
1716 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007

Performance Analysis and Code Design for
Minimum Hamming Distance Fusion in

Wireless Sensor Networks
Chien Yao, Po-Ning Chen, Senior Member, IEEE, Tsang-Yi Wang, Member, IEEE,

Yunghsiang S. Han, Member, IEEE, and Pramod K. Varshney, Fellow, IEEE

Abstract—Distributed classification fusion using error-cor-
recting codes (DCFECC) has recently been proposed for wireless
sensor networks operating in a harsh environment. It has been
shown to have a considerably better capability against unexpected
sensor faults than the optimal likelihood fusion. In this paper,
we analyze the performance of a DCFECC code with minimum
Hamming distance fusion. No assumption on identical distribution
for local observations, as well as common marginal distribution
for the additive noises of the wireless links, is made. In addition,
sensors are allowed to employ their own local classification rules.
Upper bounds on the probability of error that are valid for any
finite number of sensors are derived based on large deviations
technique. A necessary and sufficient condition under which the
minimum Hamming distance fusion error vanishes as the number
of sensors tends to infinity is also established. With the necessary
and sufficient condition and the upper error bounds, the relation
between the fault-tolerance capability of a DCFECC code and
its pair-wise Hamming distances is characterized, and can be
used together with any code search criterion in finding the code
with the desired fault-tolerance capability. Based on the above
results, we further propose a code search criterion of much less
complexity than the minimum Hamming distance fusion error
criterion adopted earlier by the authors. This makes the code
construction with acceptable fault-tolerance capability for a net-
work with over a hundred of sensors practical. Simulation results
show that the code determined based on the new criterion of much
less complexity performs almost identically to the best code that
minimizes the minimum Hamming distance fusion error. Also
simulated and discussed are the performance trends of the codes
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searched based on the new simpler criterion with respect to the
network size and the number of hypotheses.

Index Terms—Coding, detection, classification, information fu-
sion, fault tolerance, wireless sensor networks.

I. INTRODUCTION

RECENT advances in processor, radio, and memory tech-
nology have generated a great interest in the notion of de-

ploying a large number of networked sensors for applications
such as environment monitoring. The classification of target ob-
jects, as well as their tracking, are the fundamental requirements
in these applications [1], [2], [8], [10], [11], [17]. In this paper,
we consider a wireless sensor network (WSN) that consists of

geographically dispersed sensors, wireless (and hence noisy)
one-way communication links, and a fusion center. Limitation
on the communication bandwidth in wireless links due to the
consideration of economical energy consumption at local sen-
sors prevents the system from conveying raw observation data
to the fusion center. A local compression on the raw observa-
tion data thus has to be employed at each sensor. Usually, the
information content of the compressed outputs from local sen-
sors is of fewer bits than in a WSN, where is the
number of object classes to be distinguished. In this work, we
are specifically concerned with the case where the sensor nodes
only send out binary decisions to the fusion center at which they
are fused to produce the final -ary decision.

Another issue that may be encountered in a WSN is that sen-
sors are prone to be blocked or even damaged when they are de-
ployed in a harsh environment [1]. In addition, a low-cost sensor
that is manufactured by a simple technology may suffer from
hardware, as well as software, malfunctions after deployment.
As a result, the fault-tolerance capability to protect against un-
expected sensor failures is also of equal importance to the per-
formance and complexity of a WSN.

To fulfill the above mentioned requirements, a distributed
classification fusion approach using error correcting codes
(DCFECC) has been proposed to provide good fault-tolerance
capability under feasible system complexity [18]. In the pro-
posed approach, an error-correcting code matrix is
first designed by either simulated annealing or cyclic column
replacement, where each row of bits forms a codeword that
corresponds to one of hypotheses. Each local sensor then
outputs the respective code bit of the codeword corresponding
to the declared hypothesis that is locally determined based
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Fig. 1. System model for DCFECC.

on its own observation. Upon receipt of the binary outputs
from sensors, the fusion center makes a multiclass decision
based on minimum Hamming distance decoding. Unlike the
conventional approach that employs the optimal maximum
a posteriori probability (MAP) fusion rule, it was shown in
[18] that with adequately high probability, the decision made
by the minimum Hamming distance fusion rule can fall into
the correct acceptance region even if several sensor faults are
present.

In [7], we have provided the performance analysis of the
minimum Hamming distance fusion approach when the number
of sensors is sufficiently large. This asymptotic performance
analysis for the distributed binary detection/classification
problem considered here is different from those investigated
by [4], [6], [16], where the MAP fusion rule rather than the
minimum Hamming distance fusion rule was used.

In this work, we extend our analysis in [7] by relaxing the as-
sumptions of common distribution for all local observations and
identical local classification rule for all sensors. Also, the addi-
tive noises over the wireless links is allowed to be independent
but nonidentical in statistics. Contrary to the requirement of suf-
ficiently large number of sensors in [7], the probability bounds
obtained in this work are now valid for any finite number of
sensors. In particular, a necessary and sufficient condition under
which the minimum Hamming distance fusion error vanishes as
the number of sensors tends to infinity is established. With the
necessary and sufficient condition and the upper bounds on the
error probability, the relation between the fault-tolerance capa-
bility of a DCFECC code and its pair-wise Hamming distances
can be analytically characterized. It can thereby be used to-
gether with any code search criterion for finding the code matrix
with the desired fault-tolerance capability. Most importantly, a
code search criterion of much less complexity than the min-
imum Hamming distance fusion error criterion adopted in [18]
is proposed. Based on this, code construction with acceptable
fault-tolerance capability for a network with over a hundred of
sensors becomes possible. Simulation results show that the code
determined based on the new criterion with much less com-
plexity performs almost identically to the best code that min-
imizes the minimum Hamming distance fusion error. Also sim-
ulated and discussed are the performance trends of the codes
searched based on the new simpler criterion with respect to the
number of sensors and the number of hypotheses. Detailed dis-
cussions are provided in subsequent sections.

This paper is organized in the following fashion. The system
model is described in detail in Section II. The error bounds are
derived using large deviations technique in Section III, followed
by the establishment of the necessary and sufficient condition
under which the fusion error vanishes as the number of sensors

becomes large. In Section IV, we characterize the fault-tol-
erance capability of a DCFECC code with minimum Hamming
distance fusion. With the availability of the upper bounds on the
error probability and the characterization of the fault-tolerance
capability, the new code search criterion is presented in Sec-
tion V. Section VI summarizes and discusses the simulation and
numerical results obtained in this work. Section VII concludes
the paper.

For better readability, the proofs of the supportive lemmas are
deferred till the Appendix.

II. SYSTEM MODEL

As depicted in Fig. 1, we consider the distributed -ary clas-
sification problem in a parallel fusion network, which is perhaps
the topology that has received the most attention in the area of
WSNs [3], [4], [9], [10], [11], [12], [14], [19]. In this problem,
all the local sensors observe the same phenomenon that statis-
tically belongs to one of the possible classes. Independent
interferences are assumed present at the local sensors, which,
in mathematics, makes the local observations condi-
tionally independent across sensors given each hypothesis. Also
assume that each local sensor classifies its own observation, in-
dependent of all others, to one of the hypotheses using its
own decision rule. In other words, the local sensor nodes need
not employ identical decision rules. We then denote by the
probability of classifying given that is the true hypoth-
esis for sensor .

After the observation is locally classified at sensor , a local
output bit is transmitted through a noisy channel to the fu-
sion center at which place the received bits are combined to
yield the fusion decision. Due to channel transmission errors,
the word received at the fusion center
may not equal the transmitted word . In
this paper, we assume that the event of link error, i.e., ,
is independent for all the communication links between sensors
and the fusion center, and is also independent of the observa-
tions as well as the true hypothesis , and its proba-
bility is denoted by .
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Ideally, the objective of the distributed classification in par-
allel fusion networks is to determine the local classification rules
and the fusion rule such that the minimum fusion error can be
achieved. For this reason, the optimal MAP fusion rule is often
employed at the fusion center. However, such an optimal design
was shown to degrade drastically in performance when unex-
pected sensor failures are present [18]. This results in the mo-
tivation behind the DCFECC codes in [18], i.e., to borrow the
technique of error-correcting (namely, fault-correcting) codes to
design a wireless sensor network system that is much less sen-
sitive, and hence, more robust, to sensor faults that are unseen
by the fusion center.

By following this motivation, a code matrix of which the
design methodology will be covered in Section V is specified
in advance in the DCFECC system as shown on the right side
of Fig. 1. This code matrix is an matrix with element

, where and .
Each hypothesis is associated with a row in the code ma-
trix. Each column of stands for the local binary outputs cor-
responding to the locally classified hypotheses at the respective
sensor. Thus, sensor transmits , if is declared to be true
locally. Clearly, at least sensor nodes are required
for the identification of hypotheses, and it requires more
sensor nodes to provide the coding redundancy for fault toler-
ance. For notational convenience, is
used to denote the row of corresponding to the hypothesis .

The redundancy that constitutes the desired fault tolerance
comes from the adopted minimum distance fusion rule, or
specifically, , where is
the Hamming distance [18]. The tie-break rule is to randomly
pick a codeword from those with the same smallest Hamming
distance to the received vector .

III. PERFORMANCE ANALYSIS

In this section, we first derive a large deviation probability
bound for finite sample size. Based on the probability bound,
we analyze the performance of the distributed -ary classifica-
tion system using minimum Hamming distance fusion. A nec-
essary and sufficient condition under which the error rate of the
DCFECC codes vanishes as the number of sensors tends to in-
finity is then established.

A. Large Deviation Probability Bound for Finite Sample Size

From the minimum Hamming distance fusion, i.e.,

where “ ” denotes the exclusive–OR operation and
, it can be anticipated that the analysis of the

system performance relies completely on the probabilities of
events and . Note that given the true
hypothesis is , the more negative the quantity ,
the smaller the fusion error is. This induces the necessity of
finding a good probability bound for the sum of independent
random variables given is the true hypothesis in

the following. For notational simplicity, we drop the redundant
subscript in in the derivation that follows.

Lemma 1: Let be independent antipodal random
variables with

and

Define

and

Then, if

Remark: Since remains the same if we rede-
fine as . Hence, with the assumption
of , the result of Lemma 1 can be re-expressed as

(1)

The probability bound in (1) does not exhibit any apparent
relation with , namely, the average of the means of .
This can be amended by the next lemma.

Lemma 2: If , then

B. Performance Analysis for Distributed -Ary Classification
Fusion System With Minimum Hamming Distance Fusion

Based on the probability bounds obtained in the previous sub-
section, we can upper-bound the error probability of the dis-
tributed -ary classification system using minimum Hamming
distance fusion rule by the following theorem.

Theorem 1: Let be the average probability of minimum
Hamming distance fusion error given as

fusion decision

If for every

(2)
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where and
then

(3)

Proof:

fusion decision

Observe that

(4)

and are independent across sensors given is true.
Therefore, by Lemma 1

which results in

Theorem 1 provides an upper bound on the probability of
error by means of Lemma 1. Based on Lemma 2, the next corol-
lary shows that the upper bound in (3) can be further upper-
bounded by quantities that are only functions of the negative
quantity defined in (2). As a result, the intuition that a DCFECC
code with larger pair-wise Hamming distances is expected to
perform better can be justified.

Corollary 1: Under condition (2), the average probability of
minimum Hamming distance fusion error can also be bounded
above by

(5)

(6)

where , and

(7)
Notably, by condition (2), and

Proof: The proof of inequality (5) follows a similar pro-
cedure as in Theorem 1 except that Lemma 2 is used instead
of Lemma 1. Inequality (6) is a direct consequence of in-
equality (5).

With the above corollary, we figure that if for some
for all sufficiently large , the DCFECC decoding

error vanishes exponentially as approaches infinity. Since
under a fixed number of hypotheses, usually grows linearly
with the number of sensors for typical DCFECC codes, we
conclude that the average error probability for the distributed

-ary classification system using minimum Hamming distance
fusion can be made zero asymptotically as goes to infinity,
and the error exponent is bounded below by

as long as . Next, we will show that the
assumption that leads to a nonvanishing

, and hence, establish the necessary and sufficient condition
under which vanishes.

Theorem 2: If is bounded away
from zero infinitely often in number of sensors.

Proof: The assumption that im-
plies the existence of such that for infinitely
many . Hence, for any satisfying , there exist

and such that

(8)

By defining the same as in Theorem 1, we obtain
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As a result

fusion decision

approaches infinity

where the last step follows from the central limit theorem for
sum of independent bounded variables. Thus, the claim of the
theorem holds for the case that tends to infinity.

In situations when is bounded as approaches in-
finity (in which case a bad DCFECC code design results), the
theorem is trivially valid.

The final lemma in this section shows that the upper bounds
in Corollary 1, as well as the expression of , can be greatly
simplified for identical sensor systems.

Lemma 3: Suppose that for , where
, and is the same for all sensors. Then,

if , we have

(9)

(10)

where is simplified to

Lemma 3 indicates that under an identical sensor system as-
sumption, the two upper bounds in Corollary 1 are reduced to
functions of pair-wise Hamming distances. This greatly simpli-
fies their evaluation.

By denoting

we observe that is given by the product of
and , where the former only depends on the noises
corresponding to communication links between sensors
and the fusion center, while the latter is only a function of
the local classification accuracy and the adopted DCFECC
code. The upper bound in (10) can then be rewritten as

. Hence, the effects of
link noise and local classification accuracy can be separately
considered through the help of bound (10).

For antipodal transmission over additive white Gaussian
noise (AWGN) channels, we have , where

is the complementary error function, and is the
signal-to-noise ratio of the communication link. Fig. 2 then
shows that the error bound in (10) reaches its ultimate floor
value when is larger than 7 dB, which
corresponds to , and this threshold is indepen-
dent of the local classification accuracy and the DCFECC codes
adopted.

We can similarly characterize the effect of local classification
accuracy through the help of the simple probability bound in
(10). A usual assumption on the statistics of local observation
is that is Gaussian distributed with mean and variance
given that hypothesis is true. Define the local classification
rule as is declared true if

Then

if
if
if

where , and is the standard normal
cumulative distribution function. As a result, approaches
as for , and , otherwise, and

Hence, the ultimate floor values of bound (10) for the codes in
Table I (see Section VI-C) tend to

when grows beyond a constant threshold 17 dB as depicted
in Fig. 3.

IV. FAULT-TOLERANCE CAPABILITY

The wireless sensor network considered is likely to contain
faulty sensor nodes due to harsh environmental conditions.
Faults may include all misbehaviors, ranging from simple
random sensor faults or stuck-at faults1 to sensors that behave

1By “random sensor fault,” we mean that the sensor sends out 1 or 0 ran-
domly regardless of the local observation. Also, a sensor with stuck-at-one (re-
spectively, stuck-at-zero) fault will always transmit one (respectively, zero) to
the fusion center, and neglect the local observation it sensed.
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Fig. 2. Bound (10) for the codes listed in Table I (see Section VI-C) at 
 = 6 dB, where we assume that the local observation y is Gaussian distributed with
mean ` and variance 1=
 given hypothesis H is true.

arbitrarily or maliciously. In this section, we remark on the
fault-tolerance capability for the system employing minimum
Hamming distance fusion rule according to Corollary 1.

From the upper bound in (6) and the definition of in (7),
we observe that the smaller the , the more negative is,
which in turn gives a smaller upper probability bound. When
sensor faults (SF) occur, is no longer given by (4), but be-
comes a function of the new statistics of owing to sensor
faults. For example, when stuck-at-one fault occurs at sensor

for . Hence

and has nothing to do with the local classification accuracy. Sim-
ilarly, for stuck-at-zero fault

In case a random fault occurs, in which

. Accordingly, may range from
to . As no prior information on the sensor faults
type as well as the indices of faulty sensors is assumed known at
the fusion center, it is reasonable to consider the fault-tolerance

capability of the system by the worst case scenario in which
. Thus

and sensor fault under the worst case surely degrades the system
performance bound in (6). Then, the next corollary, which is
a straightforward extension of Corollary 1 based on the above
discussion, can be used to characterize the fault-tolerance capa-
bility of a DCFECC coding system.

Corollary 2: Let be the set of indices of faulty sensors.
Then, if , we have the expression at the bottom
of the following page, where the superscript “ ” denotes the set
complement operation and

By assuming that
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Fig. 3. Bound (10) for the codes in Table I (see Section VI-C) at 
 = 0 dB.

we can verify based on the above corollary that

(11)

where is the sorted counterpart of , satisfying

In order to guarantee that vanishes, it suffices to have

(12)

For an identical sensor system where for ,
this condition reduces to

(13)

As

for an identical sensor system, we have

(14)

It is worth mentioning that the condition that was
used as a code search requirement in [18] resembles the inter-
pretation for conventional coding techniques, which states that a
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code with minimum pair-wise Hamming distance can tol-
erate around errors. However, inequality (14) hints that
a larger than instead of may be nec-
essary for an (identical) fault-tolerant sensor system due to the
local classification inaccuracy. Thus, in the worst case, where
the fusion center has no information on both the sensor fault
types and indices of faulty sensors, the number of faulty sensors
allowable for the codes in Table I (see Section VI-C) is only
two-thirds of as on an
average in this table. Inequality (14) also interestingly indicates
that for an identical sensor system, the worst case fault-tolerance
requirement has nothing to do with the link noise. Inequality
(14) will reduce to the heuristic constraint of when
all the misclassification probabilities become zero (in which
case for , and hence
regardless of the codes adopted).

Summarizing the above discussion, we may define the fault-
tolerance capability of a DCFECC code as the maximal number
of faulty sensors allowable subject to the validity of (12) as par-
allel to the usual definition of error-correcting capability (i.e.,

) of block codes ([13, p. 65]). As a consequence of the
definition, a sequence of DCFECC codes guarantee to have van-
ishing fusion error as goes to infinity if the number of faulty
sensors is always restricted within the fault-tolerance capabili-
ties of these codes. The guarantee to have asymptotic zero-fu-
sion-error is analogous to that in digital communication, when
the number of errors is less than the error-correcting capabili-
ties of concerned block codes, error-free transmission of these
codes is guaranteed. Based on this definition, the fault-tolerance
capability of a DCFECC code is equal to
for identical sensor systems.

In the next section, we will set the target fault-tolerance capa-
bility as an auxiliary constraint, in addition to the minimization
of (5), during the search of a fault-tolerant DCFECC code.

V. COMPUTER SEARCH OF DCFECC CODES

Computer search for a DCFECC code based on the minimum
probability-of-fusion-error criterion for a large sensor network
system is infeasible due to the prohibitive algorithmic com-
plexity even by the simulated annealing or the cyclic column
replacement algorithms recommended in [18]. However, a large
sensor network that consists of either a large number of sensors
or a large number of hypotheses under classification may still be
encountered in practice. This raises the research issue on how
to find a DCFECC code that performs well for a large sensor
network.

At a first glance, one may think that the minimization of
defined in Corollary 1 is a good alternative criterion for code
search for a large sensor network. Yet, a simple example with

and
indicates that the code matrix that minimizes the resultant

should satisfy and , and can be
shown straightforwardly not to be the most fault-tolerant design

of for . It can be
conjectured from the error bound in (6) that a good criterion to
be minimized should be a function of both and . The
above example shows the validity of the conjecture, and the code
matrix with does minimize the
error bound .

A better criterion than , especially for a non-
identical sensor network in which some sensors or some hy-
potheses have much larger than the others, is the upper prob-
ability bound in (5). A simple calculation shows that the number
of exclusive-OR, multiplication and addition operations required
to determine (5) for a selected code matrix is of the order

.2 However, the required operations for the determina-
tion of that are necessary for the determination of the
minimum Hamming distance fusion error, which can be closely
approximated as

(15)

where

and

is the decision partition for hypothesis , are of the order
. This order is much greater than that required by

the criterion of (5). Simulations in the next section show that
the DCFECC code obtained by minimizing (5) performs almost
identically to the optimal DCFECC code that directly mini-
mizes the fusion error. This justifies the feasibility of the use of
criterion (5), in terms of both complexity and performance, for
a large sensor network.

As far as the fault tolerance capability is concerned, another
condition given in (12) should also be incorporated to constrain
the minimum required in the code search process. Without
this minimum constraint, the code that minimizes (5) may
end up with limited fault-tolerance capability. Specifically, for
the setting in Section VI-A, the code matrix obtained
by minimizing (5) without the minimum constraint turns
out to have a small (cf. Table I (see Section VI-C)),
even though it has good pair-wise Hamming distances between
adjacent hypotheses as . Since the

2The calculation of each q given in (4) needs M exclusive-OR operations,
M +1 multiplications, andM additions, and there areNM of q ’s to deter-
mine. Hence, this step requiresO(NM ) operations. It can be shown that with
the availability of fq g , the computation of (5) requires the
same order of operations.
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Fig. 4. Simulated performances of three 8 � 20 codes that minimize (9) without the minimum d constraint. The code search for these three codes are,
respectively, performed at (
 ; 
 ) = (1; 6 dB); (0 dB,1) and (0 dB, 6 dB). The error probabilities in this figure are simulated at 
 = 0 dB.

local classification error for distant hypotheses, such as and
, is very small when no sensors are faulty, it is unnecessary to

provide a large pair-wise Hamming distance between distant hy-
potheses. However, as sensor faults can greatly enlarge the mis-
classification error for distant hypotheses, such code becomes
less robust to sensor misbehaviors.

Hence, in what follows, we provide the search algorithm for
the DCFECC code that minimizes (5) subject to the minimum

constraint in (12) for given system statistics, as well as
sensor network size and number of hypotheses .

1. Initialization. For and ,
assign3

where

and is the probability density function of local ob-
servation at sensor given hypothesis is true.

3Here, the adopted local classification rules are not the system-wide globally
optimal ones as those used in [18], but the locally optimal ones. Note that as the
smallest size of WSNs considered in this paper, i.e., 20 sensors, is still much
larger than the 10-sensor system considered in [18], global optimization of both
local classification rules and the DCFECC code under minimum Hamming dis-
tance fusion becomes computational intractable. Nonetheless, with the tractable
and easy-to-obtain locally optimal classification rules, the desired system per-
formance, as well as the target fault-tolerance capability, can be achieved by de-
ploying sufficient number of sensors, using the approach proposed in this work.

2. For the previously assigned , find
by simulated annealing algorithm the DCFECC code that
minimizes (5) subject to the constraint of (12) for a target
fault-tolerance capability (or equivalently, a target
sensor fault ratio defined as ).

A final note in this section is that according to Lemma 3,
the computational complexity of criterion (5) can be greatly re-
duced if the code search is applied to the simpler identical sensor
system, where the quantities involved in computations are only
the pair-wise Hamming distances.

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we examine the performance and fault-tol-
erance capability of the DCFECC codes that are constructed
through the code search algorithm of the previous section.

A. Identical Sensor System

Assume that each communication link employs an-
tipodal transmission over an AWGN channel; hence,

for , where is
the complementary error function, and is the signal-to-noise
ratio of the communication link. In addition, each local ob-
servation is assumed to be Gaussian distributed with mean

and variance given that hypothesis is true, where
the signal-to-noise ratio for sensor observations, i.e., , is the
square of the minimum difference in these Gaussian means,
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Fig. 5. Simulated performances of the two 8 � 20 codes that respectively minimizes (9) (code 1) and (15) (code 2) at 
 = 0 dB. The code search is performed
for 
 = 0 dB and 
 = 6 dB. Performance bounds for code 1 are also illustrated.

divided by the common observation variance. In this case, the
code search criterion of (5) is reduced to (9).

Take and . We first search for the DCFECC
code that minimizes the minimum Hamming distance fusion
error defined in (15), and compare it with the best code that
minimizes (9) without the minimum constraint. It needs
to be pointed out that the best codes that respectively minimize
(9) and (15) may be different for different target signal-to-noise
ratios (see Fig. 4).4 Here, we choose 0 dB and 6 dB
as the target signal-to-noise ratios during the code search, which
corresponds to and

...
...

...
. . .

...

4One can observe from Fig. 4 that the three 8 � 20 codes obtained for
different target signal-to-noise ratios have different performances. Their
(� ; d ) are (�0:640353;7); (�0:523694;10), and (�0:57259;7),
respectively, for target signal-to-noise ratios (
 ; 
 ) = (1; 6 dB);
(0 dB;1); and (0 dB , 6 dB). As anticipated, the code obtained at target
(
 ; 
 ) = (0 dB;1dB) performs the best at high 
 since its target
signal-to-noise ratios are closest to the operational ones at this range, i.e., 
 =
0 dB and 
 � 8 dB. Additionally, the code for target (
 ; 
 ) = (0 dB,6 dB)
performs only slightly better than the code for target (
 ; 
 ) = (1 dB,6 dB),
and both of them outperform the third code at low 
 . From this figure, we can
infer that the deviation of the target 
 from the operational ones affects the
resultant performance more than that of 
 .

...
...

...
. . .

...

...
...

...
. . .

...

where , and is the standard normal
cumulative distribution function.

As shown in Fig. 5, code 1 and code 2 that are, respectively,
obtained by minimizing (9) and (15), have almost indistinguish-
able performances even when the number of sensors is small.
This is somewhat surprising because the performance bounds
derived based on large deviations technique usually have a vis-
ible difference from the true performance for small sample size.
This implies that the code search criterion (9) is not only much
less complex than criterion (15), but can indeed yield a code
that performs very close to the optimal minimum-fusion-error
code. Furthermore, it can be observed that bounds (3) and (9)
almost coincide with each other for all ranges of . In fact, it
will be shown by subsequent simulations that the agreement be-
tween bounds (3) and (9) is not only true for small network size,
but remains so as network size further increases. A final obser-
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Fig. 6. Simulated performances and performance bounds of the 8 � 600 code that minimizes (9) subject to 10% sensor fault ratio at 
 = 0 dB. The code search
is performed for 
 = 0 dB and 
 = 6 dB. The type of the simulated sensor fault is stuck-at-one.

vation from Fig. 5 is that the fusion error of the obtained code
achieves a floor value of at large . Such an error-floor
phenomenon is due to the existence of the communication link
noise, and the floor value can be reduced when a larger is
employed.

Next, we demonstrate that criterion (9) can be used for code
search for a large sensor network. By taking and

, we search for the DCFECC code that minimizes the
upper probability bound in (9) subject to 10% sensor fault ratio
according to (12). Again, we choose 6 dB and 0
dB during the code search. The and of the obtained
code are, respectively, and . These two values, as
expected, satisfy the minimum constraint with 10% sensor
fault ratio, i.e.,

%

The simulation results and performance bounds for this code are
summarized in Figs. 6 and 7. Note that it is infeasible to perform
the code search for minimum fusion error criterion defined in
(15) for such a large sensor network.

From Fig. 6, we observe again that bound (3) is almost iden-
tical to bound (9), and is about 1.5 dB better than bound (10)
at . This indicates that it is not beneficial in terms of
performance to replace the code search criterion (9) by the more
complex (3), and adopting the simpler (10) as a new code search

criterion may result in a code with degraded performance. Sec-
ondly, the simulated performance for the searched code with
10% stuck-at-one sensor fault ratio almost follows the curve of
its search criterion (9) as we have anticipated, and is only 0.5 dB
inferior to its performance without sensor faults at .
Also illustrated in this figure is that another 0.75-dB perfor-
mance degradation will occur if the stuck-at-one sensor fault
ratio increases up to 20%.

Observations similar to Fig. 6 can be made from Fig. 7
except that the performance degradation from zero fault to 10%
sensor fault ratio is doubled when it is measured in rather in

(specifically, 1 dB in Fig. 7, but only 0.5 dB in Fig. 6). The
3-dB performance difference between bound (9) and bound
(10), when it is measured in , also becomes twice of the
1.5-dB difference for measure at .

Finally, Fig. 8 compares the performances of four codes, re-
spectively, obtained by minimizing bound (9) subject to zero
sensor fault ratio, bound (9) subject to 10% sensor fault ratio,
bound (10) subject to zero sensor fault ratio, and bound (10) sub-
ject to 10% sensor fault ratio. The target signal-to-noise ratios
for these code searches are again 0 dB and 6 dB. We
then gradually increase the number of faulty sensors to examine
the robustness of these four codes. We observe that the code ob-
tained by minimizing (9) subject to 10% sensor fault ratio per-
forms the best when nearly 10% of sensors are faulty, and still
remains the most robust when the number of faulty sensors is
further increased. This result suggests again that bound (9) is a
more suitable criterion to be minimized as far as a fault-toler-
ance WSN is concerned.
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Fig. 7. Simulated performances and performance bounds of the 8 � 600 code that minimizes (9) subject to 10% sensor fault ratio at 
 = 6 dB. The code search
is carried out at 
 = 0 dB and 
 = 6 dB. The type of the simulated sensor fault is stuck-at-one.

B. Nonidentical Sensor System

In this simulation, the sensors are divided into three equal
groups. Each sensor group forms an identical sensor subsystem
as in the previous subsection. The signal-to-noise ratios for the
three groups are, respectively, and

. In other words, some sensors have more accurate
local classification but poor communication links, while some
other sensors may be short in local classification accuracy but
have less noisy communication links. A potential scenario for
the above system configuration is that a group of sensors is
closer to the target but farther from the fusion center, and another
group of sensors is located distant from the target but is near the
fusion center. Again, the code search is performed under
6 dB and 0 dB, and the target sensor fault ratio allowable is
10%. The and of the obtained code are, respectively,

and . The simulation results and performance
bounds for this code are summarized in Figs. 9 and 10, and sim-
ilar conclusions can be drawn as those for the identical sensor
system. As a summary, in both figures, bound (5) coincides with
bound (3), and the performance of the code found with the target
sensor fault ratio follows the curve of its searched criterion (5).
In addition, the performance degradation due to a decrement in

is larger than that due to the same decrement in .
It should be pointed out that although bounds (3) and (5)

(equivalently, bound (9) for the identical sensor system) coin-
cide in the ranges in Figs. 7–10, they actually deviate from each

other when and become much larger.5 For example, when
is large, bound (3) achieves a floor value of

in Fig. 7, while the ultimate floor value for bound (5) (namely,
(9)) equals in the same figure. A more clear differ-
ence in ultimate floor values can be obtained in Figs. 9 and 10,
where bounds (3) and (5), respectively, achieve
and at large in Fig. 9, and, respectively, ap-
proach and at large in Fig. 10. In
addition, the ultimate floor values of bound (6) are

and for Figs. 6, 7, 9,
and 10, respectively. Since these floor values indeed imply ex-
tremely small error performances that are of very minor interest
in practice, we simply neglect the illustration of them in these
figures.

We end this subsection by pointing out that similar observa-
tions can be made when the difference between the best and the
worst sensors is further increased. As an example, by setting
the signal-to-noise ratios, respectively, for the three groups as

and , searching the code
under 8 dB and 0 dB subject to 10% sensor fault

5In Fig. 6, bounds (3) and (5) remain close even when 
 is large. Since q
converges to � as 
 " 1, it can be derived that bounds (3) and (5) (namely,
(9)) actually achieve the same floor value of

1

M
(1� (1� 2�) ) = 1:79� 10

when � = � for all 1 � j � N .
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Fig. 8. Simulated performances of four 8 � 100 codes that minimizes bound (9), (10), (9) subject to 10% sensor fault ratio and bound (10) subject to 10% sensor
fault ratio. The code search is performed at 
 = 0 dB and 
 = 6 dB. The type of the simulated sensor fault is stuck-at-one.

Fig. 9. Simulated performances and performance bounds of the 8 � 600 code that minimizes (5) subject to 10% sensor fault ratio at 
 = 0 dB. The code search
is performed at 
 = 0 dB and 
 = 6 dB. The type of the simulated sensor fault is stuck-at-one.
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Fig. 10. Simulated performances and performance bounds of the 8 � 600 code that minimizes (5) subject to 10% sensor fault ratio at 
 = 6 dB. The code
search is performed at 
 = 0 dB and 
 = 6 dB. The type of the simulated sensor fault is stuck-at-one.

Fig. 11. Simulated performances and performance bounds of the 8�600 code that minimizes (5) subject to 10% sensor fault ratio at 
 = 0 dB. The code search
is performed at 
 = 0 dB and 
 = 8 dB. The type of the simulated sensor fault is stuck-at-one.
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Fig. 12. Simulated performances and performance bounds of the 8� 600 code that minimizes (5) subject to 10% sensor fault ratio at 
 = 8 dB. The code search
is performed at 
 = 0 dB and 
 = 8 dB. The type of the simulated sensor fault is stuck-at-one.

TABLE I
LIST OF EXPONENTS, � AND d FOR THE BEST CODES THAT MINIMIZE (9) IN FIG. 13

ratio yields Figs. 11 and 12. The and of the obtained
code are, respectively, and . It can then be ob-
served the two figures that the results due to a larger difference
in signal-to-noise ratios between the best and the worst sensors
are actually very similar to those limited to 6-dB difference.

C. Fusion Error Versus Network Size and Number of
Hypotheses

In this subsection, the best codes for the identical sensor
system specified in Section VI-A are determined for different

network sizes under 6 dB, and 0 dB.
Since what we are mainly concerned with is the performance
trend with respect to the network size, no minimum con-
straint is set in this code search. Also simulated is the relation
between resulting fusion error and number of hypothesis
under fixed . The results are summarized in Figs. 13
and 14.

We observe from Fig. 13 that the performance bounds for the
best codes decrease exponentially with respect to the network
size , which hints that the true performances of the found
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Fig. 13. Simulated performances and performance bounds for the family of best codes that minimize (9). The code search is performed at M = 8;
 = 0 dB,
and 
 = 6 dB.

TABLE II
LIST OF � AND d FOR THE BEST CODES THAT MINIMIZE (9) IN FIG. 14

DCFECC codes should at least follow the same trend of expo-
nential decay. As shown in Table I, the exponents for the simu-
lated performances, bound (9) and bound (10) are, respectively,

and on an average. Also listed in Table I
are the and for these searched codes. The list indi-
cates that for the best code is almost independent of the

network size, and remains around for most . In addi-
tion, increases linearly with respect to .

Fig. 14 summarizes the simulated relationship between
fusion error and the number of hypotheses. Recall that the
code rate of an code matrix is conventionally de-
fined as . Thus, the code rates of the
DCFECC codes simulated previously are prohibitively small
when they are compared with the code rates of the traditional
error-correcting codes. Since the traditional error-correcting
codes with larger code rates (or equivalently, larger )
can still yield a good (e.g., there exists rate-
Bose–Chaudhuri–Hocquenghem (BCH) code with
[15, p. 438]), it is not surprising to obtain that at ,
the fusion error only mildly increases with respect to when

. Even with a scale of exponentially increasing up
to , the growth rate of the fusion errors only sightly increases.
It can be observed from Table II that the of the best codes
that minimize (9) does not tend to decrease in for
(as it should do for very large ). Again, remains almost
constant for all , and has the average around . This
result indicates that the number of hypotheses for the DCFECC
codes can actually be of an exponential order in the number of
sensors (specifically, ).

VII. CONCLUSION

The envisioned use of sensor networks for fault-tolerant clas-
sification applications in a harsh environment calls for the de-
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Fig. 14. Simulated performances and performance bounds for the family of best codes that minimize (9). The code search is performed at N = 100;
 = 0 dB,
and 
 = 6 dB.

Fig. 15. Equivalent serial-connected binary channel model specifically for wireless sensor networks. The channel noise fn g for memoryless BSC is inde-
pendent and identically distributed with Prfn = 1g = �. The transition probability Prfu jc g is given by (16), and is a function of the codebook CCC .

sign of collaborative classification using coding theory, e.g., the
DCFECC approach with minimum Hamming distance fusion.
In this paper, we have analytically characterized its performance
in both fault-free and faulty situations. Also, characterized is the
fault-tolerance capability of a DCFECC code, which is subse-
quently used together with the newly proposed code search cri-
terion to find the code with the desired fault-tolerant robustness.
Our results indicate, as anticipated, the strong relation between
the fault-tolerance capability and the pair-wise Hamming dis-
tances of a DCFECC code. Although we mostly emphasize that
our code construction approach is specifically suitable for net-
works with a large number of sensors owing to its simplicity, the
simulation result shown in Fig. 5 implies its suitability in terms
of performance for networks with only tens of sensors.

The coding problem considered in this paper can actually
be transformed into one for the memoryless binary-symmetric
channel (BSC) with unreliable bit-by-bit postulate encoders as
shown in Fig. 15, if the link noises have common marginal dis-
tribution. We can further consider the memoryless BSC channel
with unreliable bitwise postulate encoders as a serial connec-
tion of two binary channels, in which the first channel suffers
code-dependent noises that give

(16)
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and the second channel is the memoryless BSC channel. The
case of sensor faults under the equivalent channel model be-
comes that of turning independent of (and hence, code
independent) without notifying the fusion center. Our results
then indicate that the constraint that the number of code-inde-
pendent bits in (i.e., the number of faulty sensors) is less
than is sufficient to guarantee a vanishing de-
coding error for such a serially connected binary channel. This
bound is derived based on the pessimistic view when both in-
dices of faulty sensors and sensor fault types are unknown to the
fusion center, or equivalently, the decoder is aware of neither the
index of every faulty bit nor its resultant code-independent
distribution. In the extreme case that and are completely de-
pendent, which should occur when for every

, the constraint reduces to the conventional
for coding techniques since as we have an-

ticipated. This observation hints that in a channel suffering from
code-dependent noises, a code that makes (channel output)
and (channel input) more “dependent” (and thus, the channel
output has more information about the input) is expected to
be a better and more robust code, which is exactly the under-
lying concept behind the Shannon baptized “channel capacity.”
It would be interesting to research along this line, and determine
the capacity of the postulate code-dependent channels.

APPENDIX

A. Proof of Lemma 1

1) Property of : is convex since it is the
pointwise supremum of a collection of affine functions. Also,

because for . By Jensen’s
inequality

which implies . Hence, gives its min-
imum value at .

2) Support Line of : Let be the sup-
port line of the convex , which passes through the point

. The convexity of and imply that
, and

3) Probability Bound:

B. Proof of Lemma 2

Let , and note that .
Therefore, the assumption of the lemma is equivalent to

.
The validity of the lemma for can be proved by

Jensen’s inequality in terms of the upper bound in (1) as follows:

where the last equality takes the optimizer

for

In case , we have and

C. Proof of Lemma 3

Under the assumption of an identical sensor system

Thus
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Accordingly

and the lemma is verified.
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