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Abstract— In this paper, we present a systematic recursive
formula for bit-wise decomposition of M -ary symbol metric. The
decomposed bit metrics can be applied to improve the perfor-
mance of a system where the information sequence is binary-
coded and interleaved before M -ary modulated. A traditional
receiver designed for certain system is to de-map the received
M -ary symbol into its binary isomorphism so as to facilitate
the subsequent bit-based manipulation, such as hard-decision
decoding. With a bit-wise decomposition of M -ary symbol metric,
a soft-decision decoder can be used to achieve a better system
performance.

The idea behind the systematic formula is to decompose the
symbol-based maximum-likelihood (ML) metric by equating a
number of specific equations that are drawn from squared-
error criterion. It interestingly yields a systematic recursive
formula that can be applied to some previous work derived
from different standpoint. Simulation results based on IEEE
802.11a/g standard show that at bit-error-rate of 10−5, the
proposed bit-wise decomposed metric can provide 3.0 dB, 3.9
dB and 5.1 dB improvement over the concatenation of binary-
demapper, deinterleaver and hard-decision decoder respectively
for 16QAM, 64QAM and 256QAM symbols, in which the in-
phase and quadrature components in a complex M2-QAM
symbol are independently treated as two real M -PAM symbols.
Further empirical study on system imperfection implies that the
proposed bit-wise decomposed metric also improves the system
robustness against gain mismatch and phase imperfection. In the
end, a realization structure that avails the recursive nature of
the proposed bit-decomposed metric formula is addressed.

Index Terms— Maximum-likelihood decoding, QAM modula-
tion, soft-decision decoding, Viterbi decoder.

I. INTRODUCTION

THE state-of-the-art wireless transmission technique of
IEEE 802.11a/g [8], [9] incorporated high QAM into

OFDM to achieve a high data rate. In order to make a
better use of the error correcting capability of the adopted
(2,1,6) convolutional code, the standard specified a two-step
bit interleaver, where the first step maps adjacent code bits
onto non-adjacent sub-carriers, and the second step permutes
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the code bits alternately onto less and more significant bits of
the QAM constellation. Such an interleaver design, although
straight and simple in concept, may restrict the potential
structures of a receiver in practice.

For a system where the binary information sequence is
encoded and bit-interleaved before M -ary modulated, a tra-
ditional receiver design is to de-map the received M -ary
symbol into its binary isomorphism so as to facilitate the
subsequent bit-based manipulation as shown in Fig. 1. Take
IEEE std. 802.11a as an example. After de-interleaving, the
two code bits, c1 and c2, that decide a trellis branch of
(2,1,6) convolutional code will respectively come from the
least significant bit of 16QAM quadrature component r1 and
the most significant bit of 16QAM quadrature component r7
[8]. The dependence of one single trellis branch on two time-
inconsecutive QAM quadrature symbols somehow suggests
that the received M -ary symbol should be hard-demapped
before decoding, since other receiver structure such as one
with soft-decision decoding may require a branch metric that
can be determined by two distant and non-orderly M -ary
symbols. Such a soft-decision-based receiver will become
more involved, when a receiver structure that also supports
multi-rate transmission through code punctuation is further
considered.

In order to design a general receiver for use of M -ary
symbol transmission of coded and interleaved information se-
quence, researchers have proposed several heuristic methods to
perform bit-wise decomposition of M -ary symbol metric [10],
[12], [15]. With a bit-wise decomposition of M -ary symbol
metric, a better system performance can possibly be achieved
by adopting a soft-decision decoder, even if code punctuation
for dynamic rate transmission is incorporated. Even though
some of them perform well in practice, there is still lack of a
systematic method for bit-wise decomposition of M -ary sym-
bol metric. Thus, we propose in this work a general recursive
formula for bit-wise decomposition of M -ary symbol met-
ric[4]. The proposed approach is to approximate the symbol-
based maximum-likelihood (ML) metric by equating a number
of specific equations that are drawn from square error criterion.
Notably, the square error between symbol-based ML metric
and its bit-decomposed approximation reduces to zero when
all the listed equations can be simultaneously satisfied, which
means that the performance of the symbol-based ML metric
can be achieved by taking the proposed bit-wise decomposed
metrics. This optimistic result of zero square error however
can not be obtained in general due to the bit-wise interleaving.

1536-1276/06$20.00 c© 2006 IEEE
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Fig. 1. An exemplified receiver design.

A suboptimal bit-decomposition metric in terms of maximal
subset of simultaneously satisfiable equations is then proposed.
Exemplified study on QAM modulation interestingly yields
a systematic recursive bit metric formula. By re-examining
their metrics, we interestingly found that the bit reliability
metrics of some previous work also have similar recursive
forms. Details are given in Section II-C.

Empirical study under the system setting of IEEE 802.11a/g
and the additive white Gaussian noise (AWGN) channel
showed that at bit error rate (BER) = 10−5, the proposed bit-
decomposed metric has 3.0 dB, 3.9 dB and 5.1 dB gains over
the hard decision system for 16QAM, 64QAM and 256QAM,
respectively. Also, only 0.13 dB performance degradation
is resulted by introducing 32-level quantization for 16QAM
signals. The quantization impact for 64QAM signals under 64-
level uniform quantization can even be reduced to 0.07 dB.
No further performance degradation, in addition to that due
to quantization, can be observed, when mismatch of AGC
gain is limited to be within ±40%. The robustness of the
proposed bit-decomposed metric against phase imperfection
is also examined. When the phase drift increases up to ±6o,
the BER due to our bit-decomposed metric will increase from
10−5 to around 4 × 10−5 at Eb/N0 = 6.7 dB for 16QAM
modulation. This phase drift tolerance reduces to ±4o at
Eb/N0 = 9.7 dB for 64QAM modulation, where Eb/N0 is
chosen such that the no-phase-drift BER is approximately
10−5.

Some previous works on bit reliability study are summa-
rized below. In [15], Zehavi proposed a decoding scheme
that consists of a sub-optimal Log-Likelihood-Ratio (LLR)
bit demapping for subsequent use of path metric computation
of Viterbi decoder. Later, Pyndiah et al. [10] provided a
pragmatic algorithm based on LLR to turbo codes associated
with high QAM modulation, and showed that the block turbo-
coded QAM modulation outperforms Trellis-Coded Modu-
lation (TCM) scheme by at least 1 dB at BER = 10−5.
Then, Caire et al. [3] presented a maximum-likelihood bit
demapping for bit-interleaved coded modulation (BICM) and
gave guidelines for its design. Tosato and Bisaglia [12] adapted
the Pyndiah’s algorithm to COFDM system, and proposed
a simplified bit reliability decomposition for 16QAM and
64QAM constellations. Their simulations showed that for
64QAM constellation, adopting their bit reliability decompo-
sition results in 8.5 dB gain at BER = 10−4 over a hard-
decision-based receiver under HIPERLAN/2 system model.1

This paper is organized in the following fashion. Section
II provides the analysis of the proposed bit-decomposed
metric, followed by its complexity comparison with other soft-
demapping schemes. Section III summarizes the simulation re-

1Similar to IEEE std 802.11a/g, the scrambled input sequence of HIPER-
LAN/2 [5] is convolutionally encoded with rate 1/2 and constraint length 7
before bit-wise interleaving and QAM modulation.

sults over AWGN channels, and examines the robustness of the
proposed bit-decomposed metric against system imperfection.
Section IV provides a realization structure for our proposed
bit-wise decomposition of M -ary symbol metric. Concluding
remarks appear in Section V.

II. SYSTEMATIC BIT-WISE DECOMPOSITION OF M -ARY

SYMBOL METRIC

Denote by r = (r1, r2, . . . , rK) the real-valued received
vector when M -ary symbols s = (s1, s2, . . . , sK) that are
mapped from an interleaved version of encoding output c =
(c1, c2, . . . , cN ) ∈ {0, 1}N are transmitted. Assume that the
M -ary symbol transmission suffers additive white Gaussian
noise (AWGN), n1, n2, n3, . . . , nK , with single-sided noise
power per hertz N0. The received vector r then satisfies

ri = si + ni

for 1 ≤ i ≤ K . For the AWGN channel, the maximum-
likelihood decision upon the receipt of r is given by:

dML(r) = arg max
s∈S

Pr {r1, . . . , rK |s1, . . . , sK }

= arg max
s∈S

1
(πN0)K/2

exp

{
−

K∑
i=0

(ri − si)2
N0

}

= arg min
s∈S

K∑
i=1

(ri − si)2, (1)

where S represents the set of all possible mappings from the
convolutional codeword in C to its respective symbol word.
Due to the non-linear (e.g., interleaving) relation between
codeword c and transmitted symbol s, Eq. (1) cannot be
equivalently transformed to the sum of code bit metrics. An
approximation is therefore necessary to perform soft-decision
decoding. Our goal then becomes to find a sequence of
function η = (η1, η2, . . . , ηN ) such that the sum of all code
symbol metrics,

∑K
i=1(ri−si)2, can be well-approximated by∑N

i=1 ηi(ci, r) for every mapping pair (c, s) and the received
vector r, where functions η1, η2, . . . , ηN can be distinct bit-
metric functions.

For clarity and simplicity, we use the 16QAM modulation as
an example for the presentation of our subsequent derivation
in this section. The general results for 64QAM and 256QAM
will be given at the end. Let s(·, ·) be the real quadrature
4PAM mapping from the code bit to the transmitted symbol,
and denote by σ(·) the bit-interleaving function mapping.
Then, received vector component ri is given by the sum of
transmitted symbol s(cσ(2i−1), cσ(2i)) and noise ni. Here, the
in-phase and quadrature components are independently treated
as received scalars due to the transmission of real 4PAM
symbols although our system presumes complex 16QAM
constellation.

As ri is only a function of code bits cσ(2i−1) and cσ(2i),
its contribution to the summation in (1) is equal to [ri −
s(cσ(2i−1), cσ(2i))]2. Because r1, . . . , ri−1, ri+1, · · · , rK are
nothing to do with cσ(2i−1) and cσ(2i), we can simplify our
goal to the finding of functions η2i−1 and η2i such that
η2i−1(cσ(2i−1), ri) + η2i(cσ(2i), ri) well-approximates [ri −
s(cσ(2i−1), cσ(2i))]2 for all legal cσ(2i−1) and cσ(2i) in the
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codebook. Since function pairs (η2i−1, η2i) are determined
according to independent and identical statistical structure, it
is reasonable to presume that they are universal for all received
scalars, and hence, we can set , η2i−1 = f1 and η2i = f2 for
some functions f1 and f2 for 1 ≤ i ≤ K .2

We next address the criterion of “well-approximation”
adopted in this paper.

A. Equating the Coefficients in Squared Error
The criterion we adopt is the minimization of average square

error, namely,

min
f1,f2

E
��

f1(c, r) + f2(c̄, r) − [r − s(c, c̄)]2
�2�

, (2)

where the expectation is taken over the statistics of c, c̄ and r. Without
loss of generality, we can re-write f1 and f2 as:3

f1(c, r) =
1

2
r2 +a1,c,rr+b1,c,r f2(c̄, r) =

1

2
r2 +a2,c̄,rr+b2,c̄,r.

This transforms (2) into minimization of

E
��

(a1,c,r + a2,c̄,r + 2s(c, c̄)) r +
�
b1,c,r + b2,c̄,r − s2(c, c̄)

��2�

(3)
subjected to a1,c,r, a2,c̄,r, b1,c,r, b2,c̄,r.

It is neither practical nor analytically tractable to consider
general coefficient functions, a1,c,r, a2,c̄,r, b1,c,r and b2,c̄,r, for
continuous r. Instead, we consider a piece-wise simplification
of them by setting a1,c,r, a2,c̄,r, b1,c,r and b2,c̄,r equal to a
constant for r ∈ Iρ = (λρ−1, λρ], where 1 ≤ ρ ≤ q and
−∞ = λ0 ≤ λ1 ≤ · · · ≤ λq = ∞. Apparently, there will
be totally 4q constants and (q − 1) interval thresholds to be
determined. For notational convenience, we use a1,c,ρ, a2,c̄,ρ,
b1,c,ρ and b2,c̄,ρ to denote the constant values specified for
each interval. This reduces (3) to the minimization of

q∑
ρ=1

Pr {r ∈ Iρ}E [ [(a1,c,ρ + a2,c̄,ρ + 2s(c, c̄)) r+

(
b1,c,ρ + b2,c̄,ρ − s2(c, c̄)

)]2∣∣∣ r ∈ Iρ] . (4)

Intuitively from (4) , if all coefficients of r, namely, a1,c,ρ+
a2,c̄,ρ+2s(c, c̄) and b1,c,ρ+b2,c̄,ρ−s2(c, c̄), can be made zero
by some specific {(a1,c,ρ, a2,c̄,ρ)}qρ=1 and {(b1,c,ρ, b2,c̄,ρ)}qρ=1

for some finite q, Eq. (4) will be exactly zero. As a result, we
list the coefficients in (4) according to the value of s(c, c̄),
and let them be zero.

a1,0,ρ + a2,0,ρ + 2 · s(0, 0) = 0, b1,0,ρ + b2,0,ρ − s2(0, 0) = 0
a1,0,ρ + a2,1,ρ + 2 · s(0, 1) = 0, b1,0,ρ + b2,1,ρ − s2(0, 1) = 0
a1,1,ρ + a2,1,ρ + 2 · s(1, 1) = 0, b1,1,ρ + b2,1,ρ − s2(1, 1) = 0
a1,1,ρ + a2,0,ρ + 2 · s(1, 0) = 0, b1,1,ρ + b2,0,ρ − s2(1, 0) = 0

It can be seen that the solution should be a function of the
mapping s(·, ·) adopted.

2As a consequence, the number of distinct functions among η1, η2, . . . , ηN

is m = log2(M) for real M -PAM modulation, which will be denoted by
f1, f2, . . . , fm in the sequel. These bit metric functions, f1, f2, . . . , fm,
will be applied to decompose the symbol metric for every QAM quadrature
component symbol received.

3The optimal f∗
1 (c, r) can apparently be re-expressed as (1/2)r2 +

(f∗
1 (c, r)/r − r/2)r + 0. Therefore, as long as the coefficient a1,c,r =

(f∗
1 (c, r)/r − r/2) and b1,c,r = 0 are allowed to be r-dependent, the form

of (1/2)r2 + a1,c,rr + b1,c,r does cover the optimal solution.

A common mapping used in practice for PAM modulation
is the Gray code mapping. For 16QAM quadrature component,
we can number the equations according to ascending value of
s(·, ·)4 and yield:

a1,0,ρ + a2,0,ρ − 6 = 0, b1,0,ρ + b2,0,ρ − 9 = 0 (5a)

a1,0,ρ + a2,1,ρ − 2 = 0, b1,0,ρ + b2,1,ρ − 1 = 0 (5b)

a1,1,ρ + a2,1,ρ + 2 = 0, b1,1,ρ + b2,1,ρ − 1 = 0 (5c)

a1,1,ρ + a2,0,ρ + 6 = 0, b1,1,ρ + b2,0,ρ − 9 = 0 (5d)

It can be easily verified that at most three of the four
equations (5a)–(5d) can be made valid simultaneously. In
addition, it is not necessary to equate coefficient equations
with non-contiguous equation numbers (e.g., (5a), (5c) and
(5d)) because the squared error in (4) can be further reduced by
replacing the non-contiguous numbered equation (e.g., (5a))
with one having contiguous equation number (e.g., (5b)). This
suggests that among those cases we tried, the best choice
that minimizes (4) for Gray code mapping is to take q = 2,
for which coefficient constants for ρ = 1 corresponds to
the validity of (5a)–(5c), and those for ρ = 2 are selected
to validate (5b)–(5d). By experimenting over 64QAM and
256QAM with Gray code mappings, we found that the same
observation is also applied.

Based on the above finding, we propose a systematic ap-
proach to define a bit-decomposition of M -ary symbol metric
specifically for Gray code mapping as follows.

Initialization: List and number the coefficient equations in
ascending value of Gray code mapping. (Suppose
there are L of them, which are numbered with
1, 2, . . . , L.)

Step 1. For each 1 ≤ ρ ≤ L, find the largest set Aρ of
equations

• that contains equation ρ (namely, the equation
whose index equals ρ),

• that can be simultaneously made valid, and
• that are contiguous in their equation numbers.

Step 2. Delete all duplicate sets among A1, A2, . . . , AL.
(Let q be the number of sets remained.)

Step 3. Output the remaining q distinct equation sets.
Step 4. Determine the optimal λ = (λ1, . . . , λq) that mini-

mizes the average squared error in (4).

Notably, the solution obtained from the above procedure is
only suboptimal in the minimization of average squared error
over all legitimate f1(c, r) and f2(c̄, r). However, simulations
introduced later show that at BER = 10−5, the piece-wise
simplification of a1,c,r, a2,c̄,r, b1,c,r and b2,c̄,r is only 0.83 dB

4For 16 QAM, s(0, 0) = −3, s(0, 1) = −1, s(1, 1) = +1, s(1, 0) = +3.
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Fig. 2. System performances under AWGN channels.

and 1.4 dB inferior to the non-achievable5 Symbol-ML lower
bounds under 64QAM modulation and 256QAM modulation,
respectively (cf. Fig. 2). The results indicate that even if the
optimal coefficient functions for continuous r are adopted, the
performance improvement is very limited. This empirically
justifies the use of piece-wise simplifications of the coefficient
functions.

B. Bit-Decompositions of 16QAM, 64QAM and 256QAM
Symbol Metrics

Applying Step 1 of the proposed algorithm to (5a)–(5d)
results:

A1 = {(5a), (5b), (5c)}
A2 = {(5a), (5b), (5c)}
A3 = {(5b), (5c), (5d)}
A4 = {(5b), (5c), (5d)}.

5As mentioned earlier, with a nonlinear mapping between codeword c and
symbol word s, a receiver can no longer implement Eq. (1). However, by
turning off the interleaver, which in turn linearizes the relation between c
and s, a M -ary modulated (2,1,6) convolutional codeword can be decoded
by tracing over the code trellis in which each branch metric is determined by
exactly one received symbol. Notably, the performance of the symbol-based
ML decision with disabled interleaver is an apparent performance lower bound
to any bit-demapped schemes under AWGN channels. Thus, by means of the
symbol-ML performance curve, one can tell that the improvement margin
for a bit-demapped scheme is limited, if it already performs close to the
symbol-based ML decision. As a disabled interleaver is not a valid system
option for IEEE 802.11a/g system, we therefore term this performance bound
non-achievable, and only illustrate it for the sake of comparison.

Notably, A1, A2, A3 and A4 must respectively contain
equation (5a), (5b), (5c) and (5d) according to the algorithm.
Since A1 = A2 and A3 = A4, Step 2 yields q = 2. The
coefficients that validate the equations in sets A1 and A3 are
respectively:

A1(ρ = 1) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1,0,1 = 2− a2,1,1

a1,1,1 = −2− a2,1,1

a2,0,1 = 4 + a2,1,1

b1,0,1 = b1,1,1 = 1− b2,1,1
b2,0,1 = 8 + b2,1,1

A3(ρ = 2) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1,0,2 = 2− a2,1,2

a1,1,2 = −2− a2,1,2

a2,0,2 = −4 + a2,1,2

b1,0,2 = b1,1,2 = 1− b2,1,2
b2,0,2 = 8 + b2,1,2

Accordingly, with uniform distributed c and c̄, the average
squared error becomes:

W (λ) =
1

4
√
πN0

(∫ λ1

λ0

(8r)2 e−(r−3)2/N0dr+

∫ λ2

λ1

(−8r)2 e−(r+3)2/N0dr

)

=
16√
πN0

(∫ λ1

−∞
r2e−(r−3)2/N0dr+

∫ ∞
λ1

r2e−(r+3)2/N0dr

)
. (6)

Taking the derivative of (6) with respective to λ1 then
concludes that the optimal λ1 that minimizes W (λ) is zero,
and the average squared error is reduced to

8(18 +N0)erfc

(
3√
N0

)
− 48

√
N0

π
exp

{
− 9
N0

}
.

We summarize the derivation above as follows.

f1(c, r) =
1
2
r2 + a1,c,ρr + b1,c,ρ

=
1
2
r2 + [2(1− 2c)− a2,1,ρ]r + (1− b2,1,ρ)

f2(c, r) =
1
2
r2 + a2,c,ρr + b2,c,ρ

=
1
2
r2 + [a2,1,ρ − 4(1− c) · sgn(r)]r

+[b2,1,ρ + 8(1− c)],
where

sgn(r) =

⎧⎨
⎩

1, if r > 0;
0, if r = 0;
−1, if r < 0

and ρ =
{

1, if r ≤ 0;
2, if r > 0,

and a2,1,1, a2,1,2, b2,1,1, b2,1,2 can be any fixed values. Since
we can remove the constants in

∑N
i=1 ηi(ci, r) without affect-

ing the decoding result (namely, we can keep only those terms
that depend on c), and since a universal scaling on all bit-
decomposed metric functions also preserves the decoding re-
sult, the bit-decomposed metric functions can be equivalently
reduced to:

f16QAM
1 (c, r) = c|r| · sgn(−r)
f16QAM
2 (c, r) = c(|r| − 2).
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Consequently, we replace [ri − s(cσ(2i−1), cσ(2i))]2 by
f16QAM
1 (ri, cσ(2i−1)) + f16QAM

2 (ri, cσ(2i)) = cσ(2i−1)|ri| ·
sgn(−ri) + cσ(2i)(|ri| − 2) for cσ(2i−1), cσ(2i−1) ∈ {0, 1} for
which a decoding algorithm like Viterbi decoding becomes
applicable.

We can similarly obtain the equivalent bit-decomposed
metric functions for 64QAM (where the images of quadrature
component symbol mapping include −7, −5, −3, −1, 1,
3, 5 and 7) and 256QAM (where the images of quadrature
component symbol mapping include −15, −13, . . ., 13 and
15) under the IEEE 802.11a system setting6 as:
��
	

f64QAM
1 (c, r) = c(|r − 4| + |r| + |r + 4| − 8) · sgn(−r)

f64QAM
2 (c, r) = f16QAM

1 (c, 4 − |r|)
f64QAM
3 (c, r) = f16QAM

2 (c, |r| − 4)

and
�



�




	

f256QAM
1 (c, r) = c(|r − 4| + |r| + |r + 4| − 8) · sgn(−r)

+c(|r − 8| + |r + 8| − 16) · sgn(−r)

f256QAM
2 (c, r) = f64QAM

1 (c, 8 − |r|)
f256QAM
3 (c, r) = f64QAM

2 (c, |r| − 8)

f256QAM
4 (c, r) = f64QAM

3 (c, 8 − |r|)
We end this subsection by noting that the above result suggests
a recursive bit-metric decomposition formula. Specifically, for
M -ary PAM modulation (or equivalently, M2-QAM) with
amplitude spacing u,7

f
(m)
1 (c, r) = c · sgn(−r)

m−2∑
i=−(m−2)

(|r + 2ui| − 2ui)

f
(m)
j (c, r) = f

(m−1)
j−1

(
c, (−1)j

(
2m−2u− |r|)) ,

where m = log2(M) ≥ 2, 2 ≤ j ≤ m and f
(1)
1 (c, r) =

−cr. Note that m is respectively 2, 3 and 4 for 16QAM,
64QAM and 256QAM. Consequently, after specifying the
first-bit metric f1, the subsequent bit-metrics are alternately
the left-shift mirror f

(m−1)
j−1

(
c, 2m−2u− |r|) and right-shift

f
(m−1)
j−1

(
c, |r| − 2m−2u

)
of the bit-metrics for m less one.

Such bit-metric assignment somehow balance the bit reliability
for decoding.

C. Bit Metrics Recursively Generated from Other First-Bit
Metric

In this subsection, we briefly describe some existing struc-
tures of receiver design for M -ary modulated interleaved code.

In 2002, Tosato and Bisaglia [12] has proposed and ex-
amined a simplified soft-output demapper for binary in-
terleaved COFDM with application to HIPERLAN/2 [5].8

We interestingly found that their proposed bit metrics

6The IEEE 802.11a standard did not specify the interleaver for 256QAM
transmission. Here, we simply extend its design philosophy for 16QAM
and 64QAM transmission to obtain an extension interleaver for use of
256QAM transmission. To be specific, 96 256QAM quadrature components
are tabularized in the same fashion as 16QAM, where each component is now
comprised of four bits instead of two bits, and circular shift (from bottom to
top) is repeated (i−1) times for those bits belonging to the same quadrature
component that locates at ith column.

7The amplitude spacing, u, is 2 for all QAM considered in this work.
8Their simplified soft-output demapper has been appeared in a book

published in 1997 [14]. In the book, the soft-output demapper is heuristically
obtained through a direct derivation, as opposed to the simplified-from-LLR-
decision approach taken by Tosato and Bisaglia.

{g(m)
j (·, ·)}1≤j≤m,m≥1 for 22m-QAM can be equivalently

expressed in terms of our recursive formula as:

g
(m)
1 (c, r) = c(−r)
g
(m)
j (c, r) = g

(m−1)
j−1

(
c, (−1)j(2m−2u− |r|)).

The bit metrics {g(m)
j (·, ·)}1≤j≤m, m≥1 are actually sim-

plified from the bit metrics
{ḡ(m)
j (·, ·)}1≤j≤m, m≥1 derived from the bit-based log-

likelihood ratio (LLR) decision [12], which can also be re-
expressed using our recursive formula as:

ḡ
(m)
1 (c, r) =

1

2
· c · sgn(−r)

m−1�
i=0

(|r + ui| + |r − ui| − 2ui)

ḡ
(m)
j (c, r) = ḡ

(m−1)
j−1

�
c, (−1)j(2m−2u − |r|)�.

Note that Tosato and Bisaglia’s simplified formulas (or the
original LLR formulas) are different from our bit metrics only
on the initial functions. This suggests that by varying the first-
bit metric, variants of bit-decomposed metrics can be resulted
through the recursive formula we established. As anticipated,
with f

(m)
1 = g

(m)
1 for m = 1, 2, our bit decomposed metric

coincides with that proposed in [12] for 16QAM, but is
different for 64QAM and 256QAM modulations.

Next, we briefly describe the so-called ML bit demapper [3,
Formula (7)], which operates according to the maximum like-
lihood criterion. It follows the convention that decoding in bit-
interleaved coded modulation is performed by applying an ML
bit demapper followed by de-interleaving and Viterbi decod-
ing. A suboptimal simplified branch metric that is obtained by
the log-sum approximation, i.e., log(

∑
j Zj) � maxj log(Zj),

as typically occurs in channels with high signal-to-noise ratio
(SNR), is also given in [3, Formula (9)]. We found that
the ML bit demapper metric {q̄(m)

j (·, ·)}1≤j≤m,m≥1 and its

simplification {q(m)
j (·, ·)}1≤j≤m,m≥1 for 22m-QAM can also

be expressed in recursive forms as follows.

q̄
(m)
1 (c, r) =

2m−1∑
k=1

exp
{
− (r − (2k − 1)(2c− 1))2

2σ2

}

q̄
(m)
j (c, r) = q̄

(m−1)
j−1

(
c, 2m−2u+ r

)
+q̄(m−1)

j−1

(
c, (−1)j

(
2m−2u− r))

q
(m)
1 (c, r) = −2

2m−1−1∑
k=1

(|r − 2(2c− 1)k| − 2k)

−2m(2c− 1)r + 1

q
(m)
j (c, r) = q

(m−1)
j−1

(
c, (−1)j(2m−2u− |r|))

−2m|r|+ 22(m−1),

where σ2 is the variance of the additive white Gaussian noise
and m = log2(M) ≥ 2, 2 ≤ j ≤ m.

D. Complexity Comparison of the Metrics Introduced Previ-
ously

All the metrics introduced in the previous subsection are
piece-wise linear functions of r for given c except the ML bit
demapper {q̄(m)

j (·, ·)}1≤j≤m,m≥1, which is an apparent non-
linear function in r. For this reason, it is indicated in [3]
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that the computational complexity of the ML bit demapper
is classified to be much higher than its simplified counter-
part {q(m)

j (·, ·)}1≤j≤m,m≥1. We then turn to the complexity
comparison of the remaining four piece-wise linear metrics.

For a class of piece-wise linear metrics, it is reasonable
to compare their computational complexity in software im-
plementation by the number of intervals within which the
slope remains constant. This number determines the number
of comparisons required for the input value r. As the four
piece-wise linear metrics share similar recursive forms, their
computational complexities are determined by the complexi-
ties of their first-bit metrics. It can be easily obtained that at
c = 1, the numbers of the fixed-slope intervals for the first-bit
metrics are given by:

m= 1 2 3 4 · · · general formula

f
(m)
1 (1, r) 1 2 4 6 · · · max{2(m− 1), 1}
g
(m)
1 (1, r) 1 1 1 1 · · · 1
ḡ
(m)
1 (1, r) 2 4 6 8 · · · 2m
q
(m)
1 (1, r) 1 2 4 8 · · · 2m−1

This shows that the computational complexity of proposed
metric f (m)

1 (1, r) that is obtained from bit-wise decomposition
of M -ary symbol metric is only secondary to the Tosato and
Bisaglia’s simplified metric g(m)

1 (1, r) at c = 1.
It should be noted that at c = 0, f (m)

j (0, r) = g
(m)
j (0, r) =

ḡ
(m)
j (0, r) = 0 for all 1 ≤ j ≤ m and m ≥ 1, and

therefore, no computation effort is required. However, at c =
0, metric q(m)

1 (0, r) remains piece-wise linear with the same
number of fixed-slope intervals. Also, the margins of the fixed-
slope intervals for q(m)

1 (1, r) may be different from those for
q
(m)
1 (0, r); hence, additional effort may need to be placed to

adjust the margins according to the value of c. This makes
the simplified ML bit demapper a least preferred one from
the computational complexity standpoint.

III. PERFORMANCE EVALUATION OVER AWGN
CHANNELS

Fig. 2 summarizes the simulation performances under
the AWGN channel when 64QAM modulation is employed
for symbol-based ML decision in (1), our proposed bit-
decomposed metrics, the Tosato and Bisaglia’s simplified bit
metrics, the ML bit demapping metrics and its simplification,
and the hard-decision decoding system. They are respectively
abbreviated as Symbol-ML, Soft-proposed, Soft-TB, ML-bit,
ML-bit simplified and Hard in all subsequent figures. From
Fig. 2, we observed that at BER = 10−5, Soft-proposed
has 3.8 dB gain over Hard, but is 0.83 dB inferior to the
ideal Symbol-ML under 64QAM modulation. More advantage
can be obtained under 256QAM, where the gain of Soft-
proposed over hard is enlarged to 5.1 dB. Note that although
Soft-proposed and Soft-TB use different bit metrics under
64QAM modulation, they have comparable performance. The
superiority of Soft-proposed over the Soft-TB will be more
apparent if fading channels are considered instead of AWGN
channels (cf. Figs. 8 and 9). Furthermore, Soft-proposed has
indistinguishable performance to ML-bit and ML-bit simplified
even though it has less computational complexity. As Soft-TB
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Fig. 3. Performance impact of quantization for 64QAM modulation.

is the only one that has less computational complexity than
Soft-proposed, we only compare our proposed scheme with it
in following subsections.

A. Effect of Quantization

Fig. 3 illustrates the performance impact of uniform quanti-
zation. Similar to [2], [7], the received scalar is first multiplied
by the appropriate normalization factor in order to make
the average QAM symbol power equal to unity, and then is
quantized with the step size equal to 2 × u divided by the
number of quantization levels, where u = 2 is the amplitude
spacing for QAM signals.

We observed that under 64QAM modulation, adopting 64-
level quantizer to Soft-proposed and Soft-TB only yields 0.07
dB performance loss at BER = 10−5. Hence, it is sufficient
to take 6-bit quantization for the proposed bit-decomposed
metrics to perform close to the unquantized system. Same
conclusion can be made on Tosato and Bisaglia’s simplified
bit metrics. We then proceed to examine the robustness of
these quantized bit metrics in terms of the above quantization
levels against gain mismatch in the next subsection.

B. Imperfect Gain Control

Coded systems that quantize the matched filter output to
more than two levels for use of subsequent digital manipula-
tion require an analog-to-digital converter, whose level thresh-
olds should depend on a correct measurement of the noise
variance. Usually, the level-setting is effectively controlled by
the automatic gain control (AGC) circuitry in a modem. In
this subsection, we are interested in the sensitivity of decoder
performance to an inaccurately quantized AGC signal.

Our performance comparisons between Soft-proposed, Soft-
TB and Hard are employed at BER=10−5. Due to different
BER performances, differentEb/N0’s are accordingly used for
each bit-decomposition approach. Specifically, under 64QAM
modulation, we use 9.7 dB and 13.5 dB respectively for Soft-
proposed/Soft-TB and Hard in order to obtain the required
BER. The relative AGC mismatch without AGC drift is taken
as u divided by the number of quantization levels [2], [7]. A
drift to the above value is then caused by an inaccurate AGC
circuitry.
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Fig. 4. Sensitivity to gain-mismatch for 64QAM. The taken values of Eb/N0

for Soft-proposed/Soft-TB and Hard are respectively 9.7 dB and 13.5 dB. For
a fair comparison, we first do 6-bit quantization on the received QAM signal
using the same relative AGC mismatch as Soft-proposed/Soft-TB for Hard, and
then do hard-demapping based on the quantization output. The ideal (without
AGC drift) relative AGC mismatch is 2× 2/64 = 0.0625.

From Fig. 4, we found that the performances of Soft-
proposed and Soft-TB are quite insensitive to wide range of
variation in AGC drift. The resultant BER remains between
1.7×10−5 and 2.0×10−5 over a relative AGC mismatch range
of 0.0375∼0.0875 for 64-level quantized 64QAM signals.
This allows an AGC gain margin9 of

|0.0375− (0.0375 + 0.0875)/2|
(0.0375 + 0.0875)/2

=
|0.0875− (0.0375 + 0.0875)/2|

(0.0375 + 0.0875)/2
= 40%.

However, for Hard, even if we allow BER to increase from
1.0× 10−5 to 1.0× 10−4, the AGC gain margin is only

|0.070625− 0.0625|
0.0625

=
|0.0625− 0.054375|

0.0625
= 13%.

C. Effect of Phase Imperfection

In all previous simulations, perfect synchronization is im-
plicitly assumed. However, the real systems often suffer
certain degree of uncompensated oscillator instabilities and

9When AGC-drift goes up to 60%, the BER increases from 1.7× 10−5 to
4.2× 10−5 .
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Fig. 5. Performance impact of the phase noise. The values of Eb/N0 taken
for Soft-proposed/Soft-TB and Hard are respectively 9.7 dB and 13.5 dB under
64QAM.

Doppler shifts even a carrier phase tracking circuitry is im-
plemented at the receiver.

By introducing a bit interleaver before symbol modulation,
no general expression between the symbol error and the bit
error can be obtained. Therefore, the conventional technique
that integrates the symbol error rate as a function of symbol
phase imperfection φ with respect to a distribution of φ cannot
be used to realize the relation between the bit error rate
and phase imperfection. We accordingly establish the relation
between the bit error rate and phase error φ by computer
simulations.

It is obtained from simulations that under perfect gain
control and no quantization, the minimum signal-to-noise
ratios per information bit (Eb/N0) to achieve the required BER
of 10−5 are 9.7 dB and 13.5 dB for Soft-proposed/Soft-TB and
Hard under 64QAM modulation, respectively. Thus, under the
selected Eb/N0’s, we can observe from Fig. 5 that if BER is
allowed to increase up to 4.0× 10−5, Soft-proposed and Soft-
TB can tolerate up to ±4o phase drift, while Hard only allows
±2o phase drift. This result concludes that Soft-proposed and
Soft-TB are less sensitive to phase drift than Hard.

IV. REALIZATION OF THE SYSTEMATIC BIT-WISE

DECOMPOSITION METRIC

Traditionally, realization of the Viterbi decoder can be
divided into three units [6], [13]: the branch metric unit
(BMU), the add-compare-select unit (ACSU) and the survivor
memory unit (SMU). The input data is used in BMU to
calculate the branch metrics for each new time step. These
metrics are then fed to ACSU, which accumulates the branch
metrics. The resultant accumulated path metric is stored in the
path metric memory (PMM) according to the ACS-recursion.
The SMU processes the decisions which are being made in
ACSU, and outputs the estimated path with a latency of at
least D, called the survivor depth.

In this section, we provide a systematic architecture for
BMU, which avails the recursiveness nature of the proposed
bit metric decomposition formulas, as depicted in Fig. 6. Our
architecture only requires the first-bit function table, and can
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First, we receive 96 2                     2m -QAM quadrature symbols in 
    memory, and set Index_c=position=0,
    Sym_bit=6*m-1 and q=m-1.
Starting from the 2nd r, perform in sequence:

    Index_c = (Index_c+1) mod 16;
    if(Index_c=0) Sym_bit = Sym_bit-1;
    position = 6*Index_c+5- ⎣Sym_bit/m ⎦ ; 
    q = (Index_c+S           ym_bit)       mod m;
    n = m-1-q;

Fig. 6. A dual-mode BMU architecture with (mmax − 2) serially
connected MTU’s can perform the bit metric evaluations for 22m-
QAM, where 2 ≤ m ≤ mmax. Here, mmax = 5. All the constants
in the formulas of Index_c, Sym_bit and position, such as 16, 6, and
5 (= 6 − 1) are chosen according to the 6 × 16 interleaver block
used in IEEE 802.11a/g standard.

be applied for 22m-QAM modulations for every 2 ≤ m ≤
mmax, if (mmax − 2) metric transition units (MTUs) are
serially connected.

Under the setting of IEEE 802.11a/g, an OFDM signal con-
sists of 96 real 2m-PAM symbols, and each 2m-PAM symbol
was mapped from m coded-and-interleaved bits. The decoding
sequences from left to right can be divided into 6 rows, where
each row consists of 16 2m-PAM symbols. As an example, the
first row contains {r0, r6, r12, . . . , r90}, and the symbols in
{r1, r7, r13, . . . , r91} form the second row. An internal control
variable, named Index_c, is used to keep the record of
which column of QAM quadrature symbol block the BMU is
currently used. Consequently, Index_c is initially zero for
each new 96 QAM quadrature symbol block, and is updated
according to the rule of Index_c = (Index_c+1) mod 16.
Another internal control variable, Sym_bit, is used to adjust
the demapped bit number in each QAM quadrature symbol
according to the interleaver rule. It is equal to (6 ×m − 1)
initially for each new 96 QAM quadrature symbol block, and
is reduced by one when Index_c equals 0. We also record
the position of the QAM quadrature component (in the
96 QAM quadrature symbol block) that is currently used. As
a result, position = 6×Index_c+5 − �Sym_bit/m	,
where �·	 denotes the floor function. All the internal control
variables are periodically updated at the time a new QAM
quadrature symbol enters the BMU. Notably, for 22m-QAM
demodulation, each QAM quadrature symbol has to be re-

accessed m times; for example, the BMU needs to generate
192 = 2× 96 soft bit metrics for 16QAM demodulation.

One can easily combine the implementation of both our
metrics and Tosato and Bisaglia’s simplified metrics by pro-
viding two first-bit metric function tables. As shown in Fig. 6,
two metric calculation modes are set as:

“Metric-mode= 1” is for Soft-proposed, and
“Metric-mode= 0” is for Soft-TB.

A forth internal control variable, q =
(Index_c+Sym_bit) mod m, is used to determine
the bit metric function number. When q is decided, either
function f (q+1)

1 (·, ·) or function g(q+1)
1 (·, ·) is used, depending

on the Metric-mode. The last internal control variable, n,
is simply m− 1− q.

Our BMU requires two external input signals, which are (i)
the received QAM quadrature symbol r that are derived from
the proper position of the 96 symbol block, and (ii) m =
log2(M) if what has been received is M2-QAM quadrature
symbol.

Finally, since the soft bit metric equals zero when the branch
bit c is zero, the BMU only evaluates bit metric values for
c = 1. The case for “c = 0” is then handled by a check box
appended at the output end of the BMU.

V. CONCLUDING REMARKS

In this paper, we obtained a recursive bit-decomposed
metric formula through the approximation of symbol-based
Euclidean metric. We subsequently compare the performances
of the proposed soft bit-decomposed metric, the simplified
bit metrics proposed in [12] and the straightforward hard-
decision decoding system. As anticipated, the proposed soft
bit-decomposed metric and the simplified bit metrics in [12]
perform better than Hard in all respects.

The superiority of our proposed bit-decomposed metric over
the simplified bit metrics proposed in [12] is a little more
apparent under a fading environment and a higher QAM.
By assuming a slowly fading channel with perfect channel
knowledge as depicted in Fig. 7, the performance difference
between these two methods is a little larger (than that under
the AWGN channel) as shown in Figs. 8 and 9. We observed
from Fig. 8 that in a Rayleigh flat fading environment, the
performance superiority of Soft-proposed and Soft-TB over the
Hard extends to 8.5 dB under 256QAM modulations at BER
= 10−5. The superiority extension remains large as 7.2 dB at
BER = 10−5 in a frequency selective fading model defined in
[1, Column 1, Tab. 10] as shown in Fig. 9. Besides, our pro-
posed bit-decomposed scheme has comparable performance to
ML-bit scheme and its simplification given in[3] under fading
channels, in spite of the higher computational complexities of
the latter two.
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Transmitter Slowly Fading Receiver 

Perfect Channel 
Estimation

Fig. 7. Block diagram of a slowly fading channel with perfect channel
knowledge. The channel fading considered can be either a simple frequency
non-selective Rayleigh flat fading or a frequency-selective fading as defined
in [11, Eq. (2.4)] with single transmit antenna (Mt = 1) and single receive
antenna (Mr = 1).
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