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New Encoding/Decoding Methods
for Designing Fault-Tolerant Matrix Operations

D.L. Tao, C.R.P. Hartmann, and Yunghsing S. (Sam) Han

Abstract—Algorithm-based fault tolerance (ABFT) can provide a low-cost error protection for array processors and multiprocessor
systems. Several ABFT techniques (weighted check-sum) have been proposed to design fault-tolerant matrix operations. In these
schemes, encoding/decoding uses either multiplications or divisions so that overhead is high. In this paper, new encoding/decoding
methods are proposed for designing fault-tolerant matrix operations. The unique feature of these new methods is that only additions
and subtractions are used in encoding/decoding. In this paper, new algorithms are proposed to construct error detecting/correcting
codes with the minimum Hamming distance 3 and 4. We will show that the overhead introduced due to the incorporation of fault
tolerance is drastically reduced by using these new coding schemes.

Index Terms—Array processors, concurrent error detection/correction, error detecting/correcting codes, fault tolerance,

multiprocessor systems.

1 INTRODUCTION

AGORITI—[M-BASED fault tolerance (ABFT) has been sug-
gested as a means for designing fault tolerant array
processors and multiprocessor systems. The advantage of
ABFT is that errors which are caused by permanent or tran-
sient failures in the system can be detected/corrected by
using a very low overhead and at the original throughput.
ABFT was originated by Huang and Abraham [7]. In [7], a
checksum approach is proposed to provide concurrent er-
ror detection/correction for matrix operations. The tech-
nique has been extended to many digital signal processing
(DSP) applications, such as matrix computations [1], [4], [8],
[10], [13], FFT [9], [17], [18], matrix equation solvers [11]
eigenvalue, and singular value problems [5]. Moreover, the
idea of ABFT is extended to design fault-tolerant multi-
processor systems [2], [3], [6], [15], [20].

Existing ABFT techniques use various coding schemes to
provide low-cost error protection for processor arrays, and
they have the block diagram as shown in Fig. 1. Note that
these coding schemes cannot be utilized to provide fault
tolerance for other parts of a computer system, e.g., main
memory and I/O devices. As a result, encoding/decoding
must be considered as overhead introduced by ABFT. In
[8], [10], [13], multiplication and division operations are
used in encoding/decoding, and so the complexity of over-
head is very high.

In this paper, we introduce a new class of encod-
ing/decoding techniques for designing ABFT. The resulting
ABFT can be used to perform concurrent error detec-
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tion/correction on a class of matrix operations which in-
clude matrix-vector multiplication, matrix-matrix multipli-

* cation, LU decomposition, QR decomposition, and matrix

inversion. During system normal operations, the probabil-
ity of having more than two faults is negligible. Hence, two
new encoding/decoding algorithms to construct error de-
tecting/correcting codes with the minimum Hamming
distance 3 and 4 are respectively proposed in this paper.
We will show that overhead of the proposed schemes (in
terms of additional operations and in terms of hardware
complexity) is significantly less than that used in [8], [10],
[13]. In ABFT, a fault manifests as a single error. Hence,
when the new scheme with the minimum distance 3 (4) is
mapped into an array processor to compute fault-tolerant
matrix operations, all single faults can be tolerated (all sin-
gle faults can be tolerated and all double faults will be si-
multaneously detected).

x(0) (&1 b 20)
x(1) g |_ g Z(1)

: 0 Processor Array o] H
x(0-2) 2 D 7(m-2)
x(n-1) i i Z{m-1)

Fig. 1. The block diagram of algorithm-based fault tolerance (ABFT)
techniques.

The fault model used in this paper is the same as that
used in [7], [8], i.e., a fault is modeled as a faulty PE which
may produce any arbitrary error under failures. A faulty PE
will manifest as a single data error because the computation
steps in the algorithms have been distributed among many
PEs in ABFT. Hence, for the sake of simplicity, we use the
words “fault” and “error” interchangeably in the rest of the
paper. The rest of the paper is organized as follows. In Sec-
tion 2, we discuss several existing encoding/decoding
methods. New encoding/decoding schemes are proposed
in Section 3. In Section 4, we compare the proposed

1045-9219/96$05.00 ©1996 |IEEE
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schemes with other existing schemes in terms of overhead
introduced by incorporating fault tolerance. The conclusion
is given in Section 5.

2 A BRIEF REVIEW

In this section, we evaluate existing ABFT techniques [7],
[8], [13] which are used to perform fault tolerant matrix-
vector multiplications. Note that the advantages and draw-
backs of these techniques [7], [8], [13] in matrix-vector mul-
tiplication are similar to that in matrix-matrix multiplica-
tion, LU decomposition, QR decomposition, and matrix-
inversion.

The check-sum scheme proposed in [7] can be used for
matrix-vector multiplication, but the overhead of this ap-
proach exceeds 100%. This scheme can only detect but not
correct errors that occur in LU decomposition and matrix
inversion. A weighted check-sum scheme is proposed in [8]
for detecting/correcting errors that occur in matrix-vector
multiplication, LU decomposition, matrix inversion, etc.
The following check matrix, H with dimension (d,,;, — 1) x
(dpin = 1 + k), is used to construct a code with the minimum
distance d,,,,,:

w Wy ewy, =1 0 e 0
= Wy Wap Wy o -1 - 0 )
Way Wep Wa, 000 e 0

Since the probability of having more than two errors is
negligible, we first consider single error correction, and
then consider single error correction and all double error
detection.

2.1 Single Error Correction

For single error correction, ie., the minimum Hamming
distance is 3, the check matrix given in [8] has the following
form:

W12

W21 Wy 00 -l

He Wi wy, -1 0 .
Wa2

Jou and Abraham have proposed the weight w,; as 2" be-
cause the multiplication of a number by 2' can be realized
by using a shift operation in a fixed-point system. Hence,
the H has the following form:

1 1 1 -1 0
H= [20 ol ..okl g _J~

The weights selected in [8], i.e., 20, 21, -+, and Zk_l, are
extremely large and can easily cause an overflow in the
system. When an overflow occurs, the system performance
will be degraded. If an overflow is avoided by using a

longer word length in redundant processors, then the re-
dundant processors which are used to compute

m k -

i
E 27X ai'jj X b].
j=1|\i=1

will be much more complex than the PE to compute

i(ai,j xbj).

J=1

To solve such a problem, three alternative solutions have
been proposed:

1) Jou-Abraham’s method with an overflow considera-
tion. In a fixed-point system, Jou and Abraham pro-
pose to use residue arithmetic [16]. Hence, the sums

k
2 %5
i=1

and
&
22 a; ;
, i=1
are replaced by
k
i=1 modM,
and

k
{z (2"1 a;; )modMZJ
i=1 modM, r

respectively. Thus, two divisors, M; and M,, are re-
quired. The divisor M, suggested in [8] is the largest
possible prime that is less than 2, Wll1ere [ is the
word length. For example, if I = 16, then 2'*" = 131,072,
and the divisor M, should be equal to 131,059. To ob-
tain a residue,

i1
(2 %ij )modM2 ’

a division operation is used. As a result, (k + 1) divi-
sion operations are required to obtain

[i (Zi—lai,j )modM2

i=1

modM, ’

and (k + 1) x k divisions are used in encoding. Simi-

larly, (k + 1) division operations are used in decoding.
2) Luk and Park’s scheme. Luk and Park alleviate the

problem by selecting w,; as j [13]. As a result, the

check matrix H in [13] is given as follows:

11 1 -1 0
H‘[l 2 k0 —1]

Although this method results in the size of the check-

sum increasing less rapidly, an overflow may still oc-

cur. To obtain

‘ (i Xa; j),

i=1
k multiplication operations are required, and so ¥ and
k multiplication operations are respectively used in
encoding and decoding.

3) A similar scheme is proposed in [10]. The check ma-
trix proposed in [10] has the following form:

a-|% W W10
wo wr L. szx(k-n 0 -1
where

1 27
VVk = exXp ‘]T .
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This scheme requires even more overhead than Luk and
Park’s scheme because it requires complex multiplications
in encoding/decoding.

The complexity of the above encoding/decoding tech-
niques is summarized in Table 1. It can be seen that the
overhead of encoding/decoding in these methods is
higher than that of matrix-vector multiplication (a matrix-
vector multiplication needs K multiplications and k x (k- 1)

additions).

TABLE 1
ADDITIONAL OPERATIONS USED

IN ENCODING/DECODING OF EXISTING TECHNIQUES

JA [8] LP[13] KW [10]
dmin=3 | (k+2)k K+k 2K+ 2k
divisions multiplications multiplications
2
oK oK 4
additions additions additions
Omn=4 | 2(k+2)k 2K+ 2k 4 ak
divisions multiplications multiplications
3K 3K 6K
additions additions additions

2.2 Single Error Correction/Double Error Detection
For single error correction and all double error detection, a
minimum Hamming distance 4 code is needed. Hence, the
check matrix has the following form.

wyo ow, cewy -1 000
CH={wy o wy, w00 -1 0
Wy Wi Wi 0 0 -1

The overhead of encoding/decoding using [8], [13], [10]
can be computed in a similar way as given in the previous
subsection and is also shown in Table 1.

3 PARTIAL CHECK-SuM: NEW
ENCODING/DECODING SCHEMES

In this section, we propose new encoding/decoding meth-
ods to compute matrix-vector multiplication, matrix-matrix
multiplication, LU decomposition, QR decomposition, and
matrix inversion. Similar to the schemes given in [8], [10],
[13], the encoding/decoding methods proposed in this pa-
per can be described by a check matrix H = [hi,j]~ As dis-
cussed in Section 2, multiplication/division operations
should be avoided in encoding/decoding, and thus the
new methods use only additions/subtractions so that the
total overhead will be reduced significantly. Two different
encoding/decoding methods are discussed in the following
two subsections.

3.1 Lengthened Hamming Codes (LHC)

In this subsection, we introduce the lengthened Hamming
code (LHC) with the minimum Hamming distance 3. So it
can correct all single errors. The lengthened Hamming code
can be constructed by the check matrix H.,_. Since only ad-
ditions/subtractions are used in encoding/decoding, the
entries in the first k columns of H:ec can be 0, 1, and 1. Be-

fore introducing a procedure to generate an H,,_, a lemma
is introduced to provide a sufficient condition for con-
structing the H,,.

*

LEMMA. Let c; and ¢ be two distinct columns in H__, a, , and

sec

a, be nonzero real numbers. If arc; = ayc;, then ¢; = ¢; or

C; = —C]'.

PROOF. If a,¢; = aoc;, then ¢; = Z—j ¢, . Since the entries in ¢; and
¢; can only be 1, 0, and -1, If a;c; = ayc;, then %j— can

only be 1 or —1. Therefore, ¢; = ¢; or ¢; = — ¢;. O

For constructing a minimum distance 3 code, every lin-
ear combination of two distinct columns of H:ec must be
linearly independent. This requires that every column of

*

H_,. is nonzero; and, moreover, by the above lemma, every
two columns of H:“ must be different, provided one is not
the negative of another. Hence, for a given 7, the maximum
number of columns in the H,,, will be equal to 1 (3" —1).
Out of —;—(3’ —1) columns, r columns are used as a negative

identity matrix. It can be seen that the maximum number of
information bits to be encoded for a given r is equal to

4(3" =1) - r. Moreover, if k is less than 2 (3" — 1)~ r, then k
out of (%(3’ -1 - r) vectors will be selected in such a way
that the vectors with more 0s will be selected first (Note
that vectors in H.,, containing more 0s will result in a low
complexity of encoding/decoding). A procedure to gener-
ate H,,, is given as follows.

PROCEDURE L.

Step 1: Let k(r) denote the number of information (check)
digits. For a given k, find the minimum r to satisfy:

%(3’—2r——1)2k. )

Step 2: For the r found in Step 1, find the minimum 7/,
where 2 <7’ <7, to satisfy:

- 7 \qi-1

Z( ijz > k.

i=2 )

Step 3: Let S; be the set containing all r-digit vectors
which contain j, 1s, j, — 1s, and (r — j; + j,) Os, where
2<jj+fpsrand0<j, < [jIEJQ_I, and [ x]is the small-

est integer greater than or equal to x.
Step 4: Let S, be the set containing all r-digit. vectors
which contain f3 1s, j; — 1s and (r — 2 X j;) Os, where
2 £2 X j3 <7 Partition S, into Sy and Sy, such that
1) 85=55 U Sy,
2) for every element s € 5,;, we can find an element
t € Sy, such that s + ¢ = 0, where + is the vector
addition.
Step 5: S=5,; U 5.
Step 6: Let 15| denote the cardinality of S. If 1S| -k >0,
then delete | S| — k elements from $ arbitrarily.
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Step 7: H* is an r x (k + r) dimensional matrix. In the

* T = .
transpose of H_, , [H ] , each element in S is used as

sec

a row vector in the first k rows, the last r rows of

« 17 . . . . .
[Hse C] is the negative identity matrix.

We now use an example to illustrate the construction of
an H:e .

ExampLE 1. Let us construct an H;C -matrix for k = 26 by
using Procedure I. Since k = 26, the minimum r to sat-

isfy the inequality:
T, y
Zx(37-2r-1)226
is equal to 4. In addition, we find that " = 3.
The elements in Sy are listed in the following table.

fi b Elements in S,
1100,1010,1001,
0110,0101,0011,

0111;,10411,1101,1110,

011-1,101-1,110-1,11-10,
01-11,10-11,1-101,1-110
0-111,-1011,-1101,-1110

[ACIE \C R\ R - I O VY
[ e I = =)

The elements in S, are shown as follows.

Elements in S,
-1100,-1010,-1001
0-110,0-101,00-11

Elements in S,,
1-100,10-10,100-1
01-10,010-1,001-1

An H;c is constructed as follows:

*

HS€C=

111000011101 110 11 1 0-1-1-1-1-1 00-100 0
1001101011101110-1-1-101110-100-10 0
0101011101110-1-1-10171 10101 1-100-10

0010111110-1-1-1011101 11000010001

By using LHC, r additional check digits will be used. The
relationship between k and r and the ratio between k and
in LHC are shown in Table 2.

TABLE 2
THE RELATIONSHIP BETWEEN k AND r IN LHC
k 5~ 10 11 ~ 36 37 ~116 117 ~ 358
r 3 4 5 6
£ | 06~030|036~011 | 0.14~0.04 | 0.05~0.02

We now consider the error detecting/ correcting capabil-
ity of the LHC.

THEOREM 1. The code constructed by using the H;
minimum Hamming distance 3.

. has the

PROOF. We need to prove that every linear combination of

two columns of H,, is linearly independent. Let c;

and G be two distinct columns in H;C. We need to
show that

ac;=ayc; iff ay=a,=0,
where 4; and 4, are real numbers.

CIf a; = a, = 0, then a,¢; = 4,¢;. We now show that
ayc; = aoc; implies that a; = a, = 0. We prove this by
contradiction. Assuming that there exists a; # 0 or
a, # 0 to satisfy a,¢; = a5¢;. By Lemma 1, we have
@1 = dy, OT 41 = —,. Two cases are considered.

1) a, = ay ie, ¢; = ¢;. In Step 3, Step 4, and Step 7 of
the Procedure 1, vectors in S;, in S;;, and in the
1dent1ty matrix are distinct. Hence, ¢; # cj is valid
forallis ]

2) ay = —ay, i.e, ¢; = —¢;. In Step 3, vectors in S; have
the property that the number of positive 1s is
greater than that of —1s. In Step 4, vectors with the
same number of 1s and —1s are selected into S,. S,
is partitioned into S, and S, in such a way that if
¢;is in 5y, then —¢; is in S,,. In Step 7, vectors in the
identity matrix are used. Therefore, we can see that
if ¢; is selected, then —; is not selected.

Since we cannot find a; # 0 or a, # 0 to satisfy
ayc; = ayc;, we conclude that a;¢; = ay¢; implies that
a, = ﬂz =0. I

3.2 A Single Error CorrectlnngoubIe Error Detecting
(SEC/DED) Code
In this subsection, we construct a code with the minimum
distance 4, which can correct all single errors and detect all
double errors simultaneously. Similar to the lengthened
Hamming code, the parity-check matrix of this code contains
0,1, and -1 so that encoding/decoding requires only addi-
tions/subtractions. We now introduce Procedure II to con-

struct an Hm,ded

equal to 4, a linear combination of any two vectors in

H;C, 4q Ccannot be the third one. To construct such an

Since the minimum Hamming distance is

H,,.;4a, Procedure II selects all r-bit vectors with the fol-
lowing properties: 1) the number of nonzero entries must
be odd and is not equal to 3; 2) each vector contains exactly
a single —1.

PROCEDURE IL

Step 1: For a given k, find the smallest r to satisfy the fol-
lowing inequality:

Yy ix (: ) > k. @

i5,i=o0dd

Step 2: Let S be the set containing all r-digit vectors which
have odd weight except three, prov1ded that each
vector contains exactly one —1.

Step 3: Let |S| denote the cardinality of S. If 151 —k > 0,
then delete IS| —k elements from S arbitrarily.

Step 4: H,, ., is an r x (k + ¥) dimension matrix. In the

T
transpose of H, ., [Hm, ded] , each element in S is
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used as a row vector in the first k rows, the last r rows

# T
of [Hm 1de d] is the negative identity matrix.

We now use an example to illustrate the construction of
*
an Hsec/ded '

EXAMPLE 2. Let us construct an H.. o/deq “Matrix for k = 15 by

Se
using Procedure II. For k = 15, the smallest r to satisfy
the following inequality:
> ix @ 215
i25,1=0dd

is6. An H.

weldea 1S sShown as follows :

*
Hsec/ ded =

<11 1111-111-11~11 0 0-100 00 0]
1-11-1111-111-100 11 0-100 00
11-11-1111-1001-11 100 -~-1000
11111-1000111111000-100
11100011111 11-1100 00-10
0001111111111 1~-100 00 0-1

THEOREM 2. The code constructed by using the H., ., has the
minimum Hamming distance 4.

PROOF. We need to prove that the code constructed by us-
ing the H,_,,,, has the minimum distance 4. To do so,
we prove a more general result that any three distinct

x
columns of H,,,,

real number field. Let ¢; ¢;, and ¢, be three distinct
and let W(c)), (W(c)) and W(cy) be
the number of nonzero digits in the vector ¢; (¢; and
). We need to show that

¢ are linearly independent over the

. *
columns in H_, ...

C; + A€ = AxCy iff a1=a,=4a3=0,

where 4,, 4,, and a; are real numbers.

If a; = a, = a5 = 0, then ayc; + ay¢; = asc,. We now
show that a4C; + aC; = A3y 1mp11es thata; =a, =a3=0.
The following cases are considered:
Casel:a,=0,0ra,=0,0ra; =0. If a, =0, then

ay¢; = At implies a, = a; = 0 since ¢; and ¢; are

nonzero and distinct, and ¢; # —¢;. Similarly, if

a, =0, a,c; = agcy implies a; =a3 = 0; and if a3 = 0,

ayc; = axc, implies a; = a, = 0.

Case 2: a; # 0 and a, # 0 and a; # 0. In this case, we

prove that a,¢; + a5¢; # asc;. For the sake of simplic-
ity, we prove that
bic; +byc; # ¢,
where
a a
b =— and b, = —.
ay a
Two subcases are considered:
Case A: W(c; + ¢)) = Wlc) + W(c). In this subcase,

since Wic;) and W(c)) are odd, W(b,c; + byc;) is even.
However, W(c,) is odd, and so by¢; + byc; # ¢y

Case B: W(c; + ¢) < W(c) + W(cy). Since the nonzero

entries of ¢, contain a single -1 and even number of

1s, bic; + byej = ¢ only if Wibyc; + byey) is odd, and

bic; + byc; contains exactly one 1. Let the bit posi-
tion of the —1 entry of ¢; denote by ;.

case a: by = b,.

1) The I;th bit of ¢; = —1. Hence, the nonzero en-
tries of bic; + byc; contain —2b; and by, whereas
the nonzero entries of ¢; contain only -1 and 1.
Thus, byc; + byc; # ¢

2) The /th bit of ¢; = 0. If W(byc; + byc)) is odd, then
the nonzero entries of byc; + bycj contain —b; and
2b;. Since the nonzero entries of ¢, contain only
-1 and 1, blci + szj # Cpe

3) The L;th bit of =1 Since W(c;) # 3 and W(cj) #
3, then W(bic; + byc;) # 1. In addition, if
W(bic; + byej) is odd, then the nonzero
entries of byc; + byc; have the same sign,
or contain by and 2b;, or contain —b; and

2b,. Therefore, bic; + bycj # ¢4
case b: by =-b,.
In this case, we only consider b; > 0 and similar ar-

guments are valid for b; < 0. Three possibilities are
considered.

1) The lith bit of ¢; = 1. Hence, if W(byc; + byc)) is
odd, then the nonzero entries of byc; + byc; con-
tain —2b; and b;, whereas the nonzero entries of
cg contain —1 and 1. Thus, bi¢; + by # ;.

2) The [ith bit of ¢; = 0. If W(byc; + byc)) is odd, then
byc; + byc; contains more than one —b; or contains
—b; and 2b,. Since the nonzero entries of ¢; con-
tain only a single -1 and 1s, by¢; + bycj # ¢

3) The I;th bit of ¢; = —1. Since ¢; contains only
a single negative entry (-1), if bic; + by
contains only a single negative entry, then
Wibyc; + byc)) is even. Since W(cy) is odd, and
hence bic; + byc; # ci.

Similar arguments are valid for b; <0.

case ¢: by # b, and b, # -b,.

In this subcase, since b; # b, and b, # ~b,, only

one of them can be either 1 or —1. Hence, if

bic; + bycj = ¢, then there does not exist an m

and an n such that ¢ = 0, ¢j»=1, ¢;y = 1, and

¢jy =0, where ¢y, and c¢;,(c;,, and cj,) are re-
spectively the mth and nth bit of ¢;(c;). Three
possibilities are considered.

1) W(c) = Wlcp. Clearly, W(c;) 2 5 and W(c) 2 5
here. All nonzero entries of ¢; and ¢; must be
overlapped. Then, b; + b, =1and -b; + b, =1, or
by+b,=1and by — by =-1. Thus, b, = 0 or b; = 0.
This contradicts to the assumption that b; # 0
and b, # 0. Thus, bic; + byc; # ¢

2) W) > Wlc). Since W(c;) > Wi(c), then
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W(cy) 2 Wicp) + 2. This implies b; = 1 or by = 1.
In order to have byc; + byc; = ¢, if by = 1, then at
least one of the following equations hold:
_bl —b2 = -1, bl + bz = 1, and bl - bz = 1,
whereas if by = ~1, then b, — b, = —1. However,
all of them imply b, = 0. Contradiction. Thus,
bic; + byt # ¢

3) Wic) < W(c). The argument is similar to 2). O

The relationship between k and » and the ratio between k
and  in this new code are shown in Table 3.

TABLE 3
THE RELATIONSHIP BETWEEN kK AND 1 IN THE SEC/DEC CoDE
k 6 ~ 30 31 ~ 112 113 ~ 436 437 ~ 787
r 6 7 8 9
z 1~020 | 0.26~0.06 0.07 ~ 0.02 0.02 ~ 0.01

3.3 Fault-Tolerant Matrix Operations

By using the proposed encoding/decoding schemes, we
design new ABFT techniques for computing fault-tolerant
matrix operations. For example, we encode matrix-vector
multiplication as described in the following equation.

G
S

Ct=]%1|=a*x B=

G
¢h
L€ ]
B Go 0 Gy,
Gy Gy Dom b
bl
Y11 F12 Getm || 2 )
Qe G Ym | p .
i
an, an, an b
m
L9y hp o an,, |

where

k
ari_j:Ehl.,nXan,j 1£j<m,1Li{<r.
n=]
From the above discussion we can see that the check
digits are formed by adding/subtracting a subset of ele-

ments to be encoded. Thus, we call these schemes as partial
check-sum.

4 OVERHEAD EVALUATION

In this section, we examine overheads of ABFT tech-
niques introduced by different encoding/decoding
schemes. For the sake of simplicity, we consider a ma-
trix-vector multiplication, and similar results can be ob-
tained for other matrix operations. Note that when an
ABFT technique is incorporated, the overhead includes
encoding, decoding, and matrix-vector multiplication
due to check digits. We consider the overhead in terms
of the additional operations and the hardware overhead

‘when the proposed algorithms are mapped into a fault-

tolerant processor array.

4.1 Single Error Correction

In this subsection, we compare the overhead introduced
by the LHC with that by the single error correcting code
constructed by weighted check-sum schemes. The overhead
of existing encoding/decoding schemes [8], [13], [10] in
terms of additional operations is shown in Table 1. Since
the complexity of a multiplication is the same as that of a
division, the overhead in [12] is considered as the over-
head of existing weighted check-sum schemes as shown in
Table 1. When the LHC is used, r check digits, ar;; (I1<i<n,
1 £j<7), are used for each column as shown in (3). Since
the complexity of an addition is the same as that of a sub-
traction, a subtraction is considered as an addition in the
following. To construct ar;; and cr;, ¢ x k additions are re-
quired, where ¢ x k is the average number of nonzero en-
tries in a row of H,,, and the average c is equal to 0.6. In
addition, the check digits in A” will introduce additional
r x k multiplications and r x (k ~ 1) additions. The over-
head is also shown in Table 4.

Theoretically, the complexity of a multiplication is an
order of magnitude higher than that of an addition. Hence,
from Table 4, the overhead of an ABFT constructed by the
LHC has the complexity of Ok x #) = O(k log k), compared
to the existing schemes with complexity of O(). In prac-
tice, only a finite word length is used, e.g., 32-bit. If [ is the
word length, then a multiplication is at least [ times more
complex than an addition. Therefore, we consider the com-
plexity of overhead in terms of additions, and define the
overhead ratio (OR) as follows:

Overhead , (d_.
OR(d,,;,) = 0verheadnewédmm§
wes N min
where d,;, is the minimum distance of a code. When
i = 3, we have

TABLE 4
OVERHEAD COMPARISONS WHEN d,;, = 3 (SINGLE ERROR CORRECTION) WHERE r SATISFIES (1) AND r IS IN AN ORDER OF log k (1)

encoding

matrix-vector
multiplication

decoding

total

weighted check-sum

k2 multiplications
2k(k— 1) additions

2k multiplications
2(k— 1) additions

k multiplications
2(k — 1) additions

k2 + 3k multiplications

2K + 2k additions

LHC

2
cx rx k additions

rx k multiplications
rx (k—1) additions

¢ X rx k additions

rx k multiplications

rx (ex K+ (1 +0) x k— 1) additions
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TABLE 5
OVERHEAD COMPARISONS WHEN d),;,= 4 (SEC)/DED CoDE) WHERE r SATISFIED (2)
encoding matrix-vector decoding total
multiplication

weighted check-sum 2k2 multiplications 3k multiplications 2k multiplications 2k2 + 5k multiplications

3k(k - 1) additions 3(k - 1) additions 3(k — 1) additions 3 + 3k additions
the SEC/DED code rx k2 additions rx k multiplications rx k additions rx k multiplications

rx (k- 1) additions rx (K + 3k —1) additions
ORG) Overhead,,, erance. The HRRs for a 24-bit and a 32-bit system using

Overhead. (3)

rx(exk+kxl+(1+c)xk—-1)

@)
(K* +3k) % 1+ 2k + 2k

For a 32-bit and a floating-point system, [ is respectively
equal to 32 and 24. The comparisons in terms of overhead
for a 32-bit and for a floating-point system are shown in
Fig. 2.

4.2 Single Error Correction/Double Error Detection
In this subsection, we compare the overhead introduced by
the SEC/DED code with that by the single error correcting
and all double detecting code constructed by weighted check-
sum schemes. When d,,;, = 4, the overhead of two different
approaches is shown in Table 5.

05 5 i i i [ i T i i 1

04 | 32-bit systems with dpip, = 3 —  _
Floating point system with dpin = 3 —

0.3 k 32-bit systems with dmin = 4 =—

| Floating point system with dypim =4 - - - -
0.2

Or e Lo mo<O

AN A e [T ——— — —_—
¥ T
01 K,i;;.;_- e L L -
il 1 I 1 1 i 1 1 — i
20 70 120 170 220 270 320 370 420 470 520
k
Fig. 2. Overheard ratio in terms of additional operations.
When dpin = 4, we have
Overhead, rx (k2 +kx1+3k—1)
0R(4) - sec/ ded (5)

Overhead,, (4) —

wes

(2k* +5k) x [+ 3k* + 3k

For a 32-bit and a floating-point system, the overhead ratios
are also shown in Fig. 2.

We now consider the hardware overhead of the pro-
posed schemes and existing techniques. Note that an im-
portant design rule for mapping an encoding/decoding
algorithm into an array processor is that extra delays can-
not incur a throughput degradation. In [19], existing and
proposed encoding/decoding techniques are respectively
mapped into an array processor. The hardware redundancy
ratio, HRR, which is the ratio of the additional hardware
required to implement fault tolerance and the logic re-
quired to carry out the matrix operations without fault tol-

LHC are shown in Fig. 3, which is significantly less than
that of existing techniques. The detailed discussion can be
found in [19].

5 CONCLUDING REMARKS

In this paper, we have proposed two new encod-
ing/decoding schemes which can be used to design fault-
tolerant matrix operations for array processors and multi-
processor systems. These two schemes enable a processor
array either to tolerate all single faults or to tolerate all sin-
gle faults and simultaneously detect all double faults. The
major advantage of using these codes is the simplicity of
encoding/decoding. Since only additions/subtractions are
used in encoding/decoding, the total number of additional
operations due to the incorporation of fault tolerance can be
reduced to less than 30% of that used in existing schemes.
Moreover, for matrix operations, it has been shown in [1],
[14] that generalized linear codes should be used in ABFT
techniques. In this paper, we introduce error detect-
ing/correcting codes in GF(3) with the minimum Hamming
distance 3 (4) to construct efficient ABFT to tolerate all sin-
gle faults (to tolerate all single faults and simultaneously
detect all double faults). Therefore, we expect that error
detecting/correcting codes in GF(3) with the minimum
distance d,,;,, where d,,;, 2 5, could be used to construct effi-
cient ABFT techniques which can tolerate two or more
faults simultaneously.

H

a 0.5 T T T T T T T T T T
T

d 32-bit systems with dp;p =3 —
Y04 ’» Floating point system with d,,,;, = 3 — —
e

003~ -
v

e

T

hoo2 -
e

a

d

R 0.1 -
a —acsfio e

t

i I L ! I [ 1 | i 1
° 200 400 600 800 1000 1200 1400 1600 1800 2000

k

Fig. 3. Hardware overhead ratio.
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