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Abstract—To achieve security in wireless sensor networks, it is important to be able to encrypt messages sent among sensor nodes.

Keys for encryption purposes must be agreed upon by communicating nodes. Due to resource constraints, achieving such key

agreement in wireless sensor networks is nontrivial. Many key agreement schemes used in general networks, such as Diffie-Hellman

and public-key-based schemes, are not suitable for wireless sensor networks. Predistribution of secret keys for all pairs of nodes is not

viable due to the large amount of memory used when the network size is large. Recently, a random key predistribution scheme and its

improvements have been proposed. A common assumption made by these random key predistribution schemes is that no deployment

knowledge is available. Noticing that, in many practical scenarios, certain deployment knowledge may be available a priori, we propose

a novel random key predistribution scheme that exploits deployment knowledge and avoids unnecessary key assignments. We show

that the performance (including connectivity, memory usage, and network resilience against node capture) of sensor networks can be

substantially improved with the use of our proposed scheme. The scheme and its detailed performance evaluation are presented in this

paper.

Index Terms—Wireless sensor networks, network security, key predistribution.
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1 INTRODUCTION

RECENT advances in electronic and computer technologies
have paved the way for the proliferation of wireless

sensor networks (WSN). Sensor networks usually consist of
a large number of ultra-small autonomous devices. Each
device, called a sensor node, is battery powered and
equipped with integrated sensors, data processing, and
short-range radio communication capabilities. In typical
application scenarios, sensor nodes are spread randomly
over the deployment region under scrutiny and collect
sensor data.

Sensor networks are being deployed for a wide variety of
applications, including military sensing and tracking,
environment monitoring, patient monitoring and tracking,
smart environments, etc. When sensor networks are
deployed in a hostile environment, security becomes
extremely important as they are prone to different types
of malicious attacks. For example, an adversary can easily
listen to the traffic, impersonate one of the network nodes
(in this paper, we use the terms sensors, sensor nodes, and
nodes interchangeably), or intentionally provide misleading
information to other nodes. To provide security, commu-
nication should be encrypted and authenticated. An open
research problem is how to bootstrap secure communica-
tions among sensor nodes, i.e., how to set up secret keys
among communicating nodes?

This key agreement problem is a part of the key
management problem, which has been widely studied in
general network environments. There are three types of
general key agreement schemes: the trusted-server scheme,
the self-enforcing scheme, and the key predistribution
scheme. The trusted-server scheme depends on a trusted
server for key agreement between nodes, e.g., Kerberos [1].
This type of scheme is not suitable for sensor networks
because there is usually no trusted infrastructure in sensor
networks. The self-enforcing scheme depends on asymmetric
cryptography, such as key agreement using public key
certificates. However, limited computation and energy
resources of sensor nodes often make it undesirable to use
public key algorithms [2]. The third type of key agreement
scheme is key predistribution, where key information is
distributed among all sensor nodes prior to deployment. If
we know which nodes are more likely to be in the same
neighborhood before deployment, keys can be decided a
priori. However, because of the randomness of deployment,
it might be infeasible to learn the set of neighbors a priori.

There exist a number of key predistribution schemes. A
naive solution is to let all the nodes carry a master secret key.
Any pair of nodes can use this global master secret key to
achieve key agreement and obtain a new pairwise key. This
scheme does not exhibit desirable network resilience: If one
node is compromised, the security of the entire sensor
network will be compromised. Some existing studies
suggest storing the master key in tamper-resistant hard-
ware to reduce the risk, but this increases the cost and
energy consumption of each sensor. Furthermore, tamper-
resistant hardware might not always be safe [3]. Another
key predistribution scheme is to let each sensor carry
N � 1 secret pairwise keys, each of which is known only to
this sensor and one of the other N � 1 sensors (assuming N
is the total number of sensors). The resilience of this scheme
is perfect because compromising one node does not affect
the security of communications among other nodes;
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however, this scheme is impractical for sensors with an
extremely limited amount of memory because N could be
large. Moreover, adding new nodes to a preexisting sensor
network is difficult because the existing nodes do not have
the new nodes’ keys.

Eschenauer and Gligor proposed a random key predis-
tribution scheme: Before deployment, each sensor node
receives a random subset of keys from a large key pool. To
agree on a key for communication, two nodes find one
common key within their subsets and use this key as their
shared secret key [4]. An overview of this scheme is given in
Section 3. The Eschenauer-Gligor scheme has further been
improved by Chan et al. [5], by Du et al. [6], and by Liu and
Ning [7].

1.1 Outline of Our Scheme

Although the proposed schemes [4], [5], [6], [7] provided
viable solutions to the key predistribution problem, they
have not exploited an important piece of information that
might significantly improve their performance. This piece
of information is node deployment knowledge, which, in
practice, can be derived from the way that nodes are
deployed.

Let us look at a deployment method that uses an airplane
to deploy sensor nodes. The sensors are first prearranged in
a sequence of smaller groups. These groups are dropped
out of the airplane sequentially as the plane flies forward.
This is analogous to parachuting troops or dropping cargo
in a sequence. The sensor groups that are dropped next to
each other have a better chance of being close to each other
on the ground. This spatial relation between sensors
derived prior to deployment can be useful for key
predistribution. The goal of this paper is to show that
knowledge regarding the actual nonuniform sensor deploy-
ment can help to improve the performance of key
predistribution.

Knowing which sensors are close to each other is
important for key predistribution. In sensor networks, long
distance peer-to-peer secure communication between sen-
sor nodes is rare and unnecessary in many applications. The
primary goal of secure communication in wireless sensor
networks is to provide such communications among
neighboring nodes. Therefore, the most important knowl-
edge that can benefit a key-predistribution scheme is the
knowledge about the nodes that are likely to be the neighbors of
each sensor node. If we know perfectly the neighbors of each
node in the network, key predistribution becomes trivial:
For each node ni, we just need to generate a pairwise key
between ni and each of its neighboring nodes, and save
these keys in ni’s memory. This guarantees that each node
can establish a secure channel with each of its neighbors
after deployment.

However, because of the randomness of deployment, it is
unrealistic to know the exact set of neighbors of each node,
but knowing the set of possible or likely neighbors for each
node is much more realistic. Still, the number of possible
neighbors can be very large and it may not be feasible for a
sensor to store one secret key for each potential neighbor
due to memory limitations. This problem can be solved
using the random key predistribution scheme [4], i.e.,
instead of guaranteeing that any two neighboring nodes can
find a common secret key with certainty, we only guarantee
that any two neighboring nodes can find a common secret
key with a certain probability p. In this paper, we exploit
deployment knowledge in the random key predistribution
scheme [4] such that the probability p can be increased

while the other performance metrics (such as security and
memory usage) are not degraded.

Deployment knowledge can be modeled using probabil-
ity density functions (pdfs). When the pdf is uniform, no
information can be gained on where a node is more likely to
reside. In this paper, we look at nonuniform pdfs, which
imply that we know that a sensor is more likely to be
deployed in certain areas. We will show how this knowledge
can help to improve the random key predistribution scheme
proposed by Eschenauer and Gligor [4] and the scheme
proposed by Du et al. [6]. To demonstrate the effectiveness of
our method, we have studied a specific distribution, the
Normal (Gaussian) distribution, in great depth. Our results
show substantial improvement over existing schemes that
do not exploit deployment knowledge.

1.2 Main Contributions of Our Scheme

The main contributions of this paper are summarized as
follows:

1. We model node deployment knowledge in a wire-
less sensor network and develop a key predistribu-
tion scheme based on this model. We are the first to
attempt the use of deployment knowledge in key
predistribution.

2. We show that key predistribution with deployment
knowledge can substantially improve a network’s
connectivity (in terms of secure links) and resilience
against node capture and reduce the amount of
memory required.

2 RELATED WORK

The Eschenauer-Gligor scheme [4] has been briefly de-
scribed earlier in Section 1. We will give a more detailed
description of this scheme in Section 3. Based on the
Eschenauer-Gligor scheme, Chan et al. proposed a
q-composite random key predistribution scheme [5]. The
major difference between this scheme and the Eschenauer-
Gligor scheme is that q common keys (q � 1), instead of just
a single one, are needed to establish secure communications
between a pair of nodes. It is shown that, by increasing the
value of q, network resilience against node capture is
improved, i.e., an attacker has to compromise many more
nodes to achieve a high probability of compromised
communication.

Du et al. proposed a new key predistribution scheme [6],
which substantially improved the resilience of the network
compared to the existing schemes. This scheme exhibits a
nice threshold property: When the number of compromised
nodes is less than the threshold, the probability that nodes
other than the compromised ones are affected is close to
zero. This desirable property lowers the initial payoff of
small-scale network breaches to an adversary and makes it
necessary for the adversary to attack a significant portion of
the network. A similar method was also developed by Liu
and Ning [7].

Liu and Ning independently developed a scheme using
predeployment knowledge [8] when a preliminary version
of this paper [9] was prepared. However, this paper and
its preliminary version introduce a novel group-based
deployment model. This group-based deployment model
is further explored by Huang et al. [10].

Perrig et al. proposed SPINS, a security architecture
specifically designed for sensor networks [2]. In SPINS, each
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sensor node shares a secret key with the base station. Two
sensor nodes cannot directly establish a secret key.
However, they can use the base station as a trusted third
party to set up the secret key. Chan and Perrig proposed
PIKE, a class of key-establishment protocols that involves
using one or more sensor nodes as a trusted intermediary to
facilitate key establishment [11]. Anderson et al. also
studied how the key distribution problem can be dealt
with in environments with a partially present, passive
adversary [12]. Zhu and Setia [13] proposed a key manage-
ment scheme based on the assumption that there exists a
lower bound on the time interval that is necessary for an
adversary to compromise a sensor.

Blundo et al. proposed several schemes which allow any
group of t parties to compute a common key while being
secure against collusion between some of them [14]. These
schemes focus on saving communication costs while
memory constraints are not placed on group members.

Several other key distribution schemes have been
proposed for mobile computing, although they are not
specifically targeted at sensor networks. Tatebayashi et al.
considered key distribution for resource-starved devices in
a mobile environment [15]. Other key agreement and
authentication protocols include the one by Beller and
Yacobi [16]. A survey on key distribution and authentica-
tion for resource-starved devices in mobile environments is
given by Boyd and Mathuria [17]. The majority of these
approaches rely on asymmetric cryptography, which is not
a feasible solution for sensor networks [2].

3 BACKGROUND

3.1 The Eschenauer-Gligor (EG) Scheme

The Eschenauer-Gligor scheme (referred to as the basic scheme
or the EG scheme hereafter) proposed by Eschenauer and
Gligor [4] consists of three phases: key predistribution,
shared-key discovery, and path-key establishment.

In the key predistribution phase, each sensor node
randomly selects � distinct cryptographic keys from a key
pool S and stores them in its memory. This set of � keys is
called the node’s key ring. The number of keys in the key
pool, jSj, is chosen such that two random subsets of size � in
S share at least one key with some probability p.

After the nodes are deployed, a key-setup phase is
performed. During this phase, each pair of neighboring
nodes attempt to find a common key that they share. If such
a key exists, the key is used to secure the communication
link between these two nodes. After key-setup is complete,
a graph (called key graph) of secure links is formed. Nodes
can then set up path keys with their neighbors with whom
they do not share keys. If the key graph is connected, a path
can always be found from a source node to any of its
neighbors. The source node can then generate a path key
and send it securely via the path to the target node.

The size of the key pool S is critical to both the
connectivity and the resilience of the scheme. Connectivity
is defined as the probability that any two neighboring nodes
share one key. Resilience is defined as the fraction of the
secure links that are compromised after a certain number of
nodes are captured by the adversaries.

At one extreme, if the size of S is one, i.e., jSj ¼ 1, the
scheme is actually reduced to the naive master-key scheme.
This scheme yields a high connectivity, but it is not resilient
against node capture because the capture of one node can
compromise the whole network. At the other extreme, if the
key pool is very large, e.g., jSj ¼ 100; 000, resilience becomes

much better, but connectivity of the sensor network becomes
low. For example, as indicated by Eschenauer and Gligor [4],
in this case, even when each sensor selects � ¼ 200 keys
from this large key pool S, the probability that any two
neighboring nodes share at least one key is only 0:33.

How can we use a large key pool while still maintaining
high connectivity and the same memory usage? In this
paper, we use deployment knowledge to solve this
problem.

3.2 The Du-Deng-Han-Varshney (DDHV) Scheme

Blom proposed a key predistribution method that allows
any pair of nodes in a network to be able to derive a
pairwise secret key [18]. It has the property that, as long as
no more than � nodes are compromised, all communication
links of noncompromised nodes remain secure (we refer to
this as being “�-secure”). We now briefly describe Blom’s
scheme (we have made some slight modifications to the
scheme in order to make it more suitable for sensor
networks, but the essential features remain unchanged).

We assume some agreed-upon ð�þ 1Þ �N matrix G
over a finite field GF ðqÞ, where N is the size of the network
and q > N . This matrix G is public information and may be
shared by different systems; even adversaries are allowed
to know G. During the key generation phase, the base
station creates a random ð�þ 1Þ � ð�þ 1Þ symmetric
matrix D over GF ðqÞ, and computes an N � ð�þ 1Þ matrix
A ¼ ðD �GÞT , where ðD �GÞT is the transpose of D �G.
Matrix D must be kept secret, and should not be disclosed
to adversaries or to any sensor nodes (although, as will be
discussed, one row of ðD �GÞT will be disclosed to each
sensor node). Because D is symmetric, it is easy to see that

A �G ¼ ðD �GÞT �G ¼ GT �DT �G ¼ GT �D �G ¼ ðA �GÞT ;
i.e., A �G is a symmetric matrix. If we let K ¼ A �G, we
know that Kij ¼ Kji, where Kij is the element in the ith row
and jth column of K. The idea is to use Kij (or Kji) as the
pairwise key between node i and node j. Fig. 1 illustrates
how the pairwise key Kij ¼ Kji is generated. To carry out
the above computation, nodes i and j should be able to
compute Kij and Kji, respectively. This can be easily
achieved using the following key predistribution scheme,
for k ¼ 1; . . . ; N :

1. store the kth row of matrix A at node k, and
2. store the kth column of matrix G at node k.1

Then, when nodes i and j need to establish their pairwise
key, they first exchange their columns of G and then
compute Kij and Kji, respectively, using their private rows
of A. Because G is public information, its columns can be
transmitted in plaintext. It has been shown [18] that the
above scheme is �-secure if any �þ 1 columns of G are
linearly independent. This �-secure property guarantees
that no coalition of up to � nodes (not including i and j)
have any information about Kij or Kji.

We define the set of keys generated from A and G as a
key space. According to the Blom scheme, if any two nodes
carry their corresponding information from the same key
space, they can find a common key between themselves.
Roughly speaking, Blom’s scheme uses a single key space.
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By changing the values of matrices D and G, we can create

different key spaces.
Motivated by the random key predistribution schemes

[4], [5], Du et al. developed an improved key predistribu-
tion scheme using multiple key spaces (we call it the DDHV
scheme) [6]. The DDHV scheme first constructs ! spaces
using Blom’s scheme and then has each sensor node carry
key information from � (with 2 � � < !) randomly selected
key spaces. Now (from the properties of the underlying
Blom scheme), if two nodes carry key information from a
common space they can compute a shared key. Of course,
unlike Blom’s scheme, it is no longer certain that two nodes
can generate a pairwise key; instead (as in the Eschenauer-
Gligor random key predistribution scheme), such a con-
nectivity is probabilistic.

It should be noted that, when a key space has � ¼ 0, a
compromise of one (i.e., �þ 1) node from this key space will
compromise the entire key space. This is equivalent to
having one key in this key space. Therefore, by letting � ¼ 0,
each key space collapses to one key and, thus, the DDHV
scheme reduces to the EG scheme. From this perspective,
the EG scheme is actually a special case of the DDHV
scheme. Therefore, in this paper, we focus only on the
DDHV scheme.

4 MODELING OF THE DEPLOYMENT KNOWLEDGE

We assume that sensor nodes are static once they are
deployed. We define deployment point as the desired point
where a sensor is to be deployed. This is not likely the
location where the sensor resides eventually. The sensor
node can reside at points around this desired point
according to a certain pdf. As an example, let us consider
the case where sensors are deployed by being dropped from
a helicopter. The deployment point is the location of the
helicopter. We also define resident point for a sensor as the
point where the sensor finally resides.

4.1 Group-Based Deployment Model

In practice, it is quite common that nodes are deployed in
groups, i.e., a group of sensors are deployed at a single
deployment point, and the pdfs of the final resident points
of all the sensors in each batch (or group) are the same. In
this work, we assume such a group-based deployment and
we model the deployment knowledge as follows (we call
this model the group-based deployment model):

1. N sensor nodes to be deployed are divided into t� n
equal size groups so that each group, Gi;j, for i ¼
1; . . . ; t and j ¼ 1; . . . ; n, is deployed from the
deployment point with index ði; jÞ. Let ðxi; yjÞ
represent the deployment point for group Gi;j.

2. The deployment points are arranged in a grid. Note
that the scheme we develop for grid-based deploy-
ment can be easily extended to different deployment
strategies. We choose this specific strategy because it
is quite common in realistic scenarios.

3. During deployment, the resident points of the node k
in group Gi;j follow the pdf fðx; yjk 2 Gi;jÞ. An
example of the pdf is a two-dimensional Gaussian
distribution.

When fðx; yjk 2 Gi;jÞ is a uniform distribution over the
deployment region for all Gi;js, we do not know which
nodes are more likely to be close to each other a priori
because the resident point of a node can be anywhere
within the region with the same probability. However,
when fðx; yjk 2 Gi;jÞ is a nonuniform distribution, we can
determine which nodes are more likely to be close to each
other. For example, with Gaussian distribution, we know
that the distance between a resident point and the
deployment point is less than 3� with probability 0:9987
(where � is the standard deviation of the Gaussian
distribution). If the deployment points of two groups are
6� away, then the probability of two nodes from these two
different groups being located near each other is very low.
Therefore, the probability that two nodes from two different
groups become neighbors decreases with an increase of the
distance between the two deployment points.

Recall that, in the Eschenauer-Gligor random key
predistribution scheme [4] and the DDHV scheme [6],
when the size of the key-space pool S becomes smaller,
connectivity increases. Since these schemes assume no
deployment knowledge (i.e., the distribution fðx; yjk 2
Gi;jÞ is uniform), every node should choose from the same
key-space pool because they are equally likely to be
neighbors. However, as we have discussed, when the
function fðx; yjk 2 Gi;jÞ is nonuniform, we know that nodes
from a specific group are more likely to be neighbors of
nodes from the same group and those from nearby groups.
Therefore, when two groups are far away from each other,
their key-space pools should be different, rather than the
same global key-space pool S.

We use Si;j to represent the key-space pool used by
group Gi;j; the union of Si;j (for i ¼ 1; . . . ; t and j ¼ 1; . . . ; n)
equals S. We use jScj to represent the size of Si;j (for the
sake of simplicity, we let all Si;js have the same size in this
paper). Based on a specific deployment distribution, we can
develop a scheme such that, when the deployment points of
two groups Gi1;j1

and Gi2;j2
are farther away from each

other, the amount of overlap between Si1;j1
and Si2;j2

becomes smaller or zero.

4.2 Deployment Distribution

There are many different ways to deploy sensor networks,
for example, sensors could be deployed using an airborne
vehicle. The actual model for deployment distribution
depends on the deployment method. Our key predistribu-
tion scheme is for the most part model independent. We
propose our scheme in a manner whereby it can be
instantiated to use other deployment models. To keep the
presentation concrete, we use a specific model, namely, we
model the sensor deployment distribution as a two-
dimensional Gaussian distribution (also called Normal
distribution). Our methodology should be easily adaptable
to other deployment models. In practice, we need to
develop the deployment model based on the actual
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deployment method. How to develop the model is beyond
the scope of this paper.

We assume that the deployment distribution for any
node k in group Gi;j follows a two-dimensional Gaussian
distribution. When the deployment point of group Gi;j is at
ðxi; yjÞ, we have � ¼ ðxi; yjÞ and the pdf for node k in
group Gi;j is the following [19]:

fðx; yjk 2 Gi;jÞ ¼
1

2��2
e�½ðx�xiÞ

2þðy�yjÞ2�=2�2

: ð1Þ

Although the distribution function for each single group
is nonuniform, we still prefer the sensor nodes to be evenly
deployed throughout the entire region. By choosing a
proper distance between the neighboring deployment
points with respect to the value of � in the pdf of each
deployment group, the probability of finding a node in each
small region can be made approximately equal. Assuming
that a sensor node is selected to be in a given group with an
equal probability, 1

t�n , the average deployment distribution
(pdf) of any sensor node over the entire region is:

foverallðx; yÞ ¼
1

t � n �
Xt
i¼1

Xn
j¼1

fðx; yjk 2 Gi;jÞ: ð2Þ

To see the overall distribution of sensor nodes over the
entire deployment region, we have plotted foverall in (2) for
6� 6 ¼ 36 groups over a 600m� 600m square region with
the deployment points 2� ¼ 100m apart (assuming � ¼ 50).
Fig. 2a shows all the deployment points and Fig. 2b shows
the overall pdf. From Fig. 2b, we can see that the pdf is
almost flat (i.e., nodes are fairly evenly distributed) in the
whole region except near the boundaries.

5 KEY PREDISTRIBUTION USING DEPLOYMENT

KNOWLEDGE

Based on the deployment model described in the previous
section, we propose a new random key predistribution
scheme, which takes advantage of deployment knowledge.
This new scheme is based on the original DDHV scheme, so

we call it the DDHV-D scheme.2 In this scheme, we assume
that the sensor nodes are evenly divided into t� n
groups Gi;j, for i ¼ 1; . . . ; t, and j ¼ 1; . . . ; n. We assume
that the global key-space pool is S with size jSj and also
assume that the deployment points are arranged in a grid
depicted in Fig. 2a. Each node carries � key spaces.

5.1 Key Predistribution Scheme

The goal of this scheme is to allow sensor nodes to find a
common secret key with each of their neighbors after
deployment. Our scheme consists of three phases: key
predistribution, shared-key discovery, and path-key estab-
lishment. The last two phases are exactly the same as the
DDHV scheme [6], but, because of deployment knowledge,
the first phase is considerably different.

5.1.1 Step 1: Key Predistribution Phase

This phase is conducted offline and before the sensors are
deployed. First, we need to divide the key-space pool S into
t� n key-space pools Si;j (for i ¼ 1; . . . ; t and j ¼ 1; . . . ; n),
with Si;j corresponding to the deployment group Gi;j. We
say that two key-space pools are neighbors (or near each
other) if their corresponding deployment groups are
deployed in neighboring (or nearby) locations. The goal of
setting up the key-space pools Si;j is to allow the nearby
key-space pools to share more key spaces, while those far
away from each other share fewer key spaces or no key
space at all. Steps for setting up key-space pools will be
discussed in detail later.

After the key-space pools are set up, for each sensor node
in the deployment group Gi;j, we randomly select � key
spaces from its corresponding key-space pool Si;j; then, for
each selected key space, we load the corresponding row of
its matrix (i.e., matrix A) into the memory of the node.

5.1.2 Step 2: Shared-Key Discovery Phase

After deployment, each node needs to discover whether it
shares any key space with its neighbors. To do this, each

66 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 1, JANUARY-MARCH 2006

2. “D” after the hyphen indicates the use of deployment knowledge.

Fig. 2. Node deployment. (a) Deployment points (each dot represents a deployment point). (b) Deployment distribution on the entire region using the
deployment strategy modeled by (a).



node broadcasts a message containing the indices of the key
spaces it carries. Each neighboring node can use these
broadcast messages to find out if there exists a common key
space it shares with the broadcasting node. If such a key
space exists, using the Blom scheme, the two neighboring
nodes can derive a pairwise key from the common key
space and use the key to secure the communication channel
between themselves.

After the above step, the entire sensor network forms a

Key-Space Sharing Graph GKS, which is defined in the

following:

Definition 1 (Key-Space Sharing Graph). Let V represent all

the nodes in the sensor network. A Key-Space Sharing Graph

GKSðV ;EÞ is constructed in the following manner: For any

two nodes i and j in V , there exists an edge between them if

and only if 1) nodes i and j have at least one common key space

and 2) nodes i and j can reach each other within the wireless

transmission range, i.e., in a single hop.

5.1.3 Step 3: Path-Key Establishment Phase

It is possible that two neighboring nodes cannot find any
common key space between them. In this case, they need to
find a secure way to agree upon a common key. We now
show how two neighboring nodes, i and j, who do not
share a common key space could still come up with a secret
key between them. The idea is to use the secure channels
that have already been established in the key-space sharing
graph GKS: As long as the graph is connected, two
neighboring nodes i and j can always find a path in GKS
from i to j. Assume that the path is i; v1; . . . ; vh; j. To find a
common secret key between i and j, i first generates a
random key K. Then, i sends the key to v1 using the secure
link between i and v1; v1 forwards the key to v2 using the
secure link between v1 and v2 and so on until j receives the
key from vh. Nodes i and j use this secret key K as their
pairwise key. Because the key is always forwarded over a
secure link, no nodes beyond this path can find out the key.

To find such a secure path for nodes i and j, the easiest
way is to use flooding [20], a common technique used in
multihop wireless networks. As we will show later in our
analysis, in practice, the probability that the secure path
between i and j is within three hops is very high (close to
one). Therefore, we can always limit the lifetime of the
flooding message to three hops to reduce flooding overhead.

5.2 Setting Up Key-Space Pools

Next, we show how to assign key spaces to each key-space
pool Si;j, for i ¼ 1; . . . ; t and j ¼ 1; . . . ; n, such that key-
space pools corresponding to nearby deployment points
have a certain number of common key spaces. In our
scheme, we have:

1. Two horizontally or vertically neighboring key-
space pools share exactly ajScj key spaces,3 where
0 � a � 0:25.

2. Two diagonally neighboring key-space pools share
exactly bjScj key spaces, where 0 � b � 0:25 and
4aþ 4b ¼ 1.

3. Two nonneighboring key-space pools share no key
spaces.

We call a and b the overlapping factors. To achieve the
above properties, we divide the key spaces in each key-
space pool into eight partitions (see Fig. 3a). Key spaces in
each partition are those key spaces that are shared between
the corresponding neighboring key-space pools. For exam-
ple, in Fig. 3a, the partition in the upper left corner of E
consists of b � jScj key spaces shared between A and E; the
partition in the left part of E consists of a � jScj key spaces
shared between D and E.

Given the global key-space pool S and the overlapping
factor a and b, we now describe how we can select key
spaces for each key-space pool Si;j for i ¼ 1; . . . ; t and
j ¼ 1; . . . ; n. The procedure is also depicted in Fig. 3b for a
4� 4 case. First, key spaces for the first group S1;1 are
selected from S; then, key spaces for the groups in the first
row are selected from S and their left neighbors. Then, key
spaces for the groups in the second row to the last row are

selected from S and their left, upper-left, upper, and upper-
right neighbors. For each row, we conduct the process from
left to right. The following procedure describes how we
choose key spaces for each key-space pool:

1. For group S1;1, select jScj key spaces from the global
key-space pool S; then, remove these jScj key spaces
from S.

2. For group S1;j, for j ¼ 2; . . . ; n, select a � jScj key
spaces from the key-space pool S1;j�1; then, select
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Fig. 3. Key-space pools. (a) Shared key spaces between neighboring key-space pools. (b) Key space assignment for all the key-space pools.

3. If ajScj is not an integer, bajScjc should be used instead.



w ¼ ð1� aÞ � jScj key spaces from the global key-
space pool S and remove the selected w key spaces
from S.

3. For group Si;j, for i ¼ 2; . . . ; t and j ¼ 1; . . . ; n, select
a � jScj key spaces from each of the key-space pools
Si�1;j and Si;j�1 if they exist; select b � jScj key spaces
from each of the key-space pools Si�1;j�1 and Si�1;jþ1

if they exist; then, select w (defined below) key
spaces from the global key-space pool S and remove
these w key spaces from S.

w ¼
ð1� ðaþ bÞÞ � jScj; for j ¼ 1
ð1� 2ðaþ bÞÞ � jScj; for 2 � j � n � 1
ð1� ð2aþ bÞÞ � jScj; for j ¼ n:

8<
:

Note that, after any group (e.g., G1) selects s key spaces
(s ¼ a � jScj or s ¼ b � jScj) from its neighbor (e.g., G2), no
other neighboring groups of G1 or G2 can select any one of
these s key spaces, i.e., these s key spaces are only shared by
G1 and G2. In other words, no key space is shared by more
than two neighboring groups in our scheme. Although this
requirement is not necessary in practice, it significantly
simplifies our analysis.

6 PERFORMANCE AND SECURITY: ANALYTICAL

RESULTS

In this section, we analyze the performance and security of
our scheme. We present our analytical results on the
following two metrics:

. Local connectivity. We use local connectivity to refer
to the probability of any two neighboring nodes
sharing at least one key space. We use plocal and p
interchangeably to refer to the local connectivity. The
local connectivity directly affects the performance of
the scheme.

. Resilience against node capture. In a hostile environ-
ment, adversary can mount physical attacks on a
sensor node after it is deployed and read secret
information from its memory. We need to find how a
successful attack on x sensor nodes by an adversary
affects the rest of the network. In particular, we want
to find the fraction of additional communications (i.e.,
communications among uncaptured nodes) that an
adversary can compromise based on the information
retrieved from the x captured nodes. In this analysis,
we did not measure the impact of the compromise of
the path keys.

6.1 Computing Local Connectivity

We randomly pick any two nodes u and v in the network. Let
Aðu; vÞ be the event that u and v are neighbors; let Bðu; vÞ be
the event that u and v share at least one common key space.
Therefore, the local connectivity plocal (i.e., the probability of
two neighboring nodes being able to find a common key
space) is the following conditional probability:

plocal ¼ PrðBðu; vÞ j Aðu; vÞÞ ¼ PrðBðu; vÞ and Aðu; vÞÞ
PrðAðu; vÞÞ : ð3Þ

Since u and v are picked randomly, the above probability is
the average over all possible pairs of nodes. Defining � as
the set of all deployment groups in our scheme, we have

PrðAðu; vÞÞ ¼
X
j2�

X
i2�

PrðAðu; vÞ j u 2 Gi and v 2 GjÞ

� Prðu 2 Gi and v 2 GjÞ

¼ 1

ðn � tÞ2
X
j2�

X
i2�

PrðAðu; vÞ j u 2 Gi and v 2 GjÞ:

Note that, in the above equation, because the two nodes u

and v are selected independently and each of them is

selected to be in any given deployment group with an

equal probability, we have Prðu 2 Gi and v 2 GjÞ ¼ 1
ðntÞ2 ,

where n � t is the number of deployment groups. Similar

to the above equation for PrðAðu; vÞÞ, we have the

following equation:

PrðBðu; vÞ and Aðu; vÞÞ
¼
X
j2�

X
i2�

PrðBðu; vÞ and Aðu; vÞ j u 2 Gi and v 2 GjÞ

� Prðu 2 Gi and v 2 GjÞ

¼ 1

ðntÞ2
X
j2�

X
i2�

PrðBðu; vÞ and Aðu; vÞ j u 2 Gi and v 2 GjÞ:

Because events Bðu; v j u 2 Gi and v 2 GjÞ and Aðu; v j
u 2 Gi and v 2 GjÞ are independent,4 we have the following:

PrðBðu; vÞ and Aðu; vÞÞ

¼ 1

ðntÞ2
X
j2�

X
i2�

PrðBðu; vÞ j u 2 Gi and v 2 GjÞ

� PrðAðu; vÞ j u 2 Gi and v 2 GjÞ:

Therefore, to compute the local connectivity, we
just need to compute PrðAðu; vÞ j u 2 Gi and v 2 GjÞ and
PrðBðu; vÞ j u 2 Gi and v 2 GjÞ. To simplify notations, we
use ni to replace u and nj to replace v; the subscripts i

and j indicate that ni is from Gi and nj is from Gj. We
can, therefore, omit the condition ðu 2 Gi and v 2 GjÞ in
our notation. The probability of local connectivity in (3)
becomes

plocal ¼

X
j2�

X
i2�

PrðBðni; njÞÞ � PrðAðni; njÞÞX
j2�

X
i2�

PrðAðni; njÞÞ
: ð4Þ

Therefore, we need to compute PrðAðni; njÞÞ and
PrðBðni; njÞÞ in order to find plocal. It should be noted that
PrðAðni; njÞÞ solely depends on the deployment model, while
PrðBðni; njÞÞ solely depends on the key predistribution.

6.1.1 Computing PrðAðni; njÞÞ
We present our calculation of PrðAðni; njÞÞ, the probability
that two sensors deployed from groups Gi and Gj are
physical neighbors.

We divide the entire deployment region into many
infinitesimal rectangular areas of size dx dy. Let � ¼ ðx; yÞ
represent a point in the region, and we use �ðdx; dyÞ to
represent the infinitesimal rectangular area around �.
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4. Note that unconditional events Bðu; vÞ and Aðu; vÞ are not independent
because they both depend on the deployment groups that u and v come
from.



Assuming that the x-axis of the deployment region ranges
from 0 to X and the y-axis ranges from 0 to Y , we can use
the following formula to compute the probability that ni
and nj are neighbors:

PrðAðni; njÞÞ

¼
Z X

x¼0

Z Y

y¼0

PrðAðni; njÞ j nj is in �ðdx; dyÞÞ

� Prðnj is in �ðdx; dyÞÞ � dx dy:

The probability that the node nj (from group Gj) resides

within this small rectangle area �ðdx; dyÞ can be computed

directly using the probability density function fR of the

deployment:

Prðnj is in �ðdx; dyÞÞ ¼ fRðdj� j nj 2 GjÞ � dx dy;

where dj� is the distance between � and the deployment
point of group j. Based on the two-dimensional Gaussian
deployment distribution as shown in (1), we have

fRðdj�jnj 2 GjÞ ¼
1

2��2
e
�ðdj�Þ

2

2�2 : ð5Þ

Next, we show how PrðAðni; njÞ j nj is in �ðdx; dyÞÞ can

be computed. We use z to represent the distance from

point � to the deployment point of group Gi. We draw two

circles. The first circle has a radius ‘ and is centered at i, the

deployment point of group Gi. We call this circle the i-circle.

The second circle has a radius R (where R is the wireless

transmission range) and is centered at � ¼ ðx; yÞ. We call

this circle the �-circle. When two circles intersect, we call the

i-circle’s arc within the �-circle the Larc and we use

Larcð‘; z; RÞ to represent the length of the arc. We now

consider an infinitesimal ring area Larcð‘; z; RÞ � d‘. The bold

areas in Fig. 4a and Fig. 4b show the infinitesimal ring areas.

Using geometry, we can compute the length of the arc using

the following formula:

Larcð‘; z; RÞ ¼ 2‘ cos�1 ‘2 þ z2 �R2

2‘z

� �
:

Recall that fRð‘ j ni 2 GiÞ represents the probability

density function of the deployment for group Gi. Therefore,

the probability that the node ni resides within this small

ring area is

fRð‘ j ni 2 GiÞ � Larcð‘; z; RÞ � d‘: ð6Þ

We define gðz j ni 2 GiÞ as the probability that the sensor

node ni from group Gi resides within the �-circle, where z is

the distance between � and the deployment point of group

Gi. It is not hard to see that

PrðAðni; njÞ j nj is in �ðdx; dyÞÞ ¼ gðz j ni 2 GiÞ:

To calculate gðz j ni 2 GiÞ, we integrate the probabilities

over all the ring areas (for different ‘) within the �-circle.

Therefore, when z > R (as shown in Fig. 4a),

gðz j ni 2 GiÞ ¼
Z zþR

z�R
fRð‘ j ni 2 GiÞ � Larcð‘; z; RÞ d‘: ð6Þ

When z < R (as shown in Fig. 4b),

gðz j ni 2 GiÞ ¼
Z R�z

0

‘ � 2�fRð‘ j ni 2 GiÞ d‘

þ
Z zþR

R�z
fRð‘ j ni 2 GiÞ � Larcð‘; z; RÞ d‘:

ð7Þ

Combining the above equations together, we get

PrðAðni; njÞÞ ¼
Z Y

y¼0

Z X

x¼0

fRðdj� j v 2 GjÞ

� gðdi� j u 2 GiÞ � dx dy;
ð8Þ

where di� (respectively, dj�) is the distance between the

deployment point of Gi (respectively, Gj) and � ¼ ðx; yÞ.

6.1.2 Computing PrðBðni; njÞÞ
We calculate PrðBðni; njÞÞ, the probability that two sensors

deployed from groups i and j share at least one common

key. The probability of this event does not depend on the

deployment knowledge. It only depends on the key

predistribution, i.e., the key-space pools, shared key spaces

between key-space pools, and the number of key spaces

each sensor carries.
Let �ði; jÞ represent the number of shared key spaces

between the deployment groups Gi and Gj. According to

our key-space pool construction scheme, we have the

following:

�ði; jÞ ¼
jScj; when i ¼ j;

�a ¼ bajScjc; when i and j are horizontal or vertical

neighbors;

�b ¼ bbjScjc; when i and j are diagonal neighbors;

0; otherwise:

8>>>>>><
>>>>>>:

ð9Þ

To calculate Pr (two nodes do not share any key space),

we use the following strategy: The first node selects k key

spaces from the � shared key spaces, it then selects the

remaining � � k key spaces from the nonshared key spaces.

To avoid sharing any key space with the first node, the

second node cannot select any of the k key spaces from

those � shared key spaces that are already selected by the

first node, so it has to select � key spaces from the remaining

ðjScj � kÞ key spaces from its key-space pool. Therefore,

pð�ði; jÞÞ, the probability that two nodes share at least one
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Fig. 4. Probability of nodes residing within a circle. (a) i is outside of the

circle ðz > RÞ. (b) i is inside of the circle ðz < RÞ.



key space when their key-space pools have �ði; jÞ key spaces

in common, can be calculated in the following:5

PrðBðni; njÞÞ ¼ pð�ði; jÞÞ ¼ 1

� Prðtwo nodes do not share any key spaceÞ

¼ 1�

Xminð�;�ði;jÞÞ

k¼0

�ði; jÞ
k

� �
jScj � �ði; jÞ

� � k

� �
jScj � k

�

� �

jScj
�

� �2
;

ð10Þ

where �ði; jÞ is given by (9).

6.2 Resilience Analysis

In order to analyze the resilience of the DDHV-D scheme,
we need to have a model for the adversary’s attacks. While
establishing such models, we consider a realistic scenario in
which the adversary intrudes a region inside the sensor
network and randomly captures and compromises xc
sensors within this region. We explain the attack model in
the following:

. We assume that the adversary captures nodes
randomly within a region.

. The region is assumed to be a circle6 centered at
point with coordinate ðx; yÞ with radius Rc. We term
such a circle the attack circle and call Rc the attack
radius. An example of an attack circle is shown in
Fig. 5. Note that, when the circle is large enough to
contain the entire deployment region, the attack
model reduces to the uniform-random attack, in
which the probability that any node in the entire
deployment region is compromised is the same.

Under this attack model, we analyze the resilience of our
key predistribution scheme. We explore the effect of the
capture of xc sensor nodes by an adversary on the security
of the rest of the network. In particular, we calculate an
upper bound on the fraction of additional communication
(i.e., communication among the uncaptured nodes) that an
adversary can compromise based on the information
retrieved from the xc captured nodes. To compute this
fraction, we first compute the probability that any one of the
additional communication links is compromised after
xc nodes are captured. Note that we only consider the links
in the key-space-sharing graph and each of these links is
secured using a key computed from the common key space
shared by the two nodes of this link.

We summarize our approach for resilience analysis in
the following; the detailed derivation is presented in
Appendix A. Based on the above assumptions, we can
calculate, among all sensors in the attack circle, the average
number of sensors that are deployed from each specific
group. Since the adversary compromises xc sensors ran-
domly inside the circle, the average number of compro-
mised sensors that are deployed from the specific group can
be derived. Based on the key-space pool sharing technique
shown in Fig. 3b, we derive the average number of sensors

that are compromised and are carrying key information

from the same key-space pool. Then, we use the method by

Du et al. [6] to calculate an upper bound on the fraction of

additional communication that an adversary can compro-

mise based on the information retrieved from the

xc captured nodes.
The main result, Inequality (12) in Appendix A, gives the

upper bound on the fraction of additional communication

that an adversary can compromise based on the information

retrieved from the xc captured nodes.

7 PERFORMANCE AND SECURITY EVALUATION:
NUMERICAL RESULTS

An important goal of this study is to understand the

performance of the DDHV-D scheme. However, because of

the complexity of the analytical results obtained for local

connectivity and resilience, it is difficult to understand the

performance from the equations that we have derived. In

this section, we present numerical results corresponding to

those derived equations. We show the performance of the

DDHV-D scheme as well as the comparisons with the

existing key predistribution schemes. More importantly, we

will use the numerical results to understand the relation-

ships among the parameters �, memory usage m, local

connectivity plocal, and resilience, as their relationships are

difficult to understand from the rather complicated analy-

tical results. Note that m is defined in units of key size;

namely, if each key is 64 bits long, then the total amount of

memory usage is 64 �m bits. The relationship between the

memory usage m and the number (�) of key spaces each

sensor can carry is the following [6]:

� ¼ m

�þ 1

� �
:

7.1 System Configuration

In our numerical analysis and simulations, we use the

following setup:
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5. When �ði; jÞ ¼ jScj, pð�ði; jÞÞ can be simplified to 1�
ðjSc j��
�Þ

� �
ð jSc j

�Þ

� � ; when
�ði; jÞ ¼ 0, pð�ði; jÞÞ ¼ 0.

6. The analysis of other shapes is similar, albeit with more complicated
formulas.

Fig. 5. Resilience against node capture. An attack circle, centered at a

point ðx; yÞ with radius Rc, is shown in the network. The adversary

randomly picks xc nodes from this circle.



. The number of sensor nodes in the sensor network is
10; 000.

. The deployment area is 1000m� 1000m.

. The area is divided into a grid of size

100 ¼ t� n ¼ 10� 10;

with each grid cell of size 100m� 100m.
. The center of each grid cell is the deployment point

(see Fig. 2a).
. The wireless communication range for each node is

R ¼ 40m.
. We assume that the node deployment follows a two-

dimensional Gaussian distribution.

7.2 Connectivity

We show the results for both local connectivity and global
connectivity. Global connectivity refers to the ratio of the
number of nodes in the largest isolated component in the
final key-space-sharing graph to the size of the whole
network. If the ratio equals 99 percent, it means that
99 percent of the sensor nodes are connected and the
remaining 1 percent are unreachable from the largest
isolated component. So, the global connectivity metric
indicates the percentage of nodes that are wasted because
of their unreachability. Both global connectivity and local
connectivity are affected by the key predistribution scheme.

7.2.1 Local Connectivity

In this experiment, we evaluate how much the deployment
knowledge can improve the local connectivity. We conduct
two evaluations, one for the EG scheme (i.e., � ¼ 0), and the
other for the DDHV scheme (we set � ¼ 19).

A number of parameters can affect the local connectivity;
to simplify the evaluation, we set a ¼ 0:15 and b ¼ 0:10. In
addition, we make the local connectivity for m ¼ 100 the
same for both EG and DDHV schemes. Once these
parameters are fixed, we can decide the size of the global
key-space pool and the local key-space pools. Then, based
on (4), we can compute plocal for the EG, EG-D,7 DDHV, and

DDHV-D schemes for various memory usage scenarios. The
results are plotted in Fig. 6. Fig. 6a and Fig. 6b clearly shows
that the deployment-knowledge-based EG-D and DDHV-D
schemes significantly improve the local connectivity of their
counterparts.

There are two “abnormal” phenomena in Fig. 6b. First, it
seems that plocal for DDHV-D can never reach 1. The reason
for this phenomenon is that some neighboring nodes might
come from nonneighboring deployment groups. According
to our key predistribution scheme, they do not share any
key space because their deployment groups are not
neighbors. Therefore, the local connectivity can never reach
1. The second abnormal phenomenon is the appearance of
discrete steps for both DDHV and DDHV-D schemes. This
is because of rounding: When jSj is fixed, the only
parameter that can affect the local connectivity is � , the
number of key spaces carried by each sensor. Because
� ¼ b m�þ1c ¼ bm20c, there will be discrete steps for � when m is
increased, causing the discrete steps for plocal.

7.2.2 Global Connectivity

It is possible that the key-space-sharing graph in our
scheme has a high local connectivity, but the graph can
still have isolated components. Since those components are
disconnected, no secure links can be established among
them. Therefore, it is important to determine whether the
graph will have too many isolated components. To this end,
we measure the global connectivity of the key-space-
sharing graph, namely, we measure the ratio of the size of
the largest isolated component in G and the size of the
whole network. We consider that all the nodes that are not
connected to the largest isolated component are useless
nodes because they are “unreachable” via secure links.8

When node distribution and key sharing are uniform,
global connectivity can be estimated using the local
connectivity and other network parameters using Erdos
and Rényi random graph theorem [21], just like what has
been done by Eschenauer and Gligor [4] and Chan et al. [5].
However, since neither our node distribution nor our key
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Fig. 6. Local connectivity performance comparisons. (a) Comparison of EG and EG-D schemes (� ¼ 0). jSj ¼ 100; 000 and jScj ¼ 1; 770.

(b) Comparison of the DDHV and DDHV-D schemes (� ¼ 19). jSj ¼ 241 and jScj ¼ 4.

7. EG-D stands for the scheme that combines the original EG scheme and
deployment knowledge. It is a special case of DDHV-D (i.e., the � ¼ 0 case).

8. Some of the “unreachable” nodes might be reachable physically
because they are within the communication range, but they cannot find a
common key with any of the nodes in the largest isolated component.



sharing is uniform, Erdos and Rényi’s random graph
theorem is not a good estimation method. Recently,
Shakkottai et al. have determined the connectivity of a
wireless sensor grid network with unreliable nodes [22].
Their results have been corrected and further improved by
Kumar et al. [23]. In our future work, we will estimate the
global connectivity by using the results given by Kumar
et al. [23]. In this work, we only use simulation to estimate
global connectivity. We use the configuration described in
Section 7.1 to conduct the simulation. The relationships
between the local connectivity and the global connectivity
are shown in Table 1.

The simulation results indicate that, when the local
connectivity plocal reaches 0:697, only 0:12 percent of the
sensor nodes are wasted due to the lack of secure links; when
plocal reaches 0:956, no nodes are wasted. These results
exclude those nodes that are not within the communication
range of the largest isolated component because they are
caused by deployment, not by our key predistribution
scheme.

7.3 Resilience against Node Capture

We assume that an adversary can mount a physical attack
on a sensor node after it is deployed and read secret
information from its memory. We need to find how a
successful attack on x sensor nodes by an adversary
affects the rest of the network. In particular, we want to
find the fraction of additional communication (i.e.,
communications among uncaptured nodes) that an
adversary can compromise based on the information
retrieved from the x captured nodes.

7.3.1 Comparison with the Existing Schemes

In Fig. 7, we show the numerical results on the resilience
performance of the DDHV-D scheme against node
compromise (capture). The attack circle is assumed to be
Rc ¼ 250 m. Our main performance metric is, Pc, the
fraction of communication links that are compromised
when x nodes are captured. We plot Pc for the
Eschenauer-Gligor scheme (EG) [4], the Chan-Perrig-Song
(CPS) scheme [5], and the DDHV scheme [6] in Figs. 7a
and 7b. We plot Pc of the DDHV-D scheme in Figs. 7c
and 7d. We use average to represent the average number
of communication links compromised in the network or
in a set of groups.

In Figs. 7c and 7d, the network average curve shows the
average of all groups in the network. Since the adversary
only captures nodes inside the attack circle, only the keys of
a few groups are affected. Those groups that are far away
from this region are not likely to be affected at all.
Therefore, the resilience performance of the network on
average is very good for the x values that we show.
However, if we calculate the average resilience performance
of those groups that have been affected the most, the “worst
groups,” their resilience is quite different from the network
average. For example, if we consider the worst group, Pc

approaches 1 more quickly than the others. These are not
surprising results considering that the adversary is con-
centrating its efforts in the same area as we are measuring.
As we increase the number k in the “k worst groups”
performance, Pc increases more slowly. Such a trend is
shown in both of Figs. 7c and 7d.

As we mentioned before, when � ¼ 0, the DDHV-D
scheme reduces to the EG-D scheme. To see the difference
between the EG scheme and the EG-D scheme, we plot the
resilience of the EG-D scheme in Fig. 8 for plocal equal to 0:33
and 0:50. Comparing Fig. 8 with Fig. 7, we can see that the
EG-D scheme outperforms the EG scheme in resilience.
However, we notice that the EG-D scheme is worse than the
DDHV scheme and DDHV-D scheme. This is due to the
� value used in EG-D (� ¼ 0).

7.3.2 Relationships between Resilience and Various

Parameters

In the following experiments, we study how various
parameters, such as memory usage m, local connectivity
plocal, and attack radius Rc affect resilience. For the sake of
simplicity, it is better to use one value to represent
resilience, rather than using a series of values (a curve)
based on x. The representative number we choose is the
minimum number of nodes (denoted as xmin) that need to
be compromised if attackers want to compromise at least
10 percent of the communication links from the worst five
groups (excluding the ones that are connected to the
compromised nodes). The reason that we choose 10 percent
is that, usually, resilience deteriorates exponentially after
this threshold. In the following experiments, we will use
xmin as our resilience score and plot it on the Y-axis.

1. Resilience versus Memory Usage. When the memory
usage m increases, the local connectivity also
increases. In other words, if we want to maintain
the same local connectivity, we can increase the size
of the global key-space pool S such that there are
more key spaces to choose from. As a result, the
resilience gets better. In this experiment, we study
how the increase of m affects resilience. We fix � ¼ 9
and plocal ¼ 0:50.9 Fig. 9a shows that resilience
increases almost linearly with memory usage.

2. Resilience versus Local Connectivity. In this experi-
ment, we would like to answer the following
question: Is it possible to achieve both high local
connectivity and resilience when � and m are fixed? To
this end, we fix � ¼ 9 and m ¼ 200; we then change
S, so plocal can change accordingly. We plot the
resilience result for each plocal value. Fig. 9b depicts
the results. It clearly shows that resilience and
connectivity are two conflicting properties; higher
connectivity leads to lower resilience.
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TABLE 1
Local Connectivity versus Global Connectivity

9. It is impossible to achieve the exact value 0:50 for local connectivity;
we maintain the value of plocal around 0:50.



3. Resilience versus Rc. The resilience of our scheme is
also affected by the attack radius Rc. When the
compromised nodes are more concentrated (i.e., Rc

is smaller), the damage to the worst k ¼ 5 groups
should be more severe. To verify this hypothesis,
we fix � ¼ 9, m ¼ 200, and plocal ¼ 0:50; we then
plot the resilience results for a number of different
values of attack radius Rc. Fig. 9c depicts the
results. It does show that resilience gets better
when the compromised nodes are less concen-
trated. This result is easy to understand: When Rc

gets larger, the compromised nodes become more
and more evenly distributed among all the deploy-
ment groups. Therefore, given the same x (the
number of compromised nodes), the number of
compromised nodes for each particular deployment
group is less for a larger Rc than that for a smaller
Rc; thus, the damage to any particular deployment
group becomes less severe.

7.4 Communication Overhead

Since the probability that two neighboring nodes share a

key space is less than one, when the two neighboring nodes

do not have a common key space (i.e., they are not

connected directly in the key-space-sharing graph), they
need to find a route in the key-space-sharing graph to
connect to each other. We need to determine the number of
hops required on this route. Obviously, when the
two neighbors are connected directly, the number of hops
needed is 1. When more hops are needed to connect
two neighboring nodes, the communication overhead of
setting up the security association between them is higher.
We use phð‘Þ to denote the probability that the smallest
number of hops needed to connect two neighboring nodes
is ‘. Obviously, phð1Þ equals the local connectivity plocal.

The communication overhead only depends on local
connectivity; therefore, we study the relationship between
local connectivity and communication overhead. We use
simulations to estimate how many of the key setups have to
go through ‘ hops, for ‘ ¼ 1; 2; . . . . Fig. 10a depicts the
communication overhead when the local connectivity
changes. In Fig. 10b, we show the change of communication
overhead versus memory usage m for the EG-D scheme. As
we can observe from the figure, when plocal ¼ 0:3, the sum of
phð1Þ, phð2Þ, and phð3Þ is almost 1, which means that most
of the key setups can be conducted within three hops.
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Fig. 7. Comparing the network resilience of EG, CPS, DDHV, and DDHV-D Schemes. The deployment area is 1; 000� 1; 000. In (c) and (d), there are

10� 10 deployment groups. When comparing (c) and (d) with (a) and (b), it should be noted that scales for both x-axes and y-axes are different; this

is because we want to show more information in the figures. (a) EG, CPS, and DDHV: p ¼ 0:33, m ¼ 200. (b) EG, CPS, and DDHV: p ¼ 0:50,

m ¼ 200. (c) DDHV-D: p ¼ 0:33, m ¼ 200, � ¼ 19, Rc ¼ 250. (d) DDHV-D: p ¼ 0:50, m ¼ 200, � ¼ 19, Rc ¼ 250.



7.5 Savings in Computational Costs

Compared to the DDHV scheme, the computation for
computing pairwise keys can be more efficient for the
DDHV-D scheme and can thus save energy. We explain the
cause of such a difference.

According to Du et al. [6], the matrix G is defined over a
finite field GF ðqÞ. A natural choice is to work with fields of
characteristic 2 (i.e., fields of the form GF ð2kÞ) both because
multiplications in this field are rather efficient and also
because elements in such fields naturally map to bit strings
which can then be used as cryptographic keys. It is
observed by Du et al. [6] that, to derive a 64-bit key, it is
not necessary to work over GF ð2kÞwith k � 64; instead, one
can define the key as the concatenation of multiple
“subkeys,” each of which lies in a smaller field. As an
example, a 64-bit key can be composed of four 16-bit keys or
eight 8-bit keys. The key observation is that security is not
affected by working over GF ðqÞ where q is “small”; this is
because the security arguments are information-theoretic
and do not rely on any “cryptographic hardness” of the
field GF ðqÞ.

Since the number of multiplications for generating an
8-bit key is the same as that for a 16-bit key and the cost of a
multiplication in GF ð216Þ is equivalent to four multiplica-
tions in GF ð28Þ, using GF ð28Þ to generate a 64-bit key can
reduce the total cost by half compared to GF ð216Þ.
However, there is a requirement on q: It must be larger

than N , the number of columns of the matrix G in the
DDHV scheme [6].

Recall that each column of the matrix G in the DDHV
scheme corresponds to a node; therefore, the total number
of nodes that can use a key space is the number of
columns of G. We call this number the capacity of a key
space. In the original DDHV scheme, each key space can
be selected by any node in the network, so the capacity of
a key space must be larger than the size of the network N .
However, in the DDHV-D scheme, each key space can
only be used by at most two deployment groups.
Namely, the capacity of a key space can be N

50 (assuming
that the total number of deployment groups is 100). This
means that, for N ¼ 10; 000, the original DDHV scheme
has to work over GF ð216Þ, while the DDHV-D scheme
can work over GF ð28Þ.

We measured the actual time of computing a 64-bit key
using a key space with � ¼ 50. The measurement was
conducted on MICAz sensor nodes [24]. Table 2 describes
the results for various underlying fields. The results show
that being able to use GF ð28Þ can save 39 percent of energy
compared to using GF ð216Þ.

8 CONCLUSIONS AND FUTURE WORK

We have described a random key predistribution scheme
that uses deployment knowledge. Our scheme takes
advantage of the prior knowledge about deployment and
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Fig. 8. Network resilience of the EG-D scheme (a special case of DDHV-D). (a) EG-D: p ¼ 0:33, m ¼ 200, � ¼ 0. (b) EG-D: p ¼ 0:50, m ¼ 200, � ¼ 0.

Fig. 9. Resilience as a function of various parameters. (a) Resilience versus memory usage m (� ¼ 9, plocal ¼ 0:5, and Rc ¼ 250). (b) Resilience

versus local connectivity plocal (� ¼ 9, m ¼ 200, and Rc ¼ 250). (c) Resilience versus attack radius Rc (� ¼ 9, m ¼ 200, and plocal ¼ 0:5).



reduces the number of unnecessary key spaces carried by
each sensor. We have conducted a comprehensive study on
the connectivity and resilience of our scheme. The results
have shown significant improvement in both connectivity
and resilience over the other existing key predistribution
schemes [4], [5], [6]. We have presented both the analytical
and numerical results. In our future work, we will study
different deployment models and how the accuracy of
deployment modeling affects these results.

APPENDIX A

RESILIENCE ANALYSIS

In this appendix, we present the detail of resilience analysis
discussed in Section 6.2. We will derive an upper bound on
the fraction of additional communication that an adversary
can compromise based on the information retrieved from
xc captured nodes.

Let zi denote the distance between the deployment point

of group Gi and location ðx; yÞ, the center of the attack circle

(see Fig. 5). Let gi ¼ gðzi j ni 2 GiÞ represent the probability

that a sensor node ni from group Gi resides within the

attack circle. The details of the derivation for gi is given in

Section 6.1.1, and the results are given in (6) and (7).10

With N sensors divided into t� n groups, each group

has N
t�n sensors. The expected number of sensors that are

from group Gi and reside in the attack circle is

Ni ¼
N

t � n gi;

with the expected number of total sensors in the attack

circle center at ðx; yÞ as

Nððx; yÞ; RcÞ ¼
X
i2�

Ni ¼
X
i2�

N

t � n gi:

Since the adversary randomly chooses xc sensors among

these Nððx; yÞ; RcÞ sensors, the expected number of cap-

tured sensors that are deployed from group Gi is

xiðx; y;RcÞ ¼ xc �
Ni

Nððx; yÞ; RcÞ
¼ xc �

giX
j2�

gj
:

Next, we look for the expected number of sensors that

carry key spaces from the key-space pool Si for group Gi.
11

Since the sensors that are deployed from the neighboring

groups of Gi might carry key spaces that are also in Si, we

need to count the weighted sum of the numbers of nodes

that have been captured from all these groups:12

Xiðx; y; RcÞ ¼
X
j2�i

�ði; jÞ
jScj

� xjðx; y; RcÞ;

where �ði; jÞ, given by (9), is the number of common key

spaces shared by the key-space pools Si and Sj and �i

represents i and the indices of all neighboring groups of

group Gi. For example, �i ¼ fA;B; � � � ; H; Ig when i ¼ E
in Fig. 5.
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Fig. 10. Communication overhead. (a) Communication overhead versus local connectivity. (b) Communication overhead for the EG-D scheme

(� ¼ 0).

TABLE 2
Time (ms) for Computing a 64-Bit Secret Key (� ¼ 50)

10. One should replace R in (6) and (7) with the attack radius Rc here.

11. The key-space pool Si might not be disjoint with those of neighboring
groups of group Gi.

12. Physically, the nodes from the neighboring groups of Gi might only
carry a portion of key spaces that are in Si. Since we will use the results
given in [6], where each node is assumed to carry � key spaces from the
same key-space pool, we use the weighted sum to calculate the equivalent
average number of nodes in terms of carrying the key spaces from the key-
space pool Si.



Let c be the link between u and v and Cðx; yÞ be the event
that the attack circle is centered at ðx; yÞ. Due to the fact that
Cðx; yÞ is independent of Aðu; vÞ and Bðu; vÞ, we have

Prðc is compromised j Aðu; vÞ and Bðu; vÞÞ

¼ 1

XY

Z Y

y¼0

Z X

x¼0

Prðc is compromised j Cðx; yÞ and Aðu; vÞ

and Bðu; vÞÞ dxdy:

We derive

Prðc is compromised j Cðx; yÞ and Aðu; vÞ and Bðu; vÞÞ

in the following. This is the probability that the link c

between nodes u and v is compromised when the following
conditions are all satisfied: 1) The compromised center is at
ðx; yÞ, 2) nodes u and v are physical neighbors, and 3) nodes u
and v have at least one common key space.

Let Ki be the event that c is using a key space in Si. Then,

Prðc is compromised j Cðx; yÞ and Aðu; vÞ and Bðu; vÞÞ
�
X
i2�

Prðc is compromised j Ki and Cðx; yÞ and Aðu; vÞ

and Bðu; vÞÞ�
PrðKi j Aðu; vÞ and Bðu; vÞÞ:

ð11Þ

The inequality is due to the fact that Ki and Kj might not be

independent and the last equation is obtained due to the

fact that Ki is independent to Cðx; yÞ.
According to the result given by Du et al. [6], for any of

the jScj keys belonged to group Gi that might be used by

any link, we have13

Prðc is compromised j Ki and Cðx; yÞ and Aðu; vÞ
and Bðu; vÞÞ

¼
XXiðx;y;RcÞ

j¼�þ1

Xiðx; y; RcÞ
j

� �
�

jScj

� �j
1� �

jScj

� �Xiðx;y;RcÞ�j
:

Now, we need to calculate the probability

PrðKi j Aðu; vÞ and Bðu; vÞÞ

¼ PrððKi and Bðu; vÞÞ and Aðu; vÞÞ
PrðAðu; vÞ and Bðu; vÞÞ ;

in (11). Note that, the probability PrðAðu; vÞ and Bðu; vÞÞ has

been given in the previous section. Since the event Ki is true

implies that the event Bðu; vÞ is true, we get

PrððKi and Bðu; vÞÞ and Aðu; vÞÞ ¼ PrðKi and Aðu; vÞÞ:

By a similar procedure given in a previous section, we have

PrðKi and Aðu; vÞÞ ¼ 1

ðntÞ2X
j2�i

pð�ði; jÞÞ � PrðAðu; vÞ j u 2 Gi and v 2 GjÞ:

Combining (10), we have

Prðc is compromised j Aðu; vÞ and Bðu; vÞÞ

� 1

XY
�
X
i2�

P
j2�i

pð�ði; jÞÞ � PrðAðni; njÞÞP
j2�

P
i02� pð�ði0; jÞÞ � PrðAðni0 ; njÞ

�

Z Y

y¼0

Z X

x¼0

( XXiðx;y;RcÞ

j¼�þ1

Xiðx; y; RcÞ
j

� �

�

jScj

� �j
1� �

jScj

� �Xiðx;y;RcÞ�j
)
dxdy;

ð12Þ

where PrðAðni; njÞÞ is given in (8).
Therefore, we have derived (12) as an upper bound on

the fraction of additional communication that an adversary
can compromise based on the information retrieved from
the xc captured nodes.
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