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3.1 The Notion of a Random Variable.

e A random variable X is a function that

assigns a real number, X ((), to each outcome

¢ in the sample space.
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Example:

e Toss a coin three times.

S = {HHH,HHT,HTH, THH, HTT,

THT, TTH, TTT}.

e LLet X be the number of heads.

HHH HHT HTH THH HTT THT TTH TTT
X)) 3 2 2 2 1 1 1 0

e X is a random variable with Sy = {0, 1,2, 3}.
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S: Sample space of a random experiment
X: Random variable X : S — Sx

Sx is a new sample space

Let BC Sy and A ={(: X(¢) € B}. Then

P[B] = P[A] = P[{¢ : X(¢) € B}

A and B are equivalent events.
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‘3.2 Cumulative Distribution Function'

e Cumulative distribution function (cdf)

Fx(x)=P|X <z| for —oco< o<

e In underlying sample space
Fx(x) = P{¢: X(¢) < x}]

e ['x(x) is a function of the variable x.
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Properties of cdf
1. 0 < Fx(x) < 1.
Cimy o Fx(x) = 1.
Clim, o Fx(xz) = 0.
. If a < b, then Fx(a) < Fx(b).

. Fx(x) is continuous from the right, i.e., for h > 0

Fx(b) = ;1&13(1) Fx(b+h) = Fx(b").

. Pla < X <b| = Fx(b) — Fx(a), since
{X <alU{a< X <b} ={X <b}.
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e X: the number of heads in three tosses of a fair coin

e Let 0 be a small positive number. Then
Fx(1—-9)=P|X <1—-46] =P{0 heads} = 1/8,
Fx(1)= P|X <1]=P|0 or 1 heads| = 1/843/8 = 1/2,
Fx(140)=P|X <149 = P|0or 1 heads] = 1/2.

e Write in unit step function

0, <0
Y :CZO,
1 ! 3 1

Fx(x) = gu(x) + gu(x — 1)+ gu(x —2) + gu(m — 3).
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Example: The transmission time X of messages in a
communication system obeys the exponential probability

law with parameter A, i.e.,
PIX>z]l=e™ 1>0

Find the cdf of X and P|T < X < 2T, where T' = 1/\.

{0, z < 0
PIX <z|=1-P|X >z| =

PlT<X<2l=1—-¢e?*~(1—e')=et—e"
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Types of random variables

e Discrete random variable, Sx = xg, x1, ...

Fx(x) = pr(xk)u(x — Tk),

where x, € Sx and px(zr) = P|X = xy] is the
probability mass function (pmf) of X.

e Continuous random variable
Fea) = [ f(t

e Random variable of mixed type

Fx(z) = pFi(z) + (1 = p)Fa(z)

Graduate Institute of Communication Engineering, National Taipei University

12



Y. S. Han

Random Variables

3.3 Probability Density Function'

e Probability density function (pdf) of X, if it exists, is

fx(x) o
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+ dx
Plx <X < x + dx] = fi(x)dx
()

a
Pla< X <b] = [} fix)dx
(b)
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Properties of pdf

1. fx(x) > 0 due to nondecreasing property of cdf.

2. Pla < X <b| = [ fx(z)da.

3. Fx(z) = ["_ fx(t)
4. [ fx(t)dt = 1.
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The pdf of the uniform random variable

a<zx<b

B =t
fx(x) = 0

otherwise

r<a
a<zx<b

T > b
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Pdf for discontinuous cdf

e Unit step tunction

e (df for a discrete random variable

Fx(z) = px(zu( — zp) = / x Fx(t)dt
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Conditional cdf’s and pdf’s

e Conditional cdf of X given A

Fy(z]A) =

PUX <z}N A]

PlA

if P|A| >0

e Conditional pdf of X given A

fx(x|A) =

Graduate Institute of Communication Engineerin

d

dx

Fx(z]A)
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3.4 Some Important Random Variables'

e Bernoulli random variable: Let A be an event. The

indicator function for A is

]A(C){O ¢4

1 (€A
I 4 is the Bernoulli random variable. Ex: toss a coin.

e Binomial random variable: Let X be the number of
times a event A occurs in n independent trials. Let [;
be the indicator function for event A in the jth trial.
Then

X=hL+1h+- -+1
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e Geometric random variable: Count the number M
of independent Bernoulli trials until the first success of
event A.

e Another version of the geometric random variable is

Pkl = (1 —p)fp k=0,1,2,....

Graduate Institute of Communication Engineering, National Taipei University

23



Y. S. Han

Random Variables

e Exponential random variable

xr <0
e M x>0

xr <0
l—e ™™ x>0

A: rate at which events occur.
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e The Poisson random variable:

The pmf is

Oék

PIN =k =—re™® k=012, ...,

where « is the average number of event occurrences in a specified

time interval or region in space.

e The pmf of the Poison random variable sums to one, since
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e Gaussian (Normal) random variable:
The pdf is

1
fx(z) = g~ (@=m)*/20° — 00 < x < 00,

\2To

where m and o are real numbers.
The cdf is

P[X S :C] _ 1 / 6_(x/_m)2/202d$/-

2T0 J_ oo

Change variable t = (2’ — m)/o and we have

1 /(a:m)/U 2 o (:z: — m) |
V2T J o o
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Q-function is defined by

Qlx)=1—d(x) = \/%_W /OO e V24t

()-function is the probability of “tail” of the pdf.
Q(0) =1/2 and

()(x) can be obtained by look-up tables.
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Example: A communication system accepts a positive
voltage V' as input and output a voltage Y = aV + N,
where o = 1072 and N is a Gaussian random variable with

parameters m = 0 and o0 = 2. Find the value of V' that
gives P[Y < 0] =107°.

Sol:
PlY < 0] PlaV + N < 0] = PN < —aV]

o) e lT) e

From the Q-function table, we have aV /o = 4.753. Thus,
V = (4.753)0 /o = 950.6.
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‘3.5 Functions of a Random Variable.

e et X be a random variable. Define another random

variable Y = ¢g(X). Example: Let the function
h(z) = (z)* be defined as

(x)+{o v<0

r x>0
e Let B={x:g(x) € C}. The probability of event C' is
PlY €e C]=Plg(X) € C] = P X € B].

e Three types of equivalent events are useful in
determining the cdf and pdf:
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1. Discontinuity case: {g(X) = yi};
2. cdf: {g(X) <y}

3. pdf: {y < g(X) <y+h}.
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Example: Let X be a sample voltage of a speech waveform, and

suppose that X has a uniform distribution in the interval [—4d, 4d].

Let Y = q(X), where the quantizer input-output characteristic is

shown below. Find the pmf for Y.
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Sol: The event {Y = ¢} for ¢ in Sy is equivalent to the event

{X € I,}, where I, is an interval of points mapped into the
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representation point p. The pmf of Y

PlY =¢q| = /] fx(t)dt =1/8 for all gq.
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Example: Let the random variable Y be defined by
Y =aX + b,

where a is a nonzero constant. Suppose that X has cdf Fx(x), find
Fy (y).

Sol: {Y <y} and A = {aX + b <y} are equivalent event. If a > 0
then A = {X < (y —b)/a}, and thus

Fy(y):P[ng_b]:FX(y_b> a> 0.

a a

If a <0, then A={X > (y —b)/a} and
y—>b
—
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Therefore, we have

fy(y) =

Graduate Institute of Communication Engineering, National Taipei University

39



Y. S. Han

Random Variables

Graduate Institute of Communication Engineering, National Taipei University

40



Y. S. Han Random Variables 41

Example: Let X be a Gaussian random variable with mean m and

standard deviation o:

1
fx(x) = > e~ (@=m)*/20° —00 < T <00
To

Let Y = aX + b. Find the pdf of Y.

Sol: From previous example, we have

1 — —0—am 2 aoc 2
fy (v) (y—b—am)”/2(ac)”

= e
V27|alo

Y also has a Gaussian distribution with mean am + b and standard

deviation |a|o.
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Example: Let random variable Y be defined by

where X is a continuous random variable. Find the cdf and pdf of Y.

Y = X2,

Sol: The event {Y < y} occurs when {X? < y} or equivalently
{—vy < X < /y} for y nonnegative. The event is null when y is

negative. Then

Fy(y) =

0 y <0

Fx(Vy) = Fx(=vy) y=0

Ix(WVy)  Ix(=vYy)
2\/Y —2\/y

fx (/) Jrfbc(—\f)
2\/§ 2\/§ .

y >0
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e Consider Y = g(X) as shown below

y = 2{(x) 'y

X X = fi.‘-| Ay + (i).} X9

e Consider the event C, ={y <Y <y +dy}. Let B, be its

equivalence in the z-axis.

e As shown in the figure, g(x) = y has three solutions and

B, = {ri1<X<zi+dri}U{rs < X <o +drs}
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U{rs < X < x3+ dxs}.

Thus,

PIC)| = fy(y)|dy| = P[B:] = fx(z1)|dz1|+ fx (w2)|dz2|+ fx (x3)|dz]].

In general, we have

Z \dy/dflf\

Graduate Institute of Communication Engineering, National Taipei University
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Example : Let Y = X?. For Y > 0, the equation y = 22 has two
solutions, g = /¥ and z1 = —,/y. Since dy/dxr = 2z, we have

_ Ix(VY) _|_fX(_\/_).

fy(v)

2./y 2./y

Example: Let Y = cos(X), where X is uniformly distributed in the
interval (0,27]. Find the pdf of Y.
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Y'=cos X

¥ -
cos ™ [(_y} 21 — Cos~

ly 27|

Sol: Two solutions in the interval, zg = cos™!(y) and z1 = 27 — xg.

dy
dx

= —sin(xg) = — sin(cos_l(y)) —

Zo
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1 1
+
2m/1 —y?  2my/1 — y?
1
T/ 1 — y?

for —1 <y <1.

The cdf of Y is
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3.6 Expected Value of Random Variables

80 90 100 110 120 130 140 150

Trial number
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The Expected Value of X

e The expected value or mean of a random
variable X is defined by

EX] = /OO oL

O

o If X is a discrete random variable, then

EX] = Z xkpx (L)

e Note that F|X| may not converge.

Graduate Institute of Communication Engineering, National Taipei University
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e The mean for a uniform random variable between a
and b is given by

b
E[X]:/ t dt:a+b
., b—a 2

F|X] is the midpoint of the interval |a, b).

o If the pdf of X is symmetric about a point m, then
E|X] = m. That is, when

fx(m—x) = fx(m+ ),

we have

0 = /+Oo(m O fx(t)dt = m — /_:O tx (t)dt.

— 00
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e The pdf of a Gaussian random variable is symmetric at

r = m. Therefore, E|X| =m.
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Exercise:
Show that if X is a nonnegative random variable, then

/ (1—Fx(t))dt if X continuous and nonnegative
0

Z P|X > k| if X nonnegative, integer-valued.
k=0
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Expected value of YV = g(X)

o Let Y = g(X), where X is a random variable with pdf
fx(x).

e Y is also a random variable.

e Mean of Y is

Graduate Institute of Communication Engineering, National Taipei University
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Variance of X

e Variance of the random variable X is defined by

VAR|X] = E|(X — E|X])7].

e Standard deviation of X
STD[X] = VAR[X]"? —— measure of the spread of

a distribution.

e Simplification

VAR[X] = E[X®-2E[X]|X + E[X)?]
X% - 2E[X|E[X] + E[X]?
X7 - EIX]?

Graduate Institute of Communication Engineering, National Taipei University
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Example: Find the variance of the random variable X
that is uniformly distributed in the interval |a, b|.

E[X] = (a+1b)/2

VAR[X]—bia/abG;—

Let y = (x — (a+b)/2). Then

1 (b—a)/2 b . 2
VAR[X] = / yrdy = L=

N b — A (b—a)/2 12
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Example: Find the variance of a Gaussian random
variable.

Multiply the integral of the pdf of X by v2mo to obtain

400
/ e (@=m)*/20°% 10 V21O,

oo

Differentiate both sides with respect to o to get

o3

too — 2 2 /o2
/ ((ZC m) >€—(a:—m) /20 dr — \/%

oo

Then

1 o0 2 2
VAR[X] = / (x —m)2e” @™ /27 4y = 52,

2T0 J_ o
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e Properties
Let ¢ be a constant. Then

VAR|c| =0,

VAR[X + ] = VAR[X],
VAR[cX] = ¢*VAR[X].

e nth moment of the random variable X is given by

E[X") = / e ()

— 00
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‘3.7 Markov and Chebyshev Inequalities'

Markov Inequality

e Suppose X is a nonnegative random variable with
mean F|X]. Then

E[X]

P[X >a] <
a

for X nonnegative

[ e+ [Tascwi = [T e

0 a a

/OO afx(t)dt = aP|X > al.
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Chebyshev Inequality

e Consider random variable X with F[X] = m and VAR[X] = ¢2.

Then

0.2

Pl[|X —m| >a] < ol

e Proof: Let D? = (X — m)?. Markov inequality for D? gives

(X —m)? o

P[D?* > d?] <

o {D? > a?} and {|X — m| > a} are equivalent events.
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‘3.9 Transfer Methods.

The Characteristic Function

e The characteristic function of a random variable X is

defined by

Dy (w) E e’ ]

/ fx(x)e?*" dux,

where 5 = 4/—1 is the imaginary unit number.

e & (w) can be viewed as the expected value of a
function of X, e/“*.
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o & (w) is the Fourier transform of the pdf fx(z) with a
reversal in the sign of the exponent.

e ['rom the Fourier transform inversion formula we have

fx(z) - /OO Py (w)e " dw.

:27'('

— 00
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Example: The characteristic function for an exponentially

distributed random variable with parameter A is given by

Py (w) / e AV :/ Ae~Aiw)e gy
0 0

A
A— jw
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If X is a discrete random variable, we have
Py (w) = E px (xg)e?“ ",
k
If X is an integer-valued random variable, we have

Sy(w)= >  px(k)e/".

k=—oc0

The above is the Fourier transform of the sequence px (k).

It is a periodic function of w with period 27.

By the inversion formula we have

1

T on

px (k)

Graduate Institute of Communication Engineering, National Taipei University
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Example: The characteristic function for a geometric random

variable is given by

00 00
P 5 (w) qukejwk: _ pz (qejw)ki
k=0 k=0

p
1 —qeiw
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e The moment theorem states that the moments of X are given

by

E[X"] =

Proof: First we expend e/“% in power series in the definition of

(I)X((,U):

Px(w) = /_O:O fx(z) {1 + JjwX + UW;!QQ +} dzx.

Assuming that all the moments of X are finite and that the

series can be integrated term by term, we have
w)?E | X?

= 1+ jwFE[X]+ ) 2'[ |

NEDR:A I
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If we differentiate n times and evaluate at w = 0, we have

d’n

® — j"E[X"].
T x(w)| =gt EXT
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Example: To find the mean of an exponentially distributed random
variable, we differentiate ® x(w) = A(A — jw) ™! once, and obtain

AJ

— jw)

5 *

Ph(w) =

Then E[X] = ®'(0)/j = 1/
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The Probability Generating Function

The probability generating function G (z) of a nonnegative

integer-valued random variable N is defined by

Gn(z) =E [2V] = ZpN(k)zk.

G n(z) can be viewed as the expected value of a function of N,

2N,

G n(z) is the z-transform of the pmf py (k) with a sign change in

the exponent.

Similar to the derivation of the moment theorem, we have
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e Thus, the mean and variance of IV are given by

E[N] = Gy(1)
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Example: The probability generating function for the Poisson

random variable with parameter « is given by

00
ak

T
k=0

e X% 6oz(z—l) .

GN(Z)

The first two derivatives of Gn(z) are given by
Gy (2) = ae®Z~h

and

G (2) = a2e®(*7h),

Therefore,

E[N]=a and VAR[N]=ao*+a—a’ = a.
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The Laplace Transform of the pdf

e The Laplace transform of the pdf is given by

X*(s) = /OOO fx(z)e ™ dz = E [e™*Y].

e X*(s) can be viewed as an expected value of a function of X,

e sX.

e The moment theorem also holds for X*(s):

E[X"] = (—1)?%%)(*(3) .
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