Cyclic Codes

Yunghsiang S. Han

Graduate Institute of Communication Engineering, National Taipei University Taiwan

E-mail: yshan@mail.ntpu.edu.tw

Description of Cyclic Codes

• If the components of an n-tuple $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$ are cyclically shifted i places to the right, the resultant n-tuple would be

$$\mathbf{v}^{(i)} = (v_{n-i}, v_{n-i+1}, \dots, v_{n-1}, v_0, v_1, \dots, v_{n-i-1}).$$

- Cyclically shifting v i places to the right is equivalent to cyclically shifting v n-i places to the left.
- An (n, k) linear code C is called a *cyclic code* if every cyclic shift of a code vector in C is also a code vector in C.
- Code polynomial v(x) of the code vector v is defined as

$$\mathbf{v}(x) = v_0 + v_1 x + \dots + v_{n-1} x^{n-1}.$$

• $\mathbf{v}^{(i)}(x) = x^i \mathbf{v}(x) \mod x^n + 1$.

Proof: Multiplying v(x) by x^i , we obtain

$$x^{i}\mathbf{v}(x) = v_{0}x^{i} + v_{1}x^{i+1} + \dots + v_{n-i-1}x^{n-1} + \dots + v_{n-1}x^{n+i-1}.$$

Then we manipulate the equation into the following form:

$$x^{i}v(x) = v_{n-i} + v_{n-i+1}x + \dots + v_{n-1}x^{i-1} + v_{0}x^{i} + \dots + v_{n-i-1}x^{n-1} + v_{n-i}(x^{n} + 1) + v_{n-i-1}x(x^{n} + 1) + \dots + v_{n-1}x^{i-1}(x^{n} + 1)$$

$$= q(x)(x^{n} + 1) + v^{(i)}(x),$$

where $q(x) = v_{n-i} + v_{n-i+1}x + \dots + v_{n-1}x^{i-1}$.

- ullet The nonzero code polynomial of minimum degree in a cyclic code $oldsymbol{C}$ is unique.
- Let $g(x) = g_0 + g_1 x + \cdots + g_{r-1} x^{r-1} + x^r$ be the nonzero code polynomial of minimum degree in an (n, k) cyclic code C. Then

the constant term g_0 must be equal to 1.

Proof: Suppose that $g_0 = 0$. Then

$$g(x) = g_1 x + g_2 x^2 + \dots + g_{r-1} x^{r-1} + x^r$$
$$= x(g_1 + g_2 x + \dots + g_{r-1} x^{r-2} + x^{r-1}).$$

If we shift g(x) cyclically n-1 places to the right (or one place to the left), we obtain a nonzero code polynomial, $g_1 + g_2x + \cdots + g_{r-1}x^{r-2} + x^{r-1}$, which has a degree less than r. Contradiction.

A (7,4) Cyclic Code Gnerated by $g(x) = 1 + x + x^3$

Me	SS	age	es		(Cod	e V	ecto	ors		Code polynomials
(0 0)	0	0)	0	0	0	0	0	0	0	$0 = 0 \cdot \mathbf{g}(X)$
(1 0	1	0	0)	1	1	0	1	0	0	0	$1 + X + X^3 = 1 \cdot g(X)$
(0 1	,	0	0)	0	1	1	0	1	0	0	$X + X^2 + X^4 = X \cdot \mathbf{g}(X)$
(1 1	ı	0	0)	1	0	1	1	1	0	0	$1 + X^2 + X^3 + X^4 = (1 + X) \cdot g(X)$
(0 0))	1	0)	0	0	1	1	0	1	0	$X^2 + X^3 + X^5 = X^2 \cdot \mathbf{g}(X)$
(1 0	i	1	0)	1	1	1	0	0	1	0	$1 + X + X^2 + X^5 = (1 + X^2) \cdot g(X^2)$
(0 1		1	0)	0	1	0	1	1	1	0	$X + X^3 + X^4 + X^5 = (X + X^2) \cdot 3$
(1 1		1	0)	1	0	0	0	1	1	0	$1 + X^4 + X^5 = (1 + X + X^2) \cdot g(X)$
(0 0)	(0	1)	0	0	0	1	1	0	1	$X^3+X^4+X^6=X^3\cdot \mathbf{g}(X)$
(1 0)	(0	1)	1	1	0	0	1	0	1	$1 + X + X^4 + X^6 = (1 + X^3) \cdot g(X^4)$
(0 1)	(0	1)	0	1	1	1	0	0	1	$X + X^2 + X^3 + X^6 = (X + X^3) \cdot g$
(1 1)	(0	1)	1	0	1	0	0	0	1	$1 + X^2 + X^6 = (1 + X + X^3) \cdot g(X)$
(0 0)		1	1)	0	0	1	0	1	1	1	$X^2 + X^4 + X^5 + X^6 = (X^2 + X^3)$
(1 0		1	1)	1	1	1	1	1	1	1	$1 + X + X^2 + X^3 + X^4 + X^5 + X$ = $(1 + X^2 + X^3) \cdot g(X)$
0 1		1	1)	0	1	0	0	0	1	1	$X + X^5 + X^6 = (X + X^2 + X^3) \cdot g$
1 1	1	1	1)	1	0	0	1	0	1	1	$ 1 + X^3 + X^5 + X^6 = (1 + X + X^2 + X^3) \cdot g(X) $

• Consider the polynomial $x\mathbf{g}(x), x^2\mathbf{g}(x), \dots, x^{n-r-1}\mathbf{g}(x)$. Clearly, they are cyclic shifts of $\mathbf{g}(x)$ and hence code polynomials in \mathbf{C} . Since \mathbf{C} is linear, a linear combination of $\mathbf{g}(x), x\mathbf{g}(x), \dots, x^{n-r-1}\mathbf{g}(x)$,

$$\mathbf{v}(x) = u_0 \mathbf{g}(x) + u_1 x \mathbf{g}(x) + \dots + u_{n-r-1} x^{n-r-1} \mathbf{g}(x)$$

= $(u_0 + u_1 x + \dots + u_{n-r-1} x^{n-r-1}) \mathbf{g}(x)$,

is also a code polynomial where $u_i \in \{0, 1\}$.

• Let $\mathbf{g}(x) = 1 + g_1 x + \cdots + g_{r-1} x^{r-1} + x^r$. be the nonzero code polynomial of minimum degree in an (n, k) cyclic code \mathbf{C} . A binary polynomial of degree n-1 or less is a code polynomial if and only if it is a multiple of $\mathbf{g}(x)$.

Proof: Let $\mathbf{v}(x)$ be a binary polynomial of degree n-1 or less.

Suppose that $\boldsymbol{v}(x)$ is a multiple of $\boldsymbol{g}(x)$. Then

$$\mathbf{v}(x) = (a_0 + a_1 x + \dots + a_{n-r-1} x^{n-r-1}) \mathbf{g}(x)$$

= $a_0 \mathbf{g}(x) + a_1 x \mathbf{g}(x) + \dots + a_{n-r-1} x^{n-r-1} \mathbf{g}(x)$.

Since $\mathbf{v}(x)$ is a linear combination of the code polynomials, $\mathbf{g}(x), x\mathbf{g}(x), \dots, x^{n-r-1}\mathbf{g}(x)$, it is a code polynomial in \mathbf{C} . Now let $\mathbf{v}(x)$ be a code polynomial in \mathbf{C} . Dividing $\mathbf{v}(x)$ by $\mathbf{g}(x)$, we obtain

$$\boldsymbol{v}(x) = \boldsymbol{a}(x)\boldsymbol{g}(x) + \boldsymbol{b}(x),$$

where the degree of $\boldsymbol{b}(x)$ is less than the degree of $\boldsymbol{g}(x)$. Since $\boldsymbol{v}(x)$ and $\boldsymbol{a}(x)\boldsymbol{g}(x)$ are code polynomials, $\boldsymbol{b}(x)$ is also a code polynomial. Suppose $\boldsymbol{b}(x) \neq 0$. Then $\boldsymbol{b}(x)$ is a code polynomial with less degree than that of $\boldsymbol{g}(x)$. Contradiction.

• The number of binary polynomials of degree n-1 or less that are multiples of g(x) is 2^{n-r} .

• There are total of 2^k code polynomials in C, $2^{n-r} = 2^k$, i.e., r = n - k.

- The polynomial g(x) is called the generator polynomial of the code.
- The degree of g(x) is equal to the number of parity-check digits of the code.
- The generator polynomial g(x) of an (n, k) cyclic code is a factor of $x^n + 1$.

Proof: We have

$$x^{k} g(x) = (x^{n} + 1) + g^{(k)}(x).$$

Since $g^{(k)}(x)$ is the code polynomial obtained by shifting g(x) to

the right cyclically k times, $g^{(k)}(x)$ is a multiple of g(x). Hence,

$$x^{n} + 1 = \{x^{k} + \boldsymbol{a}(x)\}\boldsymbol{g}(x).$$

• If g(x) is a polynomial of degree n-k and is a factor of x^n+1 , then g(x) generates an (n,k) cyclic code.

Proof: A linear combination of $g(x), xg(x), \dots, x^{k-1}g(x),$

$$\mathbf{v}(x) = a_0 \mathbf{g}(x) + a_1 x \mathbf{g}(x) + \dots + a_{k-1} x^{k-1} \mathbf{g}(x)$$

= $(a_0 + a_1 x + \dots + a_{k-1} x^{k-1}) \mathbf{g}(x),$

is a polynomial of degree n-1 or less and is a multiple of g(x). There are a total of 2^k such polynomial and they form an (n, k) linear code.

Let $\mathbf{v}(x) = v_0 + v_1 x + \dots + v_{n-1} x^{n-1}$ be a code polynomial in

this code. We have

$$x\mathbf{v}(x) = v_0x + v_1x^2 + \dots + v_{n-1}x^n$$

$$= v_{n-1}(x^n + 1) + (v_{n-1} + v_0x + \dots + v_{n-2}x^{n-1})$$

$$= v_{n-1}(x^n + 1) + \mathbf{v}^{(1)}(x).$$

Since both $x\mathbf{v}(x)$ and $x^n + 1$ are divisible by $\mathbf{g}(x)$, $\mathbf{v}^{(1)}$ must be divisible by $\mathbf{g}(x)$. Hence, $\mathbf{v}^{(1)}(x)$ is a code polynomial and the code generated by $\mathbf{g}(x)$ is a cyclic code.

• Suppose that the message to be encoded is $\mathbf{u} = (u_0, u_1, \dots, u_{k-1})$. Then

$$x^{n-k}\mathbf{u}(x) = u_0 x^{n-k} + u_1 x^{n-k+1} + \dots + u_{k-1} x^{n-1}.$$

Dividing $x^{n-k}\boldsymbol{u}(x)$ by $\boldsymbol{g}(x)$, we have

$$x^{n-k}\boldsymbol{u}(x) = \boldsymbol{a}(x)\boldsymbol{g}(x) + \boldsymbol{b}(x).$$

Since the degree of $\mathbf{g}(x)$ is n-k, the degree of $\mathbf{b}(x)$ must be n-k-1 or less. Then

$$\boldsymbol{b}(x) + x^{n-k}\boldsymbol{u}(x) = \boldsymbol{a}(x)\boldsymbol{g}(x)$$

is a multiple of g(x) and therefore it is a code polynomial.

$$\mathbf{b}(x) + x^{n-k}\mathbf{u}(x) = b_0 + b_1x + \dots + b_{n-k-1}x^{n-k-1} + u_0x^{n-k} + u_1x^{n-k+1} + \dots + u_{k-1}x^{n-1}$$

then corresponds to the code vector

$$(b_0, b_1, \ldots, b_{n-k-1}, u_0, u_1, \ldots, u_{k-1}).$$

A (7,4) Cyclic Code Gnerated by $g(x) = 1 + x + x^3$

Message				Code word							
(0	0	0	0)	(0	0	0	0	0	0	0)	$0 = 0 \cdot \mathbf{g}(X)$
(1	0	0	0)	(1	1	0	1	0	0	0)	$1 + X + X^3 = \mathbf{g}(X)$
(0	1	0	0)	(0	1	1	0	1	0	0)	$X + X^2 + X^4 = Xg(X)$
(1	1	0	0)	(1	0	1	1	1	0	0)	$1 + X^2 + X^3 + X^4 = (1 + X)g(X)$
(0	0	1	0)	(1	1	1	0	0	1	0)	$1 + X + X^2 + X^5 = (1 + X^2)g(X)$
(1	0	1	0)	(0	0	1	1	0	1	0)	$X^2 + X^3 + X^5 = X^2 g(X)$
(0	1	1	0)	(1	0	0	0	1	1	0)	$1 + X^4 + X^5 = (1 + X + X^2)g(X)$
(1	1	1	0)	(0	1	0	1	1	1	0)	$X + X^3 + X^4 + X^5 = (X + X^2)g(X)$
(0	0	0	1)	(1	0	1	0	0	0	1)	$1 + X^2 + X^6 = (1 + X + X^3)g(X)$
(1	0	0	1)	(0	1	1	1	0	0	1)	$X + X^2 + X^3 + X^6 = (X + X^3)g(X)$
(0	1	0	1)	(1	1	0	0	1	0	1)	$1 + X + X^4 + X^6 = (1 + X^3)g(X)$
(1	1	0	1)	(0	0	0	1	1	0	1)	$X^3 + X^4 + X^6 = X^3 g(X)$
(0	0	1	1)	(0	1	0	0	0	1	1)	$X + X^5 + X^6 = (X + X^2 + X^3)g(X)$
(1	0	1	1)	(1	0	0	1	0	1	1)	$1 + X^3 + X^5 + X^6 = (1 + X + X^2 + X^3)g(X$
(0	1	1	1)	•			0	1	1	1)	$X^2 + X^4 + X^5 + X^6 = (X^2 + X^3)g(X)$
(1	1	1	1)	(1	1	1	1	1	1	1)	$1 + X + X^2 + X^3 + X^4 + X^5 + X^6$
											$= (1 + X^2 + X^5)g(X)$

Generator and Parity-Check Matrices

• The generator matrix of an (n, k) code C is as follows:

- In general, G is not in systematic form. However, it can be put into systematic form with row operation.
- Let

$$x^n + 1 = \boldsymbol{g}(x)\boldsymbol{h}(x),$$

where the polynomial h(x) has the degree k and is of the following form:

$$\boldsymbol{h}(x) = h_0 + h_1 x + \dots + h_k x^k$$

with $h_0 = h_k = 1$.

- A parity-check matrix of C may be obtained from h(x).
- Let \boldsymbol{v} be a code vector in \boldsymbol{C} and $\boldsymbol{v}(x) = \boldsymbol{a}(x)\boldsymbol{g}(x)$. Then

$$\mathbf{v}(x)\mathbf{h}(x) = \mathbf{a}(x)\mathbf{g}(x)\mathbf{h}(x)$$

= $\mathbf{a}(x)(x^n + 1)$
= $\mathbf{a}(x) + x^n\mathbf{a}(x)$.

13

Since the degree of $\mathbf{a}(x)$ is k-1 or less, the powers $x^k, x^{k+1}, \dots, x^{n-1}$ do not appear in $\mathbf{a}(x) + x^n \mathbf{a}(x)$. Therefore,

$$\sum_{i=0}^{k} h_i v_{n-i-j} = 0 \text{ for } 1 \le j \le n-k.$$

We take the reciprocal of h(x),

$$x^{k} \mathbf{h}(x^{-1}) = h_{k} + h_{k-1}x + h_{k-2}x^{2} + \dots + h_{0}x^{k},$$

and can see that $x^k \mathbf{h}(x^{-1})$ is also a factor of $x^n + 1$. $x^k \mathbf{h}(x^{-1})$ then generates an (n, n - k) cyclic code with the following $(n - k) \times n$ matrix as a generator matrix:

Then \boldsymbol{H} is a parity-check matrix of the cyclic code \boldsymbol{C} . We call $\boldsymbol{h}(x)$ the parity polynomial of \boldsymbol{C} .

- Let C be an (n, k) cyclic code with generator polynomial g(x). The dual code of C is also cyclic and is generated by the polynomial $x^k h(x^{-1})$, where $h(x) = (x^n + 1)/g(x)$.
- Let

$$x^{n-k-1} = a_i(x)g(x) + b_i(x)$$
 for $0 \le i \le k-1$,

where $\boldsymbol{b}_i(x) = b_{i0} + b_{i1} + \dots + b_{i(n-k-1)}$. Since $\boldsymbol{b}_i(x) + x^{n-k+i}$ are multiples of $\boldsymbol{g}(x)$, they are code polynomials. Then

$$G = \begin{bmatrix} b_{00} & b_{01} & b_{02} & \cdots & b_{0(n-k-1)} & 1 & 0 & 0 & \cdots & 0 \\ b_{10} & b_{11} & b_{12} & \cdots & b_{1(n-k-1)} & 0 & 1 & 0 & \cdots & 0 \\ b_{20} & b_{21} & b_{22} & \cdots & b_{2(n-k-1)} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & & \vdots & & \vdots & & \vdots \\ b_{(k-1)0} & b_{(k-1)1} & b_{(k-1)2} & \cdots & b_{(k-1)(n-k-1)} & 0 & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

ullet The corresponding parity-check matrix for $oldsymbol{C}$ is

$$\boldsymbol{H} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & b_{00} & b_{10} & b_{20} & \cdots & b_{(k-1)0} \\ 0 & 1 & 0 & \cdots & 0 & b_{01} & b_{11} & b_{21} & \cdots & b_{(k-1)1} \\ 0 & 0 & 1 & \cdots & 0 & b_{02} & b_{12} & b_{22} & \cdots & b_{(k-1)2} \\ \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & b_{0(n-k-1)} & b_{1(n-k-1)} & b_{2(n-k-1)} & \cdots & b_{(k-1)(n-k-1)} \end{bmatrix}$$

Encoding of Cyclic Codes

• Encoding process: (1) Multiply $\boldsymbol{u}(x)$ by x^{n-k} ; (2) divide $x^{n-k}\boldsymbol{u}(x)$ by $\boldsymbol{g}(x)$; (3) form the code word $\boldsymbol{b}(x) + x^{n-k}\boldsymbol{u}(x)$.

Example

• Consider the (7,4) cyclic code generated by $\mathbf{g}(x) = 1 + x + x^3$. Suppose that the message $\mathbf{u} = (1\ 0\ 1\ 1)$ is to be encoded. The contentents in the register are as follows:

Input	Register contents					
	0 0 0 (initial state)					
1	1 1 0 (first shift)					
1	1 0 1 (second shift)					
0	1 0 0 (third shift)					
1	100 (fourth shift)					

After four shifts, the contents of the register are (1 0 0). Thus the complete code vector is (1 0 0 1 0 1 1).

Encoding by Parity Polynomial

• Since $h_k = 1$, we have

$$v_{n-k-j} = \sum_{i=0}^{k-1} h_i v_{n-i-j} \text{ for } 1 \le j \le n-k,$$

which is known as a difference equation.

$$v_{n-k-1} = h_0 v_{n-1} + h_1 v_{n-2} + \dots + h_{k-1} v_{n-k} = u_{k-1} + h_1 u_{k-2} + \dots + h_{k-1} u_0$$

$$v_{n-k-2} = u_{k-2} + h_1 u_{k-3} + \dots + h_{k-1} v_{n-k-1}$$

• Encoding circuit:

Example

• The parity polynomial of the (7,4) cyclic code generated by $g(x) = 1 + x + x^3$ is

$$h(x) = \frac{x^7 + 1}{1 + x + x^3} = 1 + x + x^2 + x^4.$$

The encoding circuit:

Suppose that the message to be encoded is $(1\ 0\ 1\ 1)$. Then $v_3 = 1, v_4 = 0, v_5 = 1, v_6 = 1$. The parity-check digits are

$$v_2 = v_6 + v_3 + v_4 = 1 + 1 + 0 = 0$$

$$v_1 = v_5 + v_4 + v_3 = 1 + 0 + 1 = 0$$

$$v_0 = v_4 + v_3 + v_2 = 0 + 1 + 0 = 1.$$

The code vector that corresponds to the message (1 0 1 1) is (1 0 0 1 0 1 1).

Syndrome Computation

- Let $\mathbf{r} = (r_0, r_1, \dots, r_{n-1})$ be the received vector. The *syndrome* is calculated as $\mathbf{s} = \mathbf{r} \cdot \mathbf{H}^T$, where \mathbf{H} is the parity-check matrix.
- If syndrome is not identical to zero, r is not a code vector and the presence of errors has been detected.
- Dividing r(x) by the generator polynomial g(x), we obtain

$$\boldsymbol{r}(x) = \boldsymbol{a}(x)\boldsymbol{g}(x) + \boldsymbol{s}(x).$$

• The n-k coefficients of s(x) form the syndrome s. We call s(x) the syndrome.

- If C is a systematic code, then the syndrome is simply the vector sum of the received parity digits and the parity-check digits recomputed from the received information digits.
- Let s(x) be the syndrome of a received polynomial r(x). Then the remainder $s^{(1)}(x)$ resulting from dividing xs(x) by the generator polynomial g(x) is the syndrome of $r^{(1)}(x)$, which is a cyclic shift of r(x).

Proof: We have

$$x\mathbf{r}(x) = r_{n-1}(x^n + 1) + \mathbf{r}^{(1)}(x).$$

Then

$$c(x)g(x) + \rho(x) = r_{n-1}g(x)h(x) + x[a(x)g(x) + s(x)],$$

where $\rho(x)$ is the remainder resulting from dividing $r^{(1)}(x)$ by g(x). Then $\rho(x)$ is the syndrome of $r^{(1)}(x)$. Rearranging the

above equation, we have

$$xs(x) = [c(x) + r_{n-1}h(x) + xa(x)]g(x) + \rho(x).$$

It is clearly that $\rho(x)$ is also the remainder resulting from dividing xs(x) by g(x). Therefore, $\rho(x) = s^{(1)}(x)$.

• The remainder $s^{(i)}(x)$ resulting from dividing $x^i s(x)$ be the generator polynomial g(x) is the syndrome of $r^{(i)}(x)$, which is the *i*th cyclic shift of r(x).

Example

Consider the (7,4) cyclic code generated by $\mathbf{g}(x) = 1 + x + x^3$. Suppose that the received vector is $\mathbf{r} = (0\ 0\ 1\ 0\ 1\ 1\ 0)$. The syndrome of \mathbf{r} is $\mathbf{s} = (1\ 0\ 1)$. As the received vector is shifted into the circuit, the contents in the register are as follows:

Shift	Input	Register contents	7			
1 2 3 4 5 6 7 8 9	0 1 1 0 1 0 0	0 0 0 (initial state) 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 (syndrome s) 1 0 0 (syndrome s ⁽¹⁾) 0 1 0 (syndrome s ⁽²⁾)	input	Gate 1	0	Gate ←

If the register is shifted once more with the input gate disabled, the new contents will be $\mathbf{s}^{(1)} = (1\ 0\ 0)$, which is the syndrome of $\mathbf{r}^{(1)} = (0\ 0\ 0\ 1\ 0\ 1\ 1)$.

• We may shift the received vector $\mathbf{r}(x)$ into the syndrome register from the right end. However, after the entire $\mathbf{r}(x)$ has been shifted into the register, the contents in the register do not form the syndrome of $\mathbf{r}(x)$; rather, they form the syndrome $\mathbf{s}^{(n-k)}(x)$ of $\mathbf{r}^{(n-k)}(x)$.

Proof: We have

$$x^{n-k} \boldsymbol{r}(x) = \boldsymbol{a}(x) \boldsymbol{g}(x) + \boldsymbol{\rho}(x).$$

It is known that

$$x^{n-k} \mathbf{r}(x) = \mathbf{b}(x)(x^n + 1) + \mathbf{r}^{(n-k)}(x).$$

Hence,

$$\boldsymbol{r}^{(n-k)}(x) = [\boldsymbol{b}(x)\boldsymbol{h}(x) + \boldsymbol{a}(x)]\boldsymbol{g}(x) + \boldsymbol{\rho}(x).$$

When $\mathbf{r}^{(n-k)}(x)$ is divided by $\mathbf{g}(x)$, $\boldsymbol{\rho}(x)$ is also the remainder.

Therefore, $\rho(x)$ is indeed the syndrome of $r^{(n-k)}(x)$.

Error Detection

• Let $\mathbf{v}(x)$ be the transmitted code word and $\mathbf{e}(x) = e_0 + e_1 x + \dots + e_{n-1} x^{n-1}$ be the error pattern. Then

$$\boldsymbol{r}(x) = \boldsymbol{v}(x) + \boldsymbol{e}(x) = \boldsymbol{b}(x)\boldsymbol{g}(x) + \boldsymbol{e}(x).$$

• Following the definition of syndrome, we have

$$\boldsymbol{e}(x) = [\boldsymbol{a}(x) + \boldsymbol{b}(x)]\boldsymbol{g}(x) + \boldsymbol{s}(x).$$

This shows that the syndrome is actually equal to the remainder resulting from dividing the error pattern by the generator polynomial.

- The decoder has to estimate e(x) based on the syndrome s(x).
- If e(x) is identical to a code vector, e(x) is an undetectable error pattern.

- The error-detection circuit is simply a syndrome circuit with an OR gate with the syndrome digits as inputs.
- For a cyclic code, an error pattern with errors confined to i high-order positions and ℓi low-order positions is also regarded as a burst of length ℓ or less. such a burst is called end-around burst.
- An (n, k) cyclic code is capable of detecting any error burst of length n k or less, including the end-around bursts.

Proof: Suppose that the error pattern is a burst of length of n-k or less. Then

$$\boldsymbol{e}(x) = x^j \boldsymbol{B}(x),$$

where $0 \le j \le n-1$ and $\boldsymbol{B}(x)$ is a polynomial of degree n-k-1 or less. Since the degree of $\boldsymbol{B}(x)$ is less than that of $\boldsymbol{g}(x)$, $\boldsymbol{B}(x)$ is not divisible by $\boldsymbol{g}(x)$. Since $\boldsymbol{g}(x)$ is a factor of

 $x^n + 1$ and x is not a factor of g(x), g(x) and x^j must be relatively prime. Therefore, e(x) is not divisible by g(x). The last part of the above statement is left as an exercise.

• The fraction of undetectable bursts of length n - k + 1 is $2^{-(n-k-1)}$.

Proof: Consider the bursts of length n - k + 1 starting from the ith digit position and ending at the (i + n - k)th digit position. There are 2^{n-k-1} such burst. Among these bursts, the only one that cannot be detected is

$$\boldsymbol{e}(x) = x^i \boldsymbol{g}(x).$$

Therefore, the fraction of undetectable bursts of length n - k + 1 starting from the *i*th digit position is $2^{-(n-k-1)}$.

• For $\ell > n - k + 1$, the fraction of undetectable error bursts of length ℓ is $2^{-(n-k)}$. The proof is left as an exercise.

Decoding of Cyclic Codes

- Decoding of linear codes consists of three steps: (1) syndrome computation; (2) association of the syndrome to an error pattern; (3) error correction.
- The cyclic structure structure of a cyclic code allows us to decode a received vector $\mathbf{r}(x)$ in serial manner.
- The received digits are decoded one at a time and each digit is decoded with the same circuitry.
- The decoding circuit checks whether the syndrome $\beta(x)$ corresponds to a correctable error pattern e(x) with an error at the highest-order position x^{n-1} (i.e., $e_{n-1} = 1$).
- If $\beta(x)$ does not correspond to an error pattern with $e_{n-1} = 1$, the received polynomial and the syndrome register are cyclically shifted once simultaneously. By doing this, we have $r^{(1)}(x)$ and

 $s^{(1)}(x)$.

- The second digit r_{n-2} of $\mathbf{r}(x)$ becomes the first digit of $\mathbf{r}^{(1)}(x)$. The same decoding processes.
- If the syndrome s(x) of r(x) does correspond to an error pattern with an error at the location x^{n-1} , the first received digit r_{n-1} is an erroneous digit and it must be corrected by taking the sum $r_{n-1} \oplus e_{n-1}$.
- This correction results in a modified received polynomial, denoted by $\mathbf{r}_1(x) = r_0 + r_1 x + \cdots + r_{n-2} x^{n-2} + (r_{n-1} \oplus e_{n-1}) x^{n-1}$.
- The effect of the error digit e_{n-1} on the syndrome can be achieved by adding the syndrome of $e'(x) = x^{n-1}$ to s(x).
- The syndrome $s_1^{(1)}$ of $r_1^{(1)}(x)$ is the remainder resulting from dividing $x[s(x) + x^{n-1}]$ by the generator polynomial g(x).

• Since the remainders resulting from dividing xs(x) and x^n by g(x) are $s^{(1)}(x)$ and 1, respectively, we have

$$s_1^{(1)}(x) = s(1)(x) + 1.$$

Example

Consider the decoding of the (7,4) cyclic code generated by $g(x) = 1 + x + x^3$. This code has minimum distance 3 and is capable of correcting any single error. The seven single-error patterns and their corresponding syndromes are as follows:

Error pattern	Syndrome	Syndrome vector
e(X)	s(X)	(s_0, s_1, s_2)
$e_6(X) = X^6$	$s(X) = 1 + X^2$	(1 0 1)
$e_5(X) = X^5$	$s(X) = 1 + X + X^2$	(1 1 1)
$e_4(X) = X^4$	$s(X) = X + X^2$	(0 1 1)
$e_3(X) = X^3$	s(X) = 1 + X	(1 1 0)≺
$e_2(X) = X^2$	$s(X) = X^2$	(0 0 1)
$e_1(X) = X^1$	s(X) = X	(0 1 0)
$e_0(X) = X^0$	s(X) = 1	(1 0 0)

Suppose that the code vector $\mathbf{v} = (1\ 0\ 1\ 1\ 0\ 1\ 1)$ is transmitted and $\mathbf{r} = (1\ 0\ 1\ 1\ 0\ 1\ 1)$.

Meggitt Decoder II

- To decode a cyclic code, the received polynomial r(x) may be shifted into the syndrome register from the right end for computing the syndrome.
- When $\mathbf{r}(x)$ has been shifted into the syndrome register, the register contains $\mathbf{s}^{(n-k)}(x)$, which is the syndrome of $\mathbf{r}^{(n-k)}(x)$. If $\mathbf{s}^{(n-k)}(x)$ corresponds to an error pattern $\mathbf{e}(x)$ with $e_{n-1} = 1$, the highest-order digit r_{n-1} of $\mathbf{r}(x)$ is erroneous and must be corrected.
- In $\mathbf{r}^{(n-k)}(x)$, the digit r_{n-1} is at the location x^{n-k-1} . When r_{n-1} is corrected, the error effect must be removed from $\mathbf{s}^{(n-k)}(x)$.
- The new syndrome $s_1^{(n-k)}(x)$ is the sum of $s^{(n-k)}(x)$ and the remainder $\rho(x)$ resulting from dividing x^{n-k-1} by g(x). Since

Example

Again, we consider the decoding of the (7,4) cyclic code generated by $g(X) = 1 + X + X^3$. Suppose that the received polynomial r(X) is shifted into the syndrome register from the right end. The seven single-error patterns and their corresponding syndromes are as follows:

Error pattern	Syndrome	Syndrome vector
e(X)	s ⁽³⁾ (X)	(s_0, s_1, s_2)
$e(X) = X^6$	$s^{(3)}(X) = X^2$	(0 0 1)
$e(X) = X^5$	$s^{(3)}(X) = X$	(0 1 0)
$e(X) = X^4$	$s^{(3)}(X) = 1$	<u>(1 0 0)</u>
$e(X) = X^3$	$s^{(3)}(X) = 1 + X^2$	(1 0 1)
$e(X) = X^2$	$s^{(3)}(X) = 1 + X + X^2$	(1 1 1)
$e(X) = X^1$	$s^{(3)}(X) = X + X^2$	(0 1 1)
$e(X) = X^0$	$s^{(3)}(X) = 1 + X$	(1 1 0)

We see that only when $e(X) = X^6$ occurs, the syndrome is $(0\ 0\ 1)$

after the entire received polynomial r(X) has been shifted into the syndrome register. If the single error occurs at the location X^i with $i \neq 6$, the syndrome in the register will not be $(0\ 0\ 1)$ after the entire received polynomial r(X) has been shifted into the syndrome register. However, another 6i shifts, the syndrome register will contain $(0\ 0\ 1)$. Based on this fact, we obtain another decoding circuit for the (7,4) cyclic code generated by $g(X) = 1 + X + X^3$.

