
1514 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 5, SEPTEMBER 1993

Efficient Priority-F irst Search Max imum-Likelihood
Soft-Decision Decoding of L inear Block Codes

Yunghsiang S. Han, Student Member, IEEE, Carlos R. P. Hartmann, Fellow, IEEE, and Chih-Chieh Chen, Member, IEEE

Abstract- In this paper we present a novel and efficient
maximum-likel ihood soft-decision decoding algorithm for linear
block codes. The approach used here converts the decoding
problem into a search problem through a graph that is a trellis
for an equivalent code of the transmitted code. A general ized
Dijkstra’s Algorithm, which uses a priority-first search strategy,
is employed to search through this graph. This search is guided
by an evaluation function f def ined to take advantage of the
information provided by the received vector and the inherent
propert ies of the transmitted code. This function f is used to
reduce drastically the search space and to make the decoding
efforts of this decoding algorithm adaptable to the noise level.
For example, for most real channels of the 35 000 samples tried,
simulation results for the (128,64) binary extended BCH code
show that the proposed decoding algorithm is fifteen orders of
magni tude more efficient in time and in space than that p roposed
by Wolf. Simulation results for ‘the (104, 52) binary extended
quadrat ic residue code are also given.

Index Terms- block codes, decoding, Dijkstra’s algorithm,
maximum-likelihood, priority-first search, soft-decision, trellis

I. INTRODUCTION

T HE use of block codes is a well-known error-control
technique for reliable transmission of digital information

over noisy communication channels. Linear block codes with
good coding gains have been known for many years; however,
these block codes have not been used in practice for lack of
an efficient soft-decision decoding algorithm.

This paper deals with the maximum-likelihood soft-decision
decoding of linear block codes. By maximum-likelihood de-
coding (MLD), we mean the minimization of the probability
of decoding to an incorrect codeword when all codewords
have equal probability of being transmitted. By soft-decision
we mean the use of real numbers (e.g., the analog output of
filters matched to the signals) associated with every component
of the codeword in the decoding procedure. Soft-decision

Manuscript received December 21, 1991. This work was supported in part
by the National Science Foundation under Grant NCR-9 205 422. The work
of C. C. Chen was done while he was working under the Syracuse Center
of Computational Science Research Experience for Undergraduates Program
grant from the National Science Foundation NSF-REU award CDA-9 100 833.

Y. S. Han was with the School of Computer and Information Science at
Syracuse University, Syracuse, NY 13244. He is now with the Department
of Electronic Engineering, Hua Fan Institute of Humanities and Technology,
Taipei Hsien, Taiwan, R.O.C.

C. R. P. Hartmann is with the School of Computer and Information Science
at Syracuse University, Syracuse, NY 13244.

C. C. Chen was with the Department of Electrical and Computer Engineer-
ing, The Johns Hopkins University, Baltimore, MD 21218. He is now with
the Department of Computer Science, University of California, Los Angeles,
CA 90024.

IEEE Log Number 9211655.

decoding can provide about 2 dB of additional coding gain
when compared to hard-decision decoding.

Several researchers [6], [28], [24] have presented techniques
for decoding linear block codes that convert the decoding
problem into a graph-search problem on a trellis derived from
the parity-check matrix of the code. Thus the MLD rule can
be implemented by applying the Viterbi Algorithm [27] to this
trellis. In practice, however, this breadth-first search scheme
can be applied only to codes with small redundancy or to codes
with a small number of codewords [21].

In this paper we present a novel maximum-likelihood soft-
decision decoding algorithm for linear block codes. This
algorithm uses a generalization of Dijkstra’s algorithm [22]
to search through the trellis for a code equivalent to the
transmitted code. The use of this priority-first search strategy
for decoding drastically reduces the search space and results in
an efficient optimal soft-decision decoding algorithm for linear
block codes. Furthermore, in contrast with Wolf’s algorithm
[28], the decoding efforts of our decoding algorithm are
adaptable to the noise level.

In Section II we review maximum-likelihood decoding of
linear block codes and describe a trellis for a linear code. In
Section III we give a short description of Dijkstra’s Algorithm
and its generalization. In Section IV we present our decoding
algorithm. Simulation results for the (104,52) binary extended
quadratic residue code and the (128,64) binary extended BCH
code are given in Section V. Concluding remarks are presented
in Section VI.

II. PRELIMINARIES

Let C be a binary (n, k) linear code with generator matrix
G, and let c= (CO, cl,. . . , c,-1) be a codeword of C trans-
mitted over a time-discrete memoryless channel with output
alphabet B. Furthermore, let T = (~0, ~1,. . . , T,-i), rj E B
denote the received vector, and assume that Pr(rj]ci) > 0
for rj E B and c; E GF(2). Let 2 be an estimate of the
transmitted codeword c.

The maximum-likelihood decoding rule (MLD rule) for a
time-discrete memoryless channel can be formulated as

set e = ce where ce = (tea, ccl, . . . , ce(,-1)) E G and
n-1 n-l

n Pr(TjICej) > n Pr(rjlcij) for all
j=o j=o

G = (Go, Cd,. . .) Ci(,-1)) E c.

0018-9448/93$03.00 0 1993 IEEE

HAN et al.: ML SOFT-DECISION DECODING OF LINEAR BLOCK CODES 1515

Following the formulation given in [17], we define the bit procedure’to reduce the number of states in the trellis for C
log-likelihood ratio of rj as P41.

Wrj IO)
In order to avoid traversing the entire trellis, a different

” = In Pr(rj]l) ’
search strategy-such as the priority-first search-must be
employed. In the next section we present a generalization

Furthermore, let 4 = (40, $1,. . . , &..I). By [17, Theorem 51 of the well-known Dijkstra’s algorithm, which uses such a
the MLD rule can be written as strategy [22].

set 2 = ce, where cl E C and

TX-1 n-1

C (4j - (-l)c”)2 I C ($j - (-l)“j)” for all ci E C.
j=o j=o

(1)
In the special case where the codewords of C have equal
probability of being transmitted, the MLD rule minimizes error
probability.

We now give a short description of a trellis [l] for the code
C where the search will be performed. Let H be a parity-check
matrix of C, and let hi, 0 _< i < n be the column vectors of
H. Furthermore, let c = (CO, cl, . . . , ~~-1) be a codeword of
C. W ith respect to this codeword, we recursively define the
states St, -1 _< t < n, as

III. GENERALIZED DIJKSTRA’S ALGORITHM

Dijkstra’s Algorithm (DA) [ll] is usually employed to find
a minimum cost path from the start node to every other node
of a weighted directed graph (in our case, a trellis). In this
case the algorithm visits all the nodes in the graph, but can
easily be modified to find a minimum cost path from the start
node to the goal node, that is, an optimal path. This modified
algorithm may not visit all the nodes in the graph. We now
give a short description of this algorithm.

As in Wolf’s algorithm, a node in the trellis may be visited
twice. Thus, for each visited node m, we store the path P’,
from the start node to node m with minimum cost g(m)
found so far by the algorithm. That is, if P’, has labels

e
Q),;iJl,..., ve, then g(m) = c($i - (-1)‘i)2. Note that

and

s-1 = 0 i=o
the value of g(m) may be updated, since the minimum cost
path from start node to node m may change as the search

t
St = St-1 + ctht = Cc,hi, 0 5 t < n.

i=o

Clearly, ~~-1 = o for all codewords of C. The above recursive
equation can be used to draw a trellis diagram. In this trellis,
s-1 = 0 identifies the start node that is at level -1; s+i =
0 identifies the goal node that is at level n - 1; and each state
.str 0 5 t < n - 1 identities a node at level t. Furthermore,
each transition (arc) is labeled with the appropriate codeword
bit ct. Thus, there is a one-to-one correspondence between
the codewords of C and the sequences of labels encountered
when traversing a path in the trellis from start node to the goal
node. A more detailed description of a trellis for a linear block
code can be found in [28]. Note that the trellis defined here
corresponds to the expurgated trellis of [28].

In order to implement the MLD rule using the trellis for
C, we need to associate a cost to every arc in this trellis.
Therefore, the cost of the arc from St.-i to st = St-1 + c&t is
assigned the value (& -(-l)ct)2. The solution of the decoding
problem is thus converted to finding a path from the start node
to the goal node, that is, a codeword c = (CO, cl, . ..,cn-1)

n-1

such that c(+i - (-l)ci) 2 is minimum among all paths from
i=o

the start node to the goal node. Such a path is denoted as an
optimal path.

Wolf’s algorithm [28] finds an optimal path by applying the
Viterbi algorithm [27] to search through the trellis for C. Thus,
this decoding algorithm uses a breadth-first search strategy to
accomplish this search. The time and space complexities of
Wolf’s algorithm are of O(n x min(2”,2”-L)) [lo], since
it traverses the entire trellis. However, Forney has given a

progresses.
It will be convenient to introduce the notion of a successor

operator that is applied to a node. This operator, when applied
to a node m, (1) gives all the immediate successors of node
m; (2) for every immediate successor of node m, checks
if such a node was visited before; (3) for every immediate
successor of node m, stores the minimum cost path from the
start node to this node and the cost of this path found so far by
the algorithm. We call this process of applying the successor
operator to a node expanding the node.

DA maintains two lists of nodes of the given trellis, namely,
list CLOSED and list OPEN. List CLOSED contains the set of
nodes that were expanded. List OPEN contains the set of nodes
that were visited, but not expanded. The algorithm selects node
m on list OPEN with minimum g(m). It expands this node and
inserts it into list CLOSED. It inserts into list OPEN only the
immediate successors of node m that have not been expanded
before. When the algorithm selects to expand the goal node it
has found an optimal path.

The correctness of this algorithm is based on the following
fact: When a node is selected for expansion, the algorithm
has already found a minimum cost path from the start node to
this node [ll] and, consequently, we do not need to update the
lowest cost path‘from the start node to any node that is already
on list CLOSED. Furthermore, when expanding node m, we
do not need to update the lowest cost path from the start node
to any descendant of an immediate successor of node m that
is already on list CLOSED.

The problem of determining whether a newly visited node is
on list OPEN or list CLOSED can be computationally expen-
sive, and we may therefore decide to avoid making this check,
in which case the search tree may contain several repeated

1516 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 5, SEPTEMBER 1993

nodes, and list CLOSED does not need to be maintained. These
node repetitions lead to redundant successor computations and
there is a trade-off between the computation cost of testing
for repeated nodes and the computation cost of generating a
larger search tree. Note that in DA, testing for repeated nodes
is performed.

As pointed out before, DA associates to every node m
visited by the value g(m). This value can be treated as an
estimate of the cost of the minimum cost path from the start
node to node m. However, in many graph search problems
we may be able to obtain an estimate, h(m), of the cost
of the minimum cost path from node m to the goal node.
Thus f(m) = g(m) + h(m) can be treated as an estimate
of the minimum cost path from the start node to the goal
node that goes through node m. We will impose h(s,-1) = 0
on the heuristic function since s+i is the goal node and
no estimation is necessary for it. The Generalized Dijkstra’s
Algorithm (GDA) uses f(m) instead of g(m) to guide the
search through the trellis. Function h is known as a heuristic
function, and function f as an evaluation function [22].

In order to guarantee that GDA finds an optimal path, we
impose the following condition on the heuristic function h.

Condition: For all nodes rni and rnj such that node rnj is
an immediate successor of node mi,

h(w) 5 h(mj) + c(mi, mj), (2)

where c(m;, mj) is the arc cost between node rni and node
mj.

The condition guarantees that when a node is selected for
expansion GDA has already found a minimum cost path from
the start node to this node. Thus when GDA selects to expand
the goal node, it has already found an optimal path. The proof
that GDA finds an optimal path is given in Appendix A.

From now on we will assume that the function h used in
GDA satisfies the condition.

The following results of GDA will be used in the design of
our decoding algorithm. Proofs of these results can be found
in Appendix B.

Result 1) For every node m,

h(m) I h*(m),

where h*(m) is the actual cost of a minimum cost path from
node m to the goal node.

Result 2) If node mi is selected for expansion, then
f(m) 5 f(q), h w ere rnj is an immediate successor of
node mi, which is not on list CLOSED.

Result 3) Let P be a path found by GDA from the start
node to the goal node with cost UB. GDA still finds an
optimal path if it removes from list OPEN any node m for
which f(m) 2 UB.

From the description of GDA it is clear that the most
important factor in the efficiency of GDA is the selection
of the heuristic function h and, consequently, the evaluation
function f.

Finally, we remark that GDA is a particular case of Algo-
rithm A* that is widely used in Artificial Intelligence search
problems [22]. Algorithm A* finds an optimal path, but it

imposes less restriction on the heuristic function h than we
have imposed. Furthermore, Algorithm A* can be considered
as a branch-and-bound type algorithm. In general, it is difficult
to give any idea of how well a branch-and-bound algorithm
will perform on a given problem. Nevertheless, the technique
is sufficiently powerful that it is often used in practical
applications [7].

IV. DECODING ALGORITHM

Our decoding algorithm uses GDA to search through a trellis
for a code C* that is equivalent to code C. C* is obtained from
C by permuting the positions of codewords of C in such a way
that the first k positions of codewords in C* correspond to the
“most reliable linearly independent” positions in the vector 4.
Let G* be a generator matrix of C* whose first Ic columns
form the k x Ic identity matrix. The time complexity of the
procedure to construct G* is O(k2 x n); however, many of
the operations performed during this construction can be done
in parallel. In this case, the time complexity becomes O(kx n).

In our decoding algorithm the vector I$* = (&, &, . . . ,
$Lpl) is used as the “received vector.” It is obtained by
permuting the positions of I$ in the same manner in which
the columns of G are permuted to obtain G*.

GDA, guided by an evaluation function f, searches through
a trellis for C*. As noted before, function f is defined for
every node m in the trellis as

f(m) = g(m) + h(m),
where g(m) is the lowest cost path from the start node to node
m found so far by the algorithm.

We now define our heuristic function h, which satisfies the
condition. In order to define a function h that is a “good”
estimator of h* we must use properties of the linear block
code that are invariant under any permutation of the positions
of the codewords.

Let HW = {wi 10 5 i 5 I} be the set of all distinct
Hamming weights that codewords of C may have. Further-
more, assume wa < wi < . . . < W I. Our heuristic function
is defined to take into consideration the linear property of C*-
and that the Hamming distance between any two codewords
of C* must belong to HW.

Let c* be a given codeword of C*. Our function h will
be defined with respect to c*, which is called the seed of the
decoding algorithm.

1) For nodes at level f?, -1 2 e < Ic - 1:
Let m be a node at level l, and let Be, isi, . . . , cg be the labels
of the lowest cost path P’, from the start node to node m
found so far by the algorithm. We now construct the.set, T(m),
of all binary n-tuples w such that their first ! + 1 entries are
the labels of P’, and dH(w, c*) E HIV, where dH(Z, y) is
the Hamming distance between x and g. That is,

T(m) = {wlw = (‘iio,Fl, . . . ,tie,we+l, . . . , w,-I)
and dH(w,c*) E HIV}.

Note that T(m) # 0. This can easily be seen by considering
the binary Ic-tuple u = @a, Vi, . . . , Fl, 0, . . . ,O) and noting
that u. G* E T(m).

HAN et al.: ML SOFT-DECISION DECODING OF LINEAR BLOCK CODES

We now define function h as

-1 n-1

h(m) = w$~) c ((bf - (-1)“q2 .

is+1 1

2) For nodes at level e, Ic - 1 5 e < n: Because of the linear
property of C* and the fact that the first k columns of G* are
linearly independent, there is only one path from any node
at level k - 1 to the goal node. Furthermore, we can easily
determine the labels vi, w;+~, . . . , ~;-i of this path by using

n-1

G* and calculate its cost as c (4; - (-1)“:) 2. In view of
i=k

the above fact, we define function h as
n-l

h(m) = c (4: - (-l)‘:z)2,
id+1

where w;+i, v;+~, . . . , v:-~ are the labels of the only path P,
from node m to the goal node. Note that if node m is the goal
node, then h(m) = 0. Furthermore, h(m) = h*(m) since there
is only one path from node m to the goal node and h(m) is
the cost of this path.

The proof that our heuristic function satisfies the condition
is given in Appendix C.

For a given seed c*, the evaluation function f is f(m) =
g(m) + h(m). It is very important that the time complexity
for calculating h(m) be “reasonable,” for otherwise the time
taken by the decoding algorithm is spent calculating h(m),
even though there are only a few nodes to be visited in the
trellis. In Appendix D we present an algorithm, whose time
complexity is O(n), to calculate h(m) for node m at level
l, -1 5 & < k - 1.

We now give a property of our heuristic function h that will
be used to speed up the decoding procedure. The proof of this
property is given in Appendix E.

Property: For a given seed c*, if nodes mei and me2 are
immediate successors of node mj, then

f(mel) =f(mj) or f(me2) =f(mj), where -1 <j < L-2.

We now give a geometric interpretation of f(m) for a node
m at level !, -1 < e < Ic - 1. Consider the set of all n-
tuples over the real numbers. Fig. 1 depicts c*, 4*, and all the
points w = (wa,wi,... , II,-1) whose entries are 0 and 1 and
dH (c*, w) E HW. For calculating f(m), we consider the low-
est cost path P’, from the start node to node m found so far by
the algorithm. Let ;iio, ?J . . . , ?7l be the labels of P’,. Now we
consider only those points w defined above whose first .!+ 1 en-
tries are Vu,Zi,. . . , Ft. In Fig. 1 they are indicated by a check
mark. From the points with check marks we select one that

e n-1

minimizes c($f - (-l)“i)2+ c (4: - (-l)Vi)2. This
i=O i=e+1

point is w’ = (Ve,??i, . . . ,Ve, wi+i, . . . , wk-i) in Fig. 1. Thus

f(m) = &; - (-1)y2+ A5 (c#J: - (-l)“:)2.

i=O id?+1 .
It may be impossible to determine the set HW for some

block codes; however, our algorithm will still find an optimal
path even if in the computation of function h the algorithm

4* = (&M . ..&-l)

w’= (~0,~1,...,,211,w’1+1;.. tJ’) J?Z-1

f(m) = Cfzo(qbT - (-l)“<)’ + ~~~i+l($~ - (-1)“:)”
Fig. 1. Geometric interpretation of f(m)

considers all the Hamming weights of any superset of HW.
If the optimal path is unique, then the decoding algorithm
using HW will never expand more nodes than an algorithm
using a superset of HW. This result is a consequence of
the following property of GDA: If there are two evaluation
functions fl(m) = gi(m) + hi(m) and f2(m) = ga(m) +
ha(m) satisfying hl (m) < hz(m) for every node m, the GDA
using evaluation function fa will never expand more nodes
than the GDA using evaluation function fi [22]. Furthermore,
if there exists a unique optimal path, then the above results
hold when hi(m) 5 hz(m) is satisfied for every node m.

We now present some properties of the decoding algorithm
that can be used to speed up the decoding procedure. By
the property, when our algorithm expands a node m at level
e < ,4 - 2, we need to compute the value of function f for
only one of its successors, because the value of function f
for the other successor is equal to that of node m and we can
easily determine which successor has the value f(m). Thus
our algorithm is a depth-first search type algorithm.

Let node ml at level e < Ic - 2 be the node on list OPEN
n-1

selected for expansion. Let h(ml) = c (4: - (-l)“i)2.
i=e+1

Consider now the path P,,,,, from node ml to node ma at
level k - 2, whose labels are we+l, we+z, . . . , v&s. It is easily
seen by the property and the definition of our function h that
the value of function f for every node in path P,, ,m2 is equal
to f(mi). Furthermore, by Result 2 we can conclude that path
P ml,m2 will be the path followed by the algorithm. Thus, we
do not have to calculate the values of function f for the nodes
of this path, which reduces considerably the time complexity
of the algorithm.

Our algorithm will search the trellis only up to level k - 1,
since we can construct the only path from any node m at level

1518 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 5, SEPTEMBER 1993

L - 1 to the goal node using G*. The labels of the combined
paths from the start node to node m, and from node m to the
goal node, correspond to a codeword. So the cost of this path,
which is equal to f(m), can be used as an upper bound on the
cost of an optimal path. By Result 3, we can use this upper
bound to reduce the size of list OPEN.

The trellis search can be stopped at any time when we
know that a generated codeword cg =

(
c:~, c&, . . . , c;(~-~) >

satisfies Inequality 1. The following criterion can be used to
indicate this fact.

71-l

Criterion: If h(s-1) = c (45 - (-l)‘;~)~, where
j=o

h(s-1) is calculated with respect to seed c;, then cz satisfies
Inequality 1.

Recall that s-1 is the start node.
The validity of the criterion is based on the fact that, since

n-1

C* C T(s-i), then h(mbis-1) 5 c (q5j’ - (-l)czj)2
i=o

for any mbit,* E mbiC*. Note that ihe decision criterion
introduced in [25] is equivalent to the criterion.

It is important to mention that seed c* does not need to be
fixed during the decoding of I$*. When seed c* is allowed to
change, we have an adaptive decoding procedure. In order to
avoid increasing computation time when the seed is changed
at some stage of the decoding procedure, we may not want to
recalculate the values of function h with respect to this new
seed for every node on list OPEN. Under these circumstances,
nodes on list OPEN may have values of function h calculated
with respect to different seeds; thus we can no longer guarantee
that Inequality 2 will be satisfied, and we cannot assure that
when a node is selected for expansion the decoding algorithm
has already found a minimum cost path from the start node
to this node. Therefore, the decoding algorithm may not find
an optimal path, but by not checking for repeated nodes it is
ensured that the decoding algorithm will find an optimal path.
This can easily be seen, since the procedure will now generate
a decision tree, and h(m) 5 h*(m) for every node of the
tree, independently of the seed used to compute h(m). Thus,
f(m) < g(m) + h*(m). As the procedure is now generating a
decision tree, the cost of the minimum cost path from the
start node to the goal node that goes through node m is
g(m)+h*(m). If we do, not check for repeated nodes, then the
adaptive version of GDA will never delete all optimal paths
during the search procedure.

V. SIMULATION RESULTS FOR THE AWGN CHANNEL

In this section we present simulation results for the (104,52)
binary extended quadratic residue code and the (128,64)
binary extended BCH code when these codes are transmitted
over the additive white Gaussian noise (AWGN) channel. We
assume that antipodal signaling is used in, the transmission so
that the jth components of the transmitted codeword c and
received vector r are

cj = (-l)“jJE and rj = (-l)cjfi+ ej,

respectively, where E is the signal energy per channel bit and
ej is a noise sample of a Gaussian process with single-sided
noise power per hertz No. The variance of ej is No/2 and
the signal to noise ratio (SNR) for the channel is y = E/No.
In order to account for the redundancy in codes of different
rates, we used the SNR per transmitted information bit yb =
&/No = yn/k: in our simulation. For the AWGN channel,
Imbiq5 = *T [17], so we can substitute r(r*) for +(4*) in
our decoding algorithm.

We do not know HW for these two codes, so we use a
superset for them. For (104,52) we know that dmin = 20 and
that the Hamming weight of any codeword is divisible by 4
[19]. Thus for this code the superset used is (~1 (X is divisible
by 4 and 20 2 x 5 84) or (X = 0) or (x = 104)); for
(128,64), the superset used is {XI (x is even and 22 < x <
106) or (x = 0) or (X = 128)}, since this code has dmin = 22.

In the implementation of our decoding algorithm we decided
not to check for repeated nodes. In this situation the graph
becomes a decision tree, thus we need not keep list CLOSED.
Furthermore, list OPEN is always kept ordered according to
the values f of its nodes.

If we assume that, 1) the time complexity of the algorithm
that constructs G* is O(k x n) (implemented by performing
operations in parallel), 2) the data structure used to implement
list OPEN is a B-tree [26], and 3) the time complexity of
the algorithm that constructs the codeword u . G* is O(n)
(implemented by performing the operation in parallel), then
the time complexity and the space complexity of our algorithm
are O(n x N(r)) and 0(n x M(r)), respectively, where

N(r) = the number of nodes visited during the decoding
of r;

M(r) = maximum number of nodes stored on list OPEN
during the decoding of r.

The values of N(r) and M(r) will strongly depend upon
SNR. Up to now we do not have a “good” estimator of
these values; however, they are upperbounded by 2”+l - 1. In
the worst case, therefore, the time and space complexities of
our algorithm are O(n x 2”), which are, under the condition
k I (n - k), equal to those of Wolf’s algorithm [28], which
are O(n X min(2k,2n-L)) [lo].

Since our decoding algorithm will generate a decision tree,
we have implemented its adaptive version without compro-
mising its optimality. The seed c* is updated according to
the following rule: For every codeword CT generated during
the decoding of r*, if the value of h(s-1) calculated with
respect to CT is greater than the value of h(s-1) calculated
with respect to c*, then set CT as the seed. The rationale behind
this rule is that, for any node m, h(m) 2 h(s-1) whenever
these values are calculated with respect to the same seed. We
remark here that we did not recalculate the values of function
f with respect to the ‘new seed for the nodes on list OPEN.
Simulation results attested to the fact that the efficiency of this
decoding algorithm depends strongly on the selection of the
initial seed.

HAN er al.: ML SOFT-DECISION DECODING OF LINEAR BLOCK CODES 1519

TABLE1 TABLE III
SIMULATION FOR THE (104.52) CODE DISTRIBUTION OF N(r), C(r), AND M(r)

FOR THE (104,52) CODE FOR ~b = 5 dB

TABLE II
BIT ERROR PROBABILITY AND CODING GAIN FOR THE (104,52) CODE

I I I I I I

/ ‘t’b 1 5dB 1 6dB 1 7dB j 8dB j

pb 2.028 x 5.023 x 1.494 x 3.079 x
lo-lo* IO-14* lo-lS* lo-24*

CG 7.90 8.35 8.80 9.05

Interval

0

Frequencies

N(r) 1 c r) 1 M(r)
34030 1 0 1 34196

i-2000 7 953 1 34994] 801 1
2001-4000 8 2 I 0
4nn14nnn II 1 I 1 n

I
6001-8000 1 0 0

8001-10 000 1 0 1 1
10 001-l? nnn 5 ““” II

II
m ‘ I

I
A ” I

I
m L I

I
18 00140 000 1 3 0

40 001-144 000 3 0 0
more than 144 000 0 0 0

TABLE IV
SIMULATION FOR THE (128,64) CODE

In our implementation the initial seed c; is obtained as
follows. Let u = (~0, ~1,. . . , uk-1) where

andr*=(rz,r; ,..., Tt-r,ri ,..., r$-i).Now,cT)=u-G*.
First, we give simulation results for the (104,52) binary

extended quadratic residue code. Quadratic residue codes are
known to be very good codes that are difficult to decode even
when only hard-decision decoding is employed [4], [8], [5],
[23]. Some quadratic residue codes have been decoded by
using information-set decoding algorithms [3]. However, these
algorithms are suboptimal, that is, they do not implement the
MLD rule. The only two maximum-likelihood soft-decision
decoding algorithms known to us that can be used to decode
the (104,52) code are Wolf’s algorithm [28] and Hwang’s
algorithm [17].

It is difficult to compare the performance of our algorithm
with that of Hwang’s, because he found the subset of code-
words that must be stored for implementing the MLD rule only
for very short codes [17, Table I 1. However, we observe that
the complexities of Wolf’s algorithm are approximately the
same as those of Hwang’s for the codes presented in Table I
of [17]. More evidence of this claim can be obtained by using
the results presented in [9]. We will therefore compare the
performance of our algorithm to that of Wolf’s. We will assume
for comparison purposes that the time and space complexities
of Wolf’s algorithm are of O(n x min(2”,2”-“)), since it is
difficult to find, using Forney’s procedure [14], a trellis with
minimum number of states for the (104,52) code.

Simulation results for the (104,52) code for yb equal to 5
dB, 6 dB, 7 dB, and 8 dB are given in Table I. These results
were obtained by simulating 35 000 samples for each SNR.
Note that the time and space complexities of Wolf’s algorithm
are proportional to 252 M 4.50 x 10i5, where

1) N(r) = the number of nodes visited during the decoding
of r;

2) C(T) = number of codewords constructed in order to
decide on the closest codeword to r;

3) M(r) = maximum number of nodes stored on list OPEN
during the decoding of T;

4) max = maximum value among 35 000 samples;
5) ave = average value among 35 000 samples;
6) ~b = &/No.
Since during simulation no decoding errors occurred for

any of the above SNR’s, the bit error probability is estimated
using the formula [13]

(3)

where nd is the number of codewords of Hamming weight
dmin. The value of nd was calculated using the results pre-
sented in [20]. Table II gives an estimate of the bit error
probability and coding gain for above SNR’s.

1) pb = bit error probability;
2) CG = coding gain (dB);
3) * Calculate using (3).

The distributions of N(T), C(T), and M(T) for the (104,52)
code for Tb equal to 5 dB are given in Table III.

We now give the simulation results for the (128,64) code.
Since an algebraic decoder that corrects up to 10 bit errors
can be constructed for this code, the maximum-likelihood soft-
decision decoding algorithm recently proposed in [18] can be
implemented. However, in this paper simulation results are
given only for very short codes up to length 23. Suboptimal
decoding procedures for this code have been proposed in
[12], [3]. Again, we will assume for comparison purposes
that the time and space complexities of Wolf’s algorithm are
of O(n x min(2”,2”-‘)), since it is very difficult to find,
using Forney’s procedure [14], a trellis with the minimum
number of states for the (128,64) code. Note that the time
and space complexities of Wolf’s algorithm are proportional
to 264 M 1.84 x 101'.

Simulation results for the (128,64) code for Tb equal to 5
dB, 6 dB, 7 dB, and 8 dB are given in Table IV. These results
were obtained by simulating 35 000 samples for each SNR.

1520 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39,N0. 5, SEPTEMBER 1993

TABLE V
BIT ERROR PROBABILITY AND CODING GAIN FOR THE(~~~,~~)CODE

Yb 5 dB 6 dB 7 dB 8 dB
pb 1.57 x10-12* 1.71~10-~~* 1.82 ~lO-~l* 1.02 x10-27*

CG 8.85 9.22 9.50 9.70

Table V gives only an estimate of the bit error probability
and coding gain for above SNR’s, because no decoding error
occurred during simulation.

When calculating Pb using (3), the value of 72d = 243840
was taken from [2].

The distributions of N(T), C(T), and M(T) for the (128,64)
code for “/b equal to 5 dB are given in Table VI.

Simulation results for these codes show that for the 35 000
samples tried, a drastic reduction on the search space was
achieved for most practical communication systems where the
probability of error is less than 10T3 (Yb greater than 6.8 dB)
[8], even when the algorithm uses a superset of HW.

In order to verify the contribution of our heuristic function
h to the efficiency of our decoding algorithm, we implemented
DA with our speed-up techniques for the (128,64) code.
Simulation results for 6 dB indicate that for the two samples
that did not satisfy the criterion among the 35 000 samples,
more than 350 000 nodes needed to be stored. On the other
hand, our algorithm needed to store at most 856 nodes to
decode these samples.

Simulation results showed that our adaptive decoding al-
gorithm described in this section is at least one order of
magnitude more efficient in time and space than that proposed
in [15], where the seed is c* = 0 during the entire decoding
procedure.

VI. CONCLUSION

In this paper we have proposed a novel decoding techfiique.
Simulation results for the above linear block codes show that
for the 35 000 samples tried this decoding technique drastically
reduced the search space, especially for most practical com-
munication systems where the probability of error is less than
10e3 (Yb greater than 6.8 dB) [8]. For example, the results of
Table 4 at 6 dB show that, fo; the 35 000 samples tried, in the
worst case this decoding algorithm is approximately 15 orders
of magnitude more efficient in time and space than Wolf’s.

We would like to emphasize here the flexibility of this
decoding algorithm. For example, (1) it is applicable to any
linear block code; (2) it does not require the availability of a
hard decision decoder; (3) in order to make it more efficient
to decode a particular code, we can design a heuristic function
that takes advantage of the specific properties of this code; (4)
any stopping criterion can be easily incorporated into it.

Furthermore, we would like to point out that the algorithm
present in this paper is suitable for a parallel implementation,
one reason being that when calculating h(m) for node m, the
algorithm has determined the labels of the path from node m to
a node at level lc - 2 that it will follow, so the successors of the
nodes in this path can be open simultaneously and processed
independently. This will substantially reduce the idle time of
processors and the overhead due to processor communication;

TABLE VI
DISTRIBUTION OF N(r), C(r), AND M(r)
FOR THE (128,64) CODE FOR yb = 5 dB

Interval

0
l-2000

N(r)
33614
1324

Frequencies
C(r)

0
34988

M(r)
33893
1096

2001-4000 21 2 4
4001-6000 8 2 4
6001-8000 7 0 0

8001-10 000 7 4 0
10 001-18 000 7 2 3
18 00140 000 4 2 0

40 001-218 000 8 0 0
more than 218 000 0 0 0

thus we expect a very good speed-up from a parallel version
of our algorithm.

We remark here that for computing the heuristic function
h we used only one seed. However, we can generalize the
procedure to calculate function h with respect to several seeds.
Details of this approach can be found in [16].

We conjecture that this decoding algorithm will be efficient
for most practical communication systems where the probabil-
ity of error is less than lop3 (yb greater than 6.8 dB). Since
the number of nodes opened during the decoding procedure
is a random variable, in order to verify this conjecture the
probability distribution of the number of nodes visited must be
computed in order to determine the computational performance
of the proposed decoding algorithm.

For low SNR and for codes of moderate to long lengths,
the number of nodes opened during the decoding procedure
may be great and the proposed decoding algorithm impractical.
Thus the development of a suboptimal decoding algorithm
based on GDA seems to be a promising line of research.

APPENDIX A

In this appendix we prove by contradiction that if the con-
dition is satisfied, then when a node is selected for expansion,
GDA has already found a minimum cost path from the start
node to this node. Thus, when the algorithm selects to expand
the goal node, it has found an optimal path.

Let node mt be any node selected for expansion by GDA.
Assume that the path from the start node to node mt found so
far by GDA is not a minimum cost path from the start node
to node mt. Let P& = (m-l,mo,. . . ,me,. . . ,mt-l,mt) be
a minimum cost path from the start node to node mt. Let
node me be the first node in this sequence of nodes that is
on list OPEN. Furthermore, let g*(m) be the actual cost of
a minimum cost path from the start node to node m. By the
condition,

g*(mt-1) + Wmt-1) 5 g*(mt-1) + h(w)

+ c(mt-1, mt) = g*(m) + h(m).

By transitivity we have that

g*(me) + h(me) _< g*(mt) + h(mt).

Since s*(me) + h(me) = f(me) and g*(mt) < g(mt), then
f(me) < f(mt). Contradiction. Cl

HAN et al.: ML SOFT-DECISION DECODING OF LINEAR BLOCK CODES 1521

APPENDIX B

Proof of Result 1.

Let mt be any node in the trellis. Let Pt, =
(mt, mt+l, . . . ,mn-2,m,-l) be a minimum cost path
from mt to the goal node. Thus, the cost of this

n-2

path is h*(mt) = xc(mi,mi+l). By the condition,
i=t

h(m,-2) I h(m,-$-; c(m,-2, mm-l). By transitivity,

h(w) I h(m,-1) + Cc(mi,mi+l). Since h(m,-1) = 0,
i=t

then h(mt) I: h*(mt). cl

Proof of Result 2.

Assume node rni is selected for expansion. We now consider
two cases:

Case 1. mj was not visited. In this case

f(mj) = g*(w) + c(mi,mj) + h(mj),

where g*(m) is the actual cost of a minimum cost path
from the start node to node m. By the condition, f(mi) >
g*(w) + h(m) = f(m).

Case 2. rnj is on list OPEN. In this case, since rnj is not
selected for expansion or by Case 1, then f(mi) 2 f(mi). 0

Proof of Result 3.

Consider an optimal path P* = (m-.1, mo, . . . , me, . . . ,
m,-1). Let node me be the first node in this sequence of
nodes that is on list OPEN. Thus

f(me> = 9* (me) + h(me),

where g*(m) is the actual cost of a minimum cost path from
the start node to node m. By Result 1,

f(me) = g*(me) + h(me) 5 g*(me) + h*(me).

Since g*(me) + h*(me) 5 UB, then

Case 2. 1 = k - 1. h(mr) 5 h*(mr) and h(ms) =
h*(Q). Since h*(mr)-c(mr,ms) _< h*(mz), then h(ml) 5
h*(m2) + c(ml, m2) = h(m2) + c(ml, m2).

Case 3. c > k - 1. h(ml) = h*(ml) and h(m2) = h*(ms).
Since h*(mr)-c(mr, m2) = h*(ms), then h(mr) = h(m2)+
c(ml, m2). q

APPENDIX D

Given +* and a seed c*, we present an algorithm to calculate
h(m) for node m at level e, -1 5 e < k - 1, whose time
complexity is O(n).

First, we present this algorithm for the special case c*= 0.
Then we show how this algorithm can be applied to calculate
h(m) for the case c* # 0 by modifying 4*.

D.l Algorithm for the Case c* = 0

We will show that to calculate h(m) we need to construct
at most two vectors belonging to T(m).

Consider a node m at level C and let P’, be the lowest
cost path from the start node to node m found so far by the
algorithm. Furthermore, let 370, tir, . . . ,Vl be the labels of P’, .

P
Since f(m) = g(m) + h(m) = 2(&I. - (-l)“i)2 + h(m),

i=o
then h(m) depends only on the values of $;+l, $G+2,. . ., and
&f-l.

Let ue = (ue(e+l), ue(e+q, . . . , Ue(,-1)) be obtained by

permuting the positions of ($Z+, , $;+2, . . . , &r) in such
a manner that uei < ue(i+r) for (e + 1) 5 i 5 (n - 2).
We remark here that we can easily construct ue from ~-1.
Furthermore, let WH(Z) be the Hamming weight of x.

Recall that when c* = 0,

T(m) = {WIV = (Vo,Vl, . . . ,71e,Ve+l,. . . ,Un-l)

and WH(V) E HIV},
n-1

and h(m) = min
VET(m)

c (& - (-l),i)2 .
ke+i

f(me) I UB. Because of the definition of T(m) we can compute h(m)

If UB = g*(me) + h*(me), then P is an optimal path. If
using ue instead of ($g+l, $s+2r. . . , &,).

f(me) < UB, then node me will not be deleted from list IA ‘us = (~0,~i,...,~e,~,(e+i),~,(e+2),...,~,(e+~),

OPEN. 0 us(e+,+i), . . . , w,(,-1)) and v = (Vu,&,. . . ,?Je,ue+r,. . . ,
v,-1) belong to T(m) such that WH(D,) = WH(V):

APPENDIX C
Furthermore, let v,(e+;) = 1 for 1 5 i 5 w and ~,(e+i) = 0
for (w + 1) 5 i < (n - 1). Thus

Let node ms at level I be an immediate successor of node
ml. Furthermore, let tie be the label of the arc from node ml Vu,=(770,211 ,..., Be,l,l,..., 1,0 ,..., 0).

to node ms and c(mr , m2) = (4; - (-l)‘e) 2. We now prove
that h(ml) 5 h(m2) + c(ml,mz).

It is easy to see that

Case 1. C < k - 1. Let ‘u= (;iJa,?Jr, . . . ,?e, ?Je+r, l/e+s, . . . n-1 n-1

n-l

‘~~-1) E T(m2) such that h(m2) = c (4,’ - (-1)“i)2.
C (Ue; - (-l)“s’)2 5 C (‘ZLei - (-1)“‘)2.

ke+i i=e+i

Since VE
n-1

i=e+i

T(m2), then v E T(ml). Thus As a consequence, when calculating h(m) we need only to
consider vectors in T(m) with patterns such as v,. Thus we

c (4: - (-l)“i)2 + c(ml,ma) > h(ml), i.e., need to consider only a subset of T(m),T’(m), such that
i=e+i it contains only vectors with patterns such as v,. Note that
h(m) + c(ml,m) 2 h(m). T’(m) # 0.

1522 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 5, SEPTEMBER 1993

We now consider three different patterns of pie.
Case 1. All components of Ue are negative.
In this case

n-1
h(m) = c (4: - (-l)Vi)2,

where w = (~e,??r, . . . ,Ve, ue+r, . . . , w,-1) is the vector in
T’(m) with maximum Hamming weight.

&e 2. All components of
zero.

In this case,
n-1

h(m) = c
i=e+i

ue are greater than or equal to

(4,’ - (-l)“i)2,

where v = (?Ju,Vr, . . . ,Ve, ve+r, . . . , ~-1) is the vector in
T’(m) with minimum Hamming weight.

Case 3. ue has at least one negative and one positive
component.

I,et we be the number of components in ue that are negative
and let G& = WH((GO, Vr, . . . , Fe)). By Cases 1 and 2 we
can easily show that at most two vectors in T’(m) must be
inspected to calculate h(m). These vectors are as follows.

1) V’ = (210,&,~e,V~+l,. . . , u;-1 ,) such that WH(‘U’) is
the largest value among all the vectors w belonging to T’(m)
satisfying We 5 ?iJe + We.

2) vN = (Va,Ur, . . . ,Ve, r$‘+l,. . . , $-,), such that
W ;l(v”) is the smallest value among all vectors D belonging
to Z”(m) satisfying WH(V) > % iJe + we.We remark here that
if ue belongs to Case 3, then at least one of the vectors ‘u’
or 0” will always exist.

If both v’ and v” exist, then

h(m) = min

Otherwise, h(m) is calculated using the vector that exists.

b.2 Algorithm for the Case c* # 0

Now we show that we can use the procedure
presented in D.l to calculate h(m) for any c* =
(c&c;)...I ce*,c;+l)...I CL-1). In order to differentiate
the heuristic function calculated with respect to seed 0 and
seed c*, we denote the heuristic function, calculating with
respect to 0 by ho.

Consider a fictitious node m ’ such that a path P,, from the
start node to node m’ has labels Vu @ cz, Gr @ CT,. . . , Ve @ cz.
We will show that

h(m) = vEtgk,, [g ((-l)“‘& - (el)wy},
i=e+i

where T(m’) = {wjw = (~0 @ cG,~r $ CT,. . . ,Ue $ cz,ve+r,
“‘7 ~-1) and ~H(v, 0) E HW}. Note that this value

is ho(m’) when we assume that the received vector is
((-l)$$, (-l)“L&. . .) (-1)“+$-1):

=

Let v = c* $ PI’. Thus v’ = ‘u $ c*. We must show
that v’ E T(m) iff ‘u E T(m’). v’ E T(m) iff v’ =
(Vo,Vi ,..., Ve,Vi+, ,... Ud-1 ,) and ~H(v’, c*) E HIV iff
?J @ c* = (Vo,Vr,. . . ,Ue,~~+,, . . . ,vLel) and d~(c* @
v’,O)EHWiffv=(vo$C;;,~l~C;,...,ve~CT,v~+l~

C;+l,...,d-l @ CL-,), and d~(21,0) E HIV iff PI E T(m’).

Since Y’ E T(m) iff PI E T(m’), then we may consider
minimization over vectors in T(m’) instead of in T(m). Thus

h(m) =

Since the time complexity to find v’ and v” in Case 3 is
O(n), we can conclude that the time complexity to calculate
h(m) is O(n). 0

APPENDIX E

Proof of the Property

Consider node me at level 1, -1 5 1 < k~ - 2.
n-1

Furthermore, let h(me) = c (4: - (-1)“:) 2 where
i=e+i

(11o,~i,...,ve,v~+l,W~+2,...,2)~-1) E T(me). Now con-
sider the path P,,,,,-, = (me,me+r,. . . ,mk--2) from
node me to node m&s at level k - 2 whose labels are

whP2. We now show that if me+1 is a node in
$~‘$$?t’le~el e + 1, then f(me) = f(me+l).

By definition f(me) = g(me) + h(me) = g(me) +

(6+1 - (-1)““+1)2 + nj (4: - (-1)“:)2 = g(me+l)+
ire+2

n-1

C (4: - (-1)“:). Since (210, VI,. . . , Ve, WL+l, W i+s, W i+s
i=e+2

, . . . , wL-~) E T(me+l), then
n-1

c (qs: - (-1)“:)2
i=e+2

n-1

= min
‘UET(me+l)

C (4: - (-l)“i)2
i=e+2

otherwise,

-i

n-1

h(me) > &$n4) c (qq - (-1)“;)2 .
i=e+i 1

HAN er al.: ML SOFT-DECISION DECODING OF LINEAR BLOCK CODES 1523

ACKNOWLEDGMENT WI
The authors would like to thank E. Weinman for her

invaluable help in the preparation of this manuscript. Thanks P31
are also due Prof. L. D. Rudolph for his helpful suggestions,
and Prof. 0. Biham for organizing the Research Experience for 1141

Undergraduates Program. In addition, the authors would like [15]
to thank the referees for their invaluable suggestions, which
we believe have helped us to improve the presentation of our
results. The authors gratefully acknowledge the use of the 1161
computational facilities of the Northeast Parallel Architectures
Center (NPAC) at Syracuse University.

PI

PI

[31

[41

PI

WI

[71

PI

t91

WI

WI

REFERENCES

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Inforrb
Theory, pp. 284-287, Mar. 1974.
L. D. Baumert and L. R. Welch, “Minimum-weight codewords in the
(128,64) BCH Code,” Jet Prop. Lab., California Inst. Technol., Pasadena,
CA, DSN Progr. Rep. 42-42, Sept. and Oct. 1977.
L. D. Baumert and R. J. McEliece, “Soft decision decoding of block
codes,” Jet Prop. Lab., California Inst. Technol., Pasadena, CA, DSN
Progr. Rep. 42-47, July and Aug. 1978.
E. R. Berlekamp, Algebraic Coding Theory. New York, NY: McGraw-
Hill Book Co., 1968.
R. E. Blahut, Theory and Practice of Error Control Codes. Reading,
MA: Addison-Wesley, 1983.
R.W. D. Booth, M. A. Herro, and G. Solomon, “Convolutional coding
techniques for certain quadratic residue codes,” in Proc. I975 Int.
Telemetering Conj, 1975, pp. 168177.
G. Brassard and P. Bratley, Algorithm& Theory and Practice. Engle-
wood Cliffs, NJ: Prentice-Hall, 1988.
G. C. Clark, Jr., and J. B. Cain, Error-Correction Coding for Digital
Communications. New York, NY: Plenum, 1981.
G. P. Cohen, P. J. Godlewski, and T. Y. Hwang, “Generating codewords
in real space: Applications to decoding,” in Proc. 3’d Int. Colloquium
Coding Theory and Applications, Nov. 1988, pp. 114-122.
J. H. Conway and N. J. A. Sloane, “Soft decoding techniques for codes
and lattices, including the golay code and the Leech lattice,” IEEE Trans.
Inform. Theory, pp. 41-50, vol. IT-32, Jan. 1986.
T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. Cambridge, MA: The M.I.T. Press, 1991.

P71

WI

[I91

PO1

1211

1221

[231

[241

[251

WI

[x71

PI

B. G. Dorsch, “A decoding algorithm for binary block codes and J-
ary output channels,” IEEE Trans. on Inform. Theory, pp. 391-394, vol.
IT-20, May 1974.
G. D. Fomey, Jr., Concatenated Codes. Cambridge, MA: The M.I.T.
Press, 1966.
-9 “Coset codes-part II: Binary lattices and related codes,” IEEE
Trans. Inform. Theory, pp. 1152-1187, vol. 34, Sept. 1988.
Y. S. Han, C. R. P. Hartmann, and C-C. Chen, “Efficient maximum-
likelihood soft-decision decoding of linear block codes using algorithm
A*,” School of Comput. Inform. Sci., Syracuse Univ., Syracuse, NY
13244, Tech. Rep. SU-CIS-91-42, Dec. 1991.
Y. S. Han and C. R. P. Hartmann, “Designing efficient soft-decision
decoding algorithms for linear block codes using algorithm A*,” School
of Comput. Inform. Sci., Syracuse Univ., Syracuse, NY 13244, Tech.
Rep. SU-CIS-91-10, June 1992.
T.-Y. Hwang, “Decoding linear block codes for minimizing word error
rate,” IEEE Trans. Inform. Theory, pp. 733-737, Nov. 1979.
T. Kancko, T. Nishijima, H. Inazumi, and S. Hirasawa, “An efficient
maximum-likelihood-decoding algorithm for linear block codes with
algebraic decoder,” IEEE Trans. Inform. Theory, to be published.
F. J. MacWilliams and N. J. A. Sloane, The Theory ofError-Correcting
Codes. New York: Elsevier, 1977.
C. L. Mallows and N. J. A. Sloane, “An upper bound for self-dual
codes,” Inform. Contr, vol. 22, pp. 188-200, 1973.
K. R. Matis and J. W. Modestino, “Reduced-search soft-decision trellis
decoding of linear block codes,” IEEE Trans. Inform. Theory, vol. IT-28,
pp. 349-355, Mar. 1982.
N. J. Nilsson, Principle ofArtificial Intelligence. Palo Alto, CA: Tioga
Publishing Co., 1980.
I. S. Reed, T. K. Truong, X. Chen, and X. Yin, “The algebraic decoding
of the (41,21,9) quadratic residue code,” IEEE Trans. Irzform. Theory,
vol. 38, pp. 974-986, May 1992.
G. Solomon and H. C. A. van Tilbora, “A connection between block
and convolutional codes,” SIAM J. Ap$. Math., pp. 358-369, 1979.
D. J. Taipale and M. B. Pursley, “An improvement to generalized-
minimum-distance decoding,” IEEE Trans. Inform. Theory, vol. 37, pp.
167-172, Jan. 1991.
A. M. Tenenbaum and M. J. Augenstein, Data Structures Using Pascal.
Englewood Cliffs, NJ: Prentice-Hall, 1986, 2nd ed.
A. J. Viterbi, “Error bound for convolutional codes and an asymptot-
ically optimum decoding algorithm,” IEEE Trans. Information Theory,
vol. IT-13, pp. 260-269, Apr. 1967.
J. K. Wolf, “Efficient maximum likelihood decoding of linear block
codes using a trellis,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 76-80,
Jan. 1978.

