x+ 1, x2 + x+ 1, x3 + x+ 1 are irreducible over GF (2).

• For any m > 1,, there exists an irreducible polynomial of degree

m.
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• Any irreducible polynomial over GF (2) of degree m divides

x2
m−1 + 1. It will be easy to prove when we learn the

construction of an extension field.

• x3 + x+ 1|x7 + 1, i.e., x7 + 1 = (x4 + x2 + x+ 1)(x3 + x+ 1).

• An irreducible polynomial p(x) of degree m is said to be

primitive if the smallest positive integer n for which p(x) divides

xn + 1 is n = 2m − 1, i.e., p(x)|x2m−1 + 1.

• Since x4 + x+ 1|x15 + 1, x4 + x+ 1 is primitive.

x4 + x3 + x2 + x+ 1 is not since x4 + x3 + x2 + x+ 1|x5 + 1.

• For a given m, there may be more than one primitive polynomial

of degree m.

• For all ℓ ≥ 0, [f(x)]2
ℓ

= f(x2
ℓ

).
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Proof:

f2(x) = (f0 + f1x+ · · ·+ fnx
n)2

= [f0 + (f1x+ f2x
2 + · · ·+ fnx

n)]2

= f20 + (f1x+ f2x
2 + · · ·+ fnx

n)2

Expanding the equation above repeatedly, we eventually obtain

f2(x) = f20 + (f1x)
2 + (f2x

2)2 + · · ·+ (fnx
n)2.

Since fi = 0 or 1, f2i = fi. Hence, we have

f2(x) = f0 + f1x
2 + f2(x

2)2 + · · ·+ fn(x
2)n = f(x2).
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List of Primitive Polynomials

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Finite fields 23

Construction of GF (2m)

• Initially, we have two elements 0 and 1 from GF (2) and a new

symbol α. Define a multiplication · as follows:
1.

0 · 0 = 0, 0 · 1 = 1 · 0 = 0 1 · 1 = 1

0 · α = α · 0 = 0, 1 · α = α · 1 = α

2. α2 = α · α α3 = α · α · α · · · αj = α · α · · · · · α (j times)

3. F = {0, 1, α, α2, . . . , αj , . . .}.

• Let p(x) be a primitive polynomial of degree m over GF (2).

Assume that p(α) = 0. Since p(x)|x2m−1 + 1,

x2
m−1 + 1 = q(x)p(x). Hence,

α2m−1 + 1 = q(α)p(α) = q(α) · 0 = 0, α2m−1 = 1, and αi is not 1

for i < 2m − 1.
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• Let

F ∗ = {0, 1, α, α2, . . . , α2m−2}.

• It can be proved that F ∗ − {0} is a communicative group under

“·”.

• 1, α, α2, . . . , α2m−2 represent 2m − 1 distinct elements.

• Next we define an additive operation “+” on F ∗ such that F ∗

forms a communicative group under “+”.

• For 0 ≤ i < 2m − 1, we have

xi = qi(x)p(x) + ai(x), (1)

where

ai(x) = ai0 + ai1x+ ai2x
2 + · · ·+ ai(m−1)x

m−1 and aij ∈ {0, 1}.

Since xi and p(x) are relatively prime, we have ai(x) ̸= 0.
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• For 0 ≤ i ̸= j < 2m − 1, ai(x) ̸= aj(x).

Proof: Suppose that ai(x) = aj(x). Then

xi + xj = [qi(x) + qj(x)]p(x) + ai(x) + aj(x)

= [qi(x) + qj(x)]p(x).

This implies that p(x) divides xi(1 + xj−i) (assuming that j > i).

Since xi and p(x) are relatively prime, p(x) must divide xj−i + 1.

This is impossible since j − i < 2m − 1 and p(x) is a primitive

polynomial of degree m which does not divide xn + 1 for

n < 2m − 1. Contradiction.

• We have 2m − 1 distinct nonzero polynomials ai(x) of degree

m− 1 or less.

• Replacing x by α in (1) we have

αi = ai(α) = ai0 + ai1α+ ai2α
2 + · · ·+ ai(m−1)α

m−1.
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• The 2m − 1 nonzero elements, α0, α1, α2, . . . , α2m−2 in F ∗ can be

represented by 2m − 1 distinct nonzero polynomials of α over

GF (2) with degree m− 1 or less.

• The 0 in F ∗ can be represented by the zero polynomial.

• Define an addition “+” as follows:

1. 0 + 0 = 0.

2. For 0 ≤ i, j < 2m − 1,

0 + αi = αi + 0 = α,

αi + αj = (ai0 + ai1α+ ai2α
2 + · · ·+ ai(m−1)α

m−1) +

(aj0 + aj1α+ aj2α
2 + · · ·+ aj(m−1)α

m−1)

= (ai0 + aj0) + (ai1 + aj1)α+ (ai2 + aj2)α
2 + · · ·+

(ai(m−1) + aj(m−1))α
m−1,
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where aiℓ + ajℓ is carried out in modulo-2 addition.

3. For i ̸= j,

(ai0+aj0)+(ai1+aj1)α+(ai2+aj2)α
2+· · ·+(ai(m−1)+aj(m−1))α

m−1

is nonzero and must be the polynomial expression for some αk

in F ∗.

• It is easy to see that F ∗ is a commutative group under “+” and

polynomial multiplication satisfies distribution law.

• F ∗ is a finite field of 2m elements.
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Three representations for the elements of GF (24)
generated by p(x) = 1 + x+ x4
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Representations of GF(24).  p(z) = z4 + z + 1 

Exponential 

Notation 

Polynomial 

Notation 

Binary 

Notation 

Decimal 

Notation 

Minimal 

Polynomial 

0 0 0000 0 x 
!0 1 0001 1 x + 1 
!1 z 0010 2 x4 + x + 1 
!2 z2 0100 4 x4 + x + 1 
!3 z3 1000 8 x4 + x3 + x2 + x + 1 

!4 z + 1 0011 3 x4 + x + 1 
!5 z2 + z 0110 6 x2 + x + 1 
!6 z3 + z2 1100 12 x4 + x3 + x2 + x + 1 

!7 z3 + z + 1 1011 11 x4 + x3 + 1 
!8 z2 + 1 0101 5 x4 + x + 1 
!9 z3 + z 1010 10 x4 + x3 + x2 + x + 1 
!10 z2 + z + 1 0111 7 x2 + x + 1 
!11 z3 + z2 + z + 1 1110 14 x4 + x3 + 1 
!12 z3 + z2 + z + 1 1111 15 x4 + x3 + x2 + x + 1 
!13 z3 + z2 + 1 1101 13 x4 + x3 + 1 
!14 z3 + 1 1001 9 x4 + x3 + 1 

! !2 !4 !8 !16 ! ! 

!3 !6 !12 !24 !48 ! !3 

                    ! !9 
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Examples of Finite Fields

           GF(2) 

+    0   1      *    0    1 

0    0   1      0   0    0 

1    1   0      1   0    1 

           GF(3) 

+    0   1   2     *    0    1    2 

0    0   1   2     0    0    0   0 

1!  1   2   0     1    0    1   2 

2!  2   0   1     2    0    2   1 

                          GF(4) 

+    0   1   2    3     *    0    1    2    3 

0    0   1   2    3     0    0    0    0    0 

1!  1   0   3    2     1    0    3    1    2 

2!  2   3   0    1     2    0    1    2    3 

3!  3   2   1    0     3    0    2    3    1  

GF(22), p(x) = 1 + x + x2      

( p(!) = 1 + ! + ! 2 = 0 ) 

0      0       00      0 

1!    1       10      2 

!!    !       01      1 

!2    1+ !    11     3 

GF(2)[!]  

                            !2+ !+1 Primitive polynomial over GF(2) 
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Examples of Finite Fields

 GF(42) ! GF(4)[z]/z2+z+2, p(z) = z2+z+2 

Exponential 
Notation 

Polynomial 
Notation 

Binary 
Notation 

Decimal 
Notation 

Minimal 
Polynomial 

0 0 00 0 
!0 1 01 1 x + 1 
!1 z 10 4 x2 + x + 2 
!2 z + 2 12 6 x2 + x + 3 
!3 3z + 2 32 14 x2 + 3x + 1 

!4 z + 1 11 5 x2 + x + 2 
!5 2 02 2 x + 2 
!6 2z 20 8 x2 +2x + 1 
!7 2z + 3 23 11 x2 + 2x + 2 
!8 z + 3 13 7 x2 + x + 3 
!9 2z + 2 22 10 x2 + 2x + 1 
!10 3 03 3 x + 3 
!11 3z 30 12 x2 + 3x + 3 
!12 3z + 1 31 13 x2 + 3x + 1 
!13 2z + 1 21 9 x2 + 2x + 2 
!14 3z + 3 33 15 x2 + 3x + 3 

! = z 

!15 = 1 

Operate on  

GF(4) 

Primitive polynomial over GF(4) 
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Properties of GF (2m)

• In GF (2) x4 + x3 + 1 is irreducible; however, GF (24),

x4 + x3 + 1 = (x+ α7)(x+ α11)(x+ α13)(x+ α14).

• Let f(x) be a polynomial with coefficients from GF (2). Let β be

an element in extension field GF (2m). If β is a root of f(x), then

for any ℓ ≥ 0, β2ℓ is also a root of f(x).

• The element β2ℓ is called a conjugate of β.

• The 2m − 1 nonzero elements of GF (2m) form all the roots of

x2
m−1 + 1.

Proof: Let β be a nonzero element in GF (2m). It has been

shown that β2m−1 = 1. Then β2m−1 + 1 = 0. Hence, every

nonzero element of GF (2m) is a root of x2
m−1 + 1. Since the

degree of x2
m−1 + 1 is 2m − 1, the 2m − 1 nonzero elements of

GF (2m) form all the roots of x2
m−1 + 1.
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• The elements of GF (2m) form all the roots of x2
m

+ x.

• Let ϕ(x) be the polynomial of smallest degree over GF (2) such

that ϕ(β) = 0. The ϕ(x) is called the minimal polynomial of β.

• ϕ(x) is unique.

• The minimal polynomial ϕ(x) of a field element β is irreducible.

Proof: Suppose that ϕ(x) is not irreducible and that

ϕ(x) = ϕ1(x)ϕ2(x), where degrees of ϕ1(x), ϕ2(x) are less than

that of ϕ(x). Since ϕ(β) = ϕ1(β)ϕ2(β) = 0, either ϕ1(β) = 0 or

ϕ2(β) = 0. Contradiction.

• Let f(x) be a polynomial over GF (2). Let ϕ(x) be the minimal

polynomial of a field element β. If β is a root of f(x), then f(x)

is divisible by ϕ(x).

Proof: Let f(x) = a(x)ϕ(x) + r(x), where the degree of r(x) is

less than that of ϕ(x). Since f(β) = ϕ(β) = 0, we have r(β) = 0.
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Then r(x) must be 0 since ϕ(x) is the minimal polynomial of β.

• The minimal polynomial ϕ(x) of an element β in GF (2m) divides

x2
m

+ x.

• Let f(x) be an irreducible polynomial over GF (2). Let β be an

element in GF (2m). Let ϕ(x) be the minimal polynomial of β. If

f(β) = 0, then ϕ(x) = f(x).

• Let β be an element in GF (2m) and let e be the smallest

non-negative integer such that β2e = β. Then

f(x) =
e−1∏
i=0

(x+ β2i)

is an irreducible polynomial over GF (2).

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Finite fields 35

Proof: Consider

[f(x)]
2
=

[
e−1∏
i=0

(x+ β2i)

]2
=

e−1∏
i=0

(x+ β2i)2.

Since (x+ β2i)2 = x2 + β2i+1

,

[f(x)]
2

=
e−1∏
i=0

(x2 + β2i+1

) =
e∏

i=1

(x2 + β2i)

=

[
e−1∏
i=1

(x2 + β2i)

]
(x2 + β2e)

Since β2e = β, then

[f(x)]
2
=

e−1∏
i=0

(x2 + β2i) = f(x2).
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Let f(x) = f0 + f1x+ · · ·+ fex
e, where fe = 1. Expand

[f(x)]2 = (f0 + f1x+ · · ·+ fex
e)2

=

e∑
i=0

f2i x
2i + (1 + 1)

e∑
i=0

e∑
j=0
i ̸=j

fifjx
i+j

=
e∑

i=0

f2i x
2i.

Then, for 0 ≤ i ≤ e, we obtain

fi = f2i .

This holds only when fi = 0 or 1.

Now suppose that f(x) is no irreducible over GF (2) and

f(x) = a(x)b(x). Since f(β) = 0, either a(β) = 0 or b(β) = 0. If

a(β) = 0, a(x) has β, β2, . . . , β2e−1

as roots, so a(x) has degree e
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and a(x) = f(x). Similar argument can be applied to the case

b(β) = 0.

• Let ϕ(x) be the minimal polynomial of an element β in GF (2m).

Let e be the smallest integer such that β2e = β. Then

ϕ(x) =

e−1∏
i=0

(x+ β2i).

• Let ϕ(x) be the minimal polynomial of an element β in GF (2m).

Let e be the degree of ϕ(x). Then e is the smallest integer such

that β2e = β. Moreover, e ≤ m.

• The degree of the minimal polynomial of any element in GF (2m)

divides m.
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Minimal polynomials of the elements in GF(24) generated by p(x)=x4+x+1 

Conjugate roots                     minimal polynomials 
  0                                            x 
  1                                            x+1 
  !, !2, !4, !8                            x4+ x +1 
  !3, !6, !9, !12                          x4+ x3+ x2+ x +1 
  !5, !10                                    x2+ x +1 
  !7, !11, !13, !14                        x4+ x3+ 1 

e.g.  X15-1= (x+1)(x2+x+1) (x4+x+1) (x4+x3+1) (x4+x3+x2+x+1) over GF(2) 

         X15-1= (x-!0)  (x-!5)(x-!10)  (x-!1)(x-!2)(x-!4)(x-!8) over GF(24)  
 !15 = 1             (x-!7)(x-!14)(x-!13)(x-!11)  (x-!3)(x-!6)(x-!12)(x-!9)  
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• If β is a primitive element of GF (2m), all its conjugates

β2, β22 , . . ., are also primitive elements of GF (2m).

Proof: Let n be the order of β2ℓ for ℓ > 0. Then

(β2ℓ)n = βn2ℓ = 1.

It has been proved that n divides 2m − 1, 2m − 1 = k · n. Since β
is a primitive element of GF (2m), its order is 2m − 1. Hence,

2m − 1|n2ℓ. Since 2ℓ and 2m − 1 are relatively prime, n must be

divisible by 2m − 1, say

n = q · (2m − 1).

Then n = 2m − 1. Consequently, β2ℓ is also a primitive element

of GF (2m).

• If β is an element of order n in GF (2m), all its conjugates have

the same order n.
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Representations of GF(24).  p(z) = z4 + z + 1 

Exponential 

Notation 

Polynomial 

Notation 

Binary 

Notation 

Decimal 

Notation 

Minimal 

Polynomial 

0 0 0000 0 x 
!0 1 0001 1 x + 1 
!1 z 0010 2 x4 + x + 1 
!2 z2 0100 4 x4 + x + 1 
!3 z3 1000 8 x4 + x3 + x2 + x + 1 

!4 z + 1 0011 3 x4 + x + 1 
!5 z2 + z 0110 6 x2 + x + 1 
!6 z3 + z2 1100 12 x4 + x3 + x2 + x + 1 

!7 z3 + z + 1 1011 11 x4 + x3 + 1 
!8 z2 + 1 0101 5 x4 + x + 1 
!9 z3 + z 1010 10 x4 + x3 + x2 + x + 1 
!10 z2 + z + 1 0111 7 x2 + x + 1 
!11 z3 + z2 + z + 1 1110 14 x4 + x3 + 1 
!12 z3 + z2 + z + 1 1111 15 x4 + x3 + x2 + x + 1 
!13 z3 + z2 + 1 1101 13 x4 + x3 + 1 
!14 z3 + 1 1001 9 x4 + x3 + 1 

! !2 !4 !8 !16 ! ! 

!3 !6 !12 !24 !48 ! !3 

                    ! !9 
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