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Probability Distribution

Definition: A probability distribution gives the 
probability of obtaining all possible (sets of) values of a 
random variable. It gives the probability of the outcomes 
of an experiment. Note that a probability distribution is 
an example of the “classical” definition of probability. 
Think of it as a histogram of the entire population.

Population Sample

Random variable Measurement

Probability dist. Frequency dist.

Parameters Statistics (Estimates)

Definition: A random variable is a characteristic whose 
obtained values arise as a result of chance factors.
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Probability Distributions
• norm, binom, beta, cauchy, chisq, exp, f, gamma, 

geom, hyper, lnorm, logis, nbinom, t, unif, 
weibull, wilcox

• Four prefixes:
• ‘d’ for density (PDF)
• ‘p’ for distribution (CDF)
• ‘q’ for quantile (percentiles)
• ‘r’ for random generation (simulation)

• Each distribution has arguments that need to be 
specified
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Probability Distributions
•Cumulative distribution function P(X ≤ x): 
‘p’ for the CDF

•Probability density function: ‘d’ for the 
density,, 

•Quantile function (given q, the smallest x
such that P(X ≤ x) > q): ‘q’ for the quantile

•simulate from the distribution: ‘r’
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Probability Distributions
Distribution        R name    additional arguments
beta                     beta shape1, shape2, ncp
binomial             binom size, prob
Cauchy               cauchy location, scale
chi-squared        chisq df, ncp
exponential        exp            rate
F                         f                df1, df1, ncp
gamma                gamma shape, scale
geometric            geom prob
hypergeometric hyper        m, n, k
log-normal          lnorm meanlog, sdlog
logistic logis; negative binomial  nbinom; normal norm;  Poisson 

pois; Student’s t  t ; uniform unif; Weibull weibull; Wilcoxon
wilcox
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Common Discrete Distributions
• Often, the observations generated by different 

statistical experiments have the same general type of 
behavior.

• Discrete random variables associated with these 
experiments can be described by the same 
probability distribution. They will share a single 
formula.

• A hand full of distributions describe many of the  
random phenomena encountered in real life.
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Some Common Discrete Distributions

• Discrete Uniform
• Bernoulli
• Binomial
• Geometric
• Hypergeometric
• Poisson
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Sec 5.2.1

Discrete Uniform Distribution
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Discrete Uniform Distribution

• Simplest random variable assumes only a finite 
number of possible values, each with equal 
probability.

• A random variable X has a discrete uniform 
distribution if each of the N values in its range, 
say, x1, x2, …, xN, has equal probability. Then,

f(xi) = 1/N
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Discrete Uniform Distribution

• Suppose X is a discrete uniform random variable 
on the consecutive integers a, a+1, a+2, …, b, for 
a < b.  The mean of X is

• The variance of X is
2
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Discrete Uniform Distribution

• P(X=0)=0.1
• P(X=1)=0.1
• .
• .
• P(X=9)=0.1 12
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Discrete Uniform Distribution
REVISION
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Sec 5.2.2

Bernoulli Probability Distribution
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Bernoulli Random Variable

Any random variable whose only 
possible values are 0 and 1 is called a 
Bernoulli random variable.
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Bernoulli Distribution

• A random experiment whose outcomes have been 
classified into two categories, called “success”
and “failure”, is called a Bernoulli trial.

• If a random variable X is defined as 1 if a 
Bernoulli trial results in success and 0 if the same 
Bernoulli trial results in failure.

• The value X=1 is often termed a “success”
• p is referred to as the success probability
• The value X=0 is often termed a “failure”
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Bernoulli Random Variables

• The Bernoulli distribution characterizes the coin 
toss.  Specifically, there are two events X=0,1 
with X=1 occurring with probability p.  The 
probability distribution function P[X] can be 
written as:

1-[ ] (1- )x xP X p p=
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Bernoulli Distribution

• Bernoulli distribution RV generated by a single 
Bernoulli trial that has a binary valued outcome {0,1}

1.0

x
0.0 1.0

q

P+q=1
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Bernoulli Distribution

• Parameter: p

pXE == )(µ

)1(2 pp −=σ
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Sec 5.2.3

Binomial Probability Distribution
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Binomial Experiment
An experiment for which the following 
four conditions are satisfied is called a 
binomial experiment.
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Binomial Experiment

1. The experiment consists of a  sequence of n
trials, where n is fixed in advance of the 
experiment.

2. The trials are identical, and each trial can 
result in one of the same two possible 
outcomes, which are denoted by success (S) or 
failure (F).

3. The trials are independent.
4. The probability of success is constant from trial 

to trial: denoted by p.
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Binomial Dist.: Sampling with Replacement

• Binomial distribution is also used in acceptance 
sampling.
– Sampling is from an infinite population or with 

replacement.

• EX: A supplier of bolts claims that the defective 
rate is 5%, which is acceptable to us. So we 
randomly sample 5 bolts from a shipment and if 
we find 1 or more bad ones, we reject the 
shipment.
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Binomial Dist: sampling w/o Replacement
Binomial Experiment

Suppose each trial of an experiment can 
result in S or F, but the sampling is 
without replacement from a population 
of size N.  If the sample size n is at most 
5% of the population size, the 
experiment can be analyzed as though it 
were exactly a binomial experiment. 
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Binomial Random Variable

Given a binomial experiment consisting 
of n trials, the binomial random 
variable X associated with this 
experiment is defined as

X = the number of S’s among n trials
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Example:  Infectious disease

Suppose we examine five consecutive white cells.

1. Let x = success = {neutrophil}

2. Let o=failure = {not neutrophil}

3. Let p = Pr{neutrophil},

4. Let q = 1-p.
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Then

Pr{oxoox} = (q)( p)( q)( q)( p) = p2 q3.

• Note that any other outcome with exactly 2 x’s and 3 o’s
will have the same probability.

• Thus the probability of any event with exactly 2 successes
and 3 failures will be exactly p2q3.

2005/10/18 Jeff Lin, MD.. PhD. 28

• What is the probability that any 2 cells out of 5 will
be neutrophils?

All possible outcomes with exactly 2 neutrophils:

xxooo oxxoo ooxox

xoxoo oxoxo oooxx

xooxo oxoox

xooox ooxxo
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Pr{exactly 2 neutrophils) =

(number of outcomes with exactly 2 neutrophils)

times

Pr{any outcome with exactly 2 neutrophils}

= 5
2
F
HG
I
KJ  (times) p2 (1-p)3

= 5
2
F
HG
I
KJ  p2 (1-p)3.
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If  the probability of a success is 
p =  0.6 then 

Pr{exactly 2 netruphils} 

=   5
2  (0.6)  (1 - 0.6)

= 5!
2!3!

0.6 0.4 5 4
2

0.6 0.4

0.230.

2 3

2 3 2 3

FH IK
( ) ( ) =

( )( )
( ) ( )

=

# In R
> dbinom(2,5,0.6)
[1] 0.2304
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Suppose in general we have n trials.

• Pr{any sequence with exactly k success in n trials} =

pk (1-p)n-k

• The number of possible sequences with exactly k
successes is

n
k

n
k n k

F
HG
I
KJ =

( )
−( )
!

! !
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• Pr{exactly k success in n trials} =

n
k

p p
n
k

p qk n k k n kF
HG
I
KJ − = F

HG
I
KJ

− −1a f .

k = 0, 1, 2, . . . , n.
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Notation for the pmf of 

a Binomial rv

Because the pmf of a binomial rv X
depends on the two parameters n and p, 
we denote the pmf by b(x;n,p).
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Binomial Distribution

• The random variable X that equals the number of trials 
that result in a success has a binomial random variable 
with parameters 0 < p < 1 and n = 1, 2, …

• The probability mass function of X  … is:
(X = 0, 1, 2, …, n)

)()1(
)!(!

!

)()1()(
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x
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xf
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⎛
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Example:  Evans Electronics
• Using the Binomial Probability Function

= (3)(0.1)(0.81)

= .243  
> dbinom(1,3,0.1)
[1] 0.243

f x n
x n x

p px n x( ) !
!( )!

( )( )=
−

− −1f x n
x n x

p px n x( ) !
!( )!

( )( )=
−

− −1

f ( ) !
!( )!

( . ) ( . )1 3
1 3 1

0 1 0 91 2=
−

f ( ) !
!( )!

( . ) ( . )1 3
1 3 1

0 1 0 91 2=
−
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Ex. A card is drawn from a standard 52-card deck.  If 
drawing a club is considered a success, find the 
probability (before experiment of population) of

a.  exactly one success in 4 draws (with replacement).

1 34 1 3
1 4 4

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

b.  no successes in 5 draws (with replacement).
0 55 1 3

0 4 4
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

0.422≈

0.237≈

p = ¼; q = 1– ¼ = ¾ # in R
> dbinom(1,4,0.25)
[1] 0.421875
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Notation for cdf

For X ~ Bin(n, p), the cdf will be 
denoted by

0
( ) ( ; , ) ( ; , )

x

y
P X x B x n p b y n p

=
≤ = = ∑

x = 0, 1, 2, …n
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Binomial Distribution 

Mean and Variance

For X ~ Bin(n, p), then 

E(X) = np, 

V(X) = np(1 – p) = npq,
(where q = 1 – p).

X npqσ =
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Binomial Distribution

• For a fixed n, the distribution becomes more 
symmetric as p increases from 0 to 0.5 or 
decreases from 1 to 0.5.

• For a fixed p, the distribution becomes more 
symmetric as n increases.
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Binomial Distribution
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Several Binomial Distributions
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Binomial distribution

Figure 3-8
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Ex. 5 cards are drawn, with replacement, from a 
standard 52-card deck.  If drawing a club is considered 
a success, find the (population) mean, variance, and 
standard deviation of X (where X is the number of 
successes). 

p = ¼; q = 1– ¼ = ¾

15 1.25
4

npµ ⎛ ⎞= = =⎜ ⎟
⎝ ⎠

( ) 1 35 0.9375
4 4

V X npq ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

0.9375 0.968X npqσ = = ≈
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Ex. If the probability of a student successfully 
passing this course (C or better) is p=0.82, find the 
probability that given total 8 students

a.  all 8 pass.

b.  none pass.

c.  at least 6 pass.

( ) ( )8 08
0.82 0.18

8
⎛ ⎞
⎜ ⎟
⎝ ⎠

( ) ( )0 88
0.82 0.18

0
⎛ ⎞
⎜ ⎟
⎝ ⎠

( ) ( ) ( ) ( ) ( ) ( )6 2 7 1 8 08 8 8
0.82 0.18 0.82 0.18 0.82 0.18

6 7 8
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0.2758 0.3590 0.2044≈ + + = 0.8392

0.2044≈

0.0000011≈

> 1-pbinom(5,8,0.82) # 1-CDF
[1] 0.83918
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(y=x)          Binomial Cumulative Probability Table
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Binomial Distribution
If the success (bad bolt) rate is 5%, what is 
the probability a random sample of 5 bolts 
will contain at least 1 defective bolt?

Let X = # of defective bolts in sample of 5
P(X > 1) = 1 - P(X = 0)
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Airline Flight Booking
• Not all passengers show up for their reserved seats.
• There is 10% chance that a passenger would not 

show up.
• Overbooking, 120 seats, sell 125 tickets.
• What is the probability that every passenger who 

shows up can take the flight?
– P(X≤120)

• What is the probability that flight takes off with all 
empty seats?
– P(x=0)
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Airline Flight Booking
• Not all passengers show up for their reserved seats.
• There is 10% chance that a passenger would not 

show up.

• On the average, how many passengers will show 
up? Standard deviation?
– µ=n(p)=125(0.9)=112.5
– σ2=Np(1-p)=125(0.9)(0.1)=11.25, σ=?
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Sec 5.2.4

Geometric Probability Distribution
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Geometric Distribution
• A series of Bernoulli trials with 
• Probability of success = p
• X: random variable, 

= the number of trials until the first success.

( ) 11

2
2

( ) 1 ,  1,  2 ,  . . .
1( )

(1 )( )

xf x p p x

E X
p

pV X
p

µ

σ

−= − =

= =

−
= =
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Geometric Distribution

• Multiple Bernoulli trials occurrence of 1st success.

• In general, S may have countably infinite size
•
• Z has image {1,2,3,….}. Assuming independent trials,
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Lack of Memory

• Flip a coin, P(head)=0.4 
• You have flipped a coin and see a tail.
• What’s the probability that you will first see a head only 

at the end of next 10 flips.
• P=(1-0.4)10-1(0.4)
• You have done 1000 trials, and see no head.
• What’s the probability that you will first see a head only 

at the end of next 10 flips.
• P=(1-0.4)10-1(0.4)
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Geometric Random Variables 

• For example, suppose once again that a 
basketball player hits 70% of his free throws. 
What is the probability that if he starts shooting 
free throws, he gets his first basket on the fifth 
shot? Here we have a random variable 
X~geometric(.7) and we want to know f(5). By 
the formula  

• Not very likely! 

00567.03.7.)5( 4 =⋅=f
> dgeom(4,0.7) #PDF
[1] 0.00567

2005/10/18 Jeff Lin, MD.. PhD. 54

Sec 5.2.5: 

Hypergeometric Distributions

Negative Binomial Distributions
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Hypergeometric Distribution
Three Assumptions

• The population or set to be sampled consists of 
N individuals, objects, or elements (a finite 
population).

• Each individual can be characterized as a 
success (S) or failure (F), and there are M
successes in the population.

• A sample of n individuals is selected without 
replacement in such a way that each subset of 
size n is equally likely to be chosen. 
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Hypergeometric Distribution
If X is the number of S’s in a completely 
random sample of size n drawn from a 
population consisting of M S’s and (M– K) 
F’s, then the probability distribution of X, 
called the hypergeometric distribution, is 
given by

( ) ( ; , , )

M N M
x n x

P X x h x n M N
N
n

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= = =

⎛ ⎞
⎜ ⎟
⎝ ⎠max(0, ) min( , )n N M x n M− + ≤ ≤

2005/10/18 Jeff Lin, MD.. PhD. 57

Hypergeometric Distribution

Mean and Variance

( ) ( ) 1
1

M N n M ME X n V X n
N N N N

−⎛ ⎞ ⎛ ⎞= ⋅ = ⋅ ⋅ −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
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Negative Binomial Distribution

The negative binomial rv and distribution
are based on an experiment satisfying the 
following four conditions:
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Negative Binomial Distribution

1. The experiment consists of a sequence of 
independent trials. 

2. Each trial can result in a success (S) or a failure 
(F).

3. The probability of success is constant from trial 
to trial, so P(S on trial i) = p for i = 1, 2, 3, …

4. The experiment continues until a total of r
successes have been observed, where r is a 
specified positive integer.
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pmf of a Negative Binomial

The pmf of the negative binomial rv X
with parameters r = number of S’s and    
p = P(S) is

1
( ; , ) (1 )

1
r xx r

nb x r p p p
r
+ +⎛ ⎞

= −⎜ ⎟−⎝ ⎠
x = 0, 1, 2, …
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Negative Binomial

Mean and Variance

2
(1 ) (1 )( ) ( )r p r pE X V X

p p
− −

= =
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Sec 5.2.6

Poisson  Probability Distribution
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Poisson Distribution

A random variable X is said to have 
a Poisson distribution with 
parameter                  if the pmf of X
is 

( )0 ,λ λ >

( ; ) 0,1, 2...
!

xep x x
x

λλλ
−

= =

λ represents the expected number of events per unit time
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Poisson Distribution

Mean and Variance

( ) ( )E X V X λ= =

If X has a Poisson distribution with 
parameter ,  then λ
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Poisson Distribution
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Several Poisson Distributions
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• Note that 
 

•  λ  represents the expected number of events per unit time.
 

•  µ = λt   represents the expected number of events over the 
time period t. 

 
• For the binomial distribution there are a finite number of 

events possible. 
 

• For the Poisson distribution the number of events can be 
indefinitely large, although the probability of k events will 
get very small as k gets large. 
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The Poisson Distribution

Example:

• Consider the distribution of the number of deaths
attributed to typhoid fever over a long period of time.
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Consider the typhoid example: 
 
• Assume that the expected number of events in one 

year is λ =4.6.   
 
• For a 6-month period we have that λ = 4.6 and t=0.5. 
 
• Thus µ = λt = 2.3. 
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Pr(X = k) =   k =  0,  1,  2,  .  .  .

Pr(X 0)  2.3 e 2.3

0!
0.100

Pr(X 1) 2.3
1!

e 2.3 0.231

Pr(X 2) 2.32

2!
e 2.3 0.265

Pr(X 3) 2.33

3!
e 2.3 0.203

Pr(X 4) 2.34

4!
e 2.3 0.117

Pr(X 5) 2.35

5!
e 2.3 0.054

Pr(X 6) 1 Pr(X 5)
1 (.100 .231 .265 .203 .117 .054) 0.030.

0

1

µ µke
k

−

= =
−

=

= = − =

= = − =

= = − =

= = − =

= = − =

≥ = − ≤
= − + + + + + =

!

 

> dpois(0:5,2.3)
[1] 0.10025884 
0.23059534 
0.26518464 
0.20330823 
0.11690223 
0.05377503
>
> 1-ppois(5,2.3)
[1] 0.02997569
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Let Y = the number of deaths in 3 months.   
 
For a 3-month period we have that λ = 4.6 and t=0.25. 
 
Thus µ = λ t = 1.15. 
 

 

Pr( ) . .

Pr( ) .
!

. .

Pr( ) .
!

. .

Pr( ) .
!

. .

Pr( ) ( . . . . )
.

X e

X e

X e

X e

X

= = − =

= = − =

= = − =

= = − =

≥ = − + + +
=

0 115 0 317

1 115
1

115 0 364

2 1152

2
115 0 209

3 1153

3
115 0 080

4 1 0 317 0 364 209 080
0 03

1

> dpois(0:3,1.15)
[1] 0.31663677 
0.36413228 
0.20937606 
0.08026082
>
> 1-ppois(3,1.15)
[1] 0.02959406
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Recursion Rule for Poisson Probabilities 
 
If Pr(X = k ) is the Poisson probability of observing k 

events with underlying parameter :, then 
 
 Pr(X = k+1 ) = [λ /(k+1)]Pr(X = k). 
 
 
 
 

( ; ) 0,1, 2...
!

xep x x
x

λ λλ
−

= =

Poisson Distribution
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Example:  Mercy Hospital
• Using the Poisson Probability Function

Patients arrive at the emergency room of 
Mercy Hospital at the average rate of 6 per 
hour on weekend evenings.  What is the 
probability of 4 arrivals in 30 minutes on a 
weekend evening?

µ = 6/hour = 3/half-hour,  x = 4

f ( ) ( . )
!

.4 3 2 71828
4

1680
4 3

= =
−

f ( ) ( . )
!

.4 3 2 71828
4

1680
4 3

= =
−
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Poisson Distribution
• If the Poisson random variable represents the number of 

counts in some interval, the mean of the random variable 
must equal the expected number of counts in the same 
length of interval.

• It is important to use consistent units in the 
calculation of probabilities, means, and variances 
involving Poisson random variables.

• Example:
If average number of flaws per millimeter of wire is 3.4, 
then the average number of flaws in 10 millimeters of 
wire is 34.
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Consistent Units

• If RV, X, represents the number of counts in some 
interval, the mean must be the expected number of 
counts in the same length of interval
– Average number of cars arriving at a toll booth is 20 

cars/hour
– Average number of cars arriving at a toll booth is 1/3 

cars/minutes
– Average number of cars arriving at a toll booth is 480 

cars/day
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Highway Crack Repair
• The number of cracks in a section of interstate highway 

that are significant enough to require repair is assumed 
to follow a Poisson distribution with a mean of 2/mile.

• The probability of no crack repairs in 5 miles.

• What is the probability that at least one crack requires 
repair in ½ mile of highway.

•

0000454.0
!0
10)0(

0,/)2(5;
!

)(

010

===

===

−

−

eXP

xmile
x

exf
x

λλλ

632.0
!0
11)1(

1,/)2(5.0
01

=−=≥

==
−eXP

xmileλ
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Binomial with Poisson Approximation

Poisson Distribution as a Limit

Suppose that in the binomial pmf bin(x;n, p), 
we let                             in such a way that np
approaches a value             

 and 0n p→ ∞ →
0.λ >

Then ( ; , ) ( ; ).b x n p p x λ→
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Relationship between Poisson and 
Binomial Distributions

• How large does n have to be and how small 
does p have to be?
– Rule of thumb: n > 100 and p < 0.01

• EX: We are assembling circuit boards. 
History tells us that 1% of the connections are 
defective. What is the probability that on a 
board with 100 connections exactly 4  will be 
defective?
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Common Continuous Distribution
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Common Continuous Distributions

• Uniform
• Exponential
• Gamma
• Gaussian (Normal)

2005/10/18 Jeff Lin, MD.. PhD. 81

Continuous Random Variables

A random variable X is continuous if its 
set of possible values is an entire 
interval of numbers (If A < B, then any 
number x between A and B is possible).
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Probability Distribution
Let X be a continuous rv.  Then a 
probability distribution or probability 
density function (pdf) of X is a function 
f (x) such that for any two numbers a
and b,

( ) ( )
b

a
P a X b f x dx≤ ≤ = ∫

The graph of f is the density curve.
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• The Total Area under the probability density curve is 1.
The Area under the probability density curve is from a to 
b is P[a < X < b].
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Probability Density Function
For f (x) to be a pdf
1. f (x) > 0 for all values of x.

2.The area of the region between the 
graph of f and the x – axis is equal to 1.

Area = 1
( )y f x=
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Def 5.3.1

Uniform Distribution
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A continuous rv X is said to have a 
uniform distribution on the interval [A, B] 
if the pdf of X is

( )
1

; ,
0       otherwise

A x B
f x A B B A

⎧ ≤ ≤⎪= −⎨
⎪⎩

(Continuous) Uniform Distribution
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(Continuous) Uniform Distribution

• Prob. Density Function

• Mean

• Variance

2
)( ba +

=µ

bxa
ab

xf <<
−

=   ; 1)(

12
)( 2

2 ab −
=σ

x
a b

f(x)

ab −
1
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Uniform Random Variables: pdf
• The graph of the pdf satisfies our intuition about 

“equal likelihood” of all intervals of a given 
length within (a,b). It also clearly has total area 1 
under the pdf curve. 

a b

1/(b-a)

Area = 1
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Uniform Random Variables: cdf

• The cumulative distribution function F given 
below is easy to compute either by integration of 
the pdf or by finding the area of rectangles. Note 
that it has all the usual properties of a cdf: 0 to 
the left, 1 to the right, increasing and continuous 
inbetween.

0,  if 
( ) ,  if 

1,  if 

x a
b a

x a
F x a x b

x b

−
−

≤⎧
⎪= < <⎨
⎪ ≥⎩
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Uniform Random Variables: cdf
• Here we see F and its properties graphically. 

a b

1
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Uniform Random Variables: cdf
• If we want to find the probability P(c<X<d) 

where a<c<d<b, then we can integrate formally, 
but it is easier to note that the probability is 
simply the ratio of the length of (c,d) to the 
length of (a,b). 

a b

1/(b-a)

Area =
(d-c)/(a-b)

c d
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Uniform Random Variables: Expectation

• Intuitively we anticipate E(X)=(a+b)/2, the 
midpoint of the interval. This turns out to be 
correct. 
– If X~uniform(a,b) we calculate

2 2
2

( ) ( )

1 1
2( ) 2( )

( )( )
2( ) 2

b
b

a
a

E X xf x dx

b axdx x
b a b a b a
b a b a b a

b a

∞

−∞
= =

−
= =

− − −

+ − +
= =

−

∫

∫
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Def 5.3.2

Exponential Distribution
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Exponential Distribution

A continuous rv X has an exponential 
distribution with parameter     if the pdf is

0( ; )
           0                otherwise

xe xf x
λλλ

−⎧ ≥⎪= ⎨
⎪⎩

λ
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Exponential Random Variables: Pdf
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Exponential Distribution

Let X have a exponential distribution
Then the cdf of X is given by

    0       0
( ; )

1    0x

x
F x

e xλλ −

<⎧⎪= ⎨
− ≥⎪⎩



2004 ST05 Common Distributions 2005/10/18

17

2005/10/18 Jeff Lin, MD.. PhD. 97

Exponential Random Variables: Cdf
• Essentially the same computation as above 

shows that . Here is the graph of the cdf for 
X~exponential(0.5). 
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Exponential Distribution

Mean and Variance
The mean and variance of a random 
variable X having the exponential 
distribution

2
2

1 1µ σ
λ λ

= =
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Probability distribution 
function of exponential 
random variable.  Note 
how the distribution is 

skewed.
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Exponential Random Variables: 
Applications

• Exponential distributions are sometimes used to 
model waiting times or lifetimes. That is, they 
model the time until some event happens or 
something quits working. Of course mathematics 
cannot tell us that exponentials are right to 
describe such situation. That conclusion depends 
on finding data from such real-world situations 
and fitting it to an exponential distribution. 

. 
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Exponential Random Variables: 
Applications 

• Suppose the wait time X for service at the post 
office has an exponential distribution with mean 
3 minutes. If you enter the post office 
immediately behind another customer, what is 
the probability you wait over 5 minutes? Since 
E(X)=1/λ=3 minutes, then λ=1/3, so 
X~exponential(1/3). We want . 

1 55
3 3

( 5) 1 ( 5) 1 (5)

1 1 0.189

P X P X F

e e
− ⋅ −

> = − ≤ = −

⎛ ⎞
= − − = ≈⎜ ⎟

⎝ ⎠

> 1-pexp(5,1/3)
[1] 0.1888756
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Exponential Random Variables: 
Applications

• Under the same conditions, what is the 
probability of waiting between 2 and 4 minutes? 
Here we calculate . 

4 2
3 3

2 4
3 3

(2 4) (4) (2) 1 1

0.250

P X F F e e

e e

− −

− −

⎛ ⎞ ⎛ ⎞
≤ ≤ = − = − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= − ≈ > pexp(4,1/3)-pexp(2,1/3)
[1] 0.24982
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Exponential Random Variables: 
Applications

• The trick in the previous example of calculating

is quite common. It is the reason the cdf is so 
useful in computing probabilities of continuous 
random variables. . 

( ) ( ) ( )P a X b F b F a≤ ≤ = −
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Applications of the 
Exponential Distribution

Suppose that the number of events occurring in 
any time interval of length t has a Poisson 
distribution with parameter       and that the 
numbers of occurrences in nonoverlapping
intervals are independent of one another.  Then 
the distribution of elapsed time between the 
occurrences of two successive events is 
exponential with parameter   

tα

.λ α=

2005/10/18 Jeff Lin, MD.. PhD. 105

Exponential Distribution
• The number of events during an interval, X~Poisson with mean 

rate of λ.

• 1/rate= average (time) length between two events. 
• The length to next event has a exponential distribution with 

(length) mean of 1/ λ

• Mean Time To Failure (MTTF)

λσλµλλ

====
−

2;,...;3,2,1,0,
!

)( x
x

exf
x

2
2 1;1;0;)(

λ
σ

λ
µλ λ ==≥= − xexf x
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Relationship Between 
Exponential & Poisson

Recall:
,...2,1,0,

!
)();( ==

−

x
x

tetxp
xt λλ

λ

where λ is mean number of events per base unit time or 
space and t is the number of base units being inspected.

The probability that no events occur in the 
span of time (or space) t is:

t
t

etetp λ
λ λλ −

−

==
!0

)();0(
0
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Relationship Between 
Exponential & Poisson

Let X = the time (or space) to the first Poisson 
event.

Note, the probability that the length of time 
(or space) until the first event > some time 
(or space), x is the same as the probability 
that no events will occur in x, which = e-λx.

So, P(X > x) = e-λx and P(X < x) = 1 - e-λx

1 - e-λx is the cumulative distribution function 
for an exponential random variable with λ.
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Relationship between Exponential & 
Poisson

Exponential distribution models 
time (or space) between Poisson 
events.

TIME
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User login Example
• Users log on to computer network is modeled as a Poisson process

with mean of 25 logons/hr.
• Find the probability that no logins with a 6-minute interval.
• Poisson Distribution

– X ~ # of logins in 6-min interval
– 25/hr=25(6)/60=2.5 longins/6-min
– P(X=0)=Poisson(0,2.5,true)=0.0820

• Exponential Distribution
– X~ time (min) until next login.
– 25/hr→1/λ=60min/25=2.4 min; λ= 0.4167
– P(X>6min)=1-P(X≤6min) = 1 - Expondist(6,0.4167,true) =0.0820
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Exp. Distribution: Memoryless
• X~ time to next login

X~ exponential distribution with mean of 2.4 min.
• We know that there are no logins from 12:00 to 12:15.  

What is the probability that there are no logins from 
12:15 to 12:21?

– P(X>6min)=1-P(X≤6min) =0.0820

• We know that there are no logins from 1:00-2:00PM.  It 
is 2:00PM now.  What is the probability that next login 
will occur at 2:06PM?

– P(X=6min)=0.0342
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P(X<t1+t2|X>t1)=P(X<t2)
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Exponential Distribution

A gamma distribution with α = 1 is called the 
exponential distribution.

0,1)( / >= − xexf x β

β

μ = β and     σ2 = β2

where β > 0

β/1)( xexF −−=
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Exponential Distributions
Exponential Distributions

0
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Def 5.3.3

Gamma Distribution
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Gamma Function

For 0,   α > the gamma function
( ) is defined byαΓ

1

0

( ) xx e dxαα
∞

− −Γ = ∫
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Gamma Distribution

X is a Gamma RV with 
parameters λ and r.  

( )
( )
( ) ( )

2
2

1

1

1)1(
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0,)(

λ
σ

λ
µ

λ λ

r

r
rrr

rdxexr

x
r
exxf

xr

xrr

=

=

−Γ−=Γ

>=Γ

>
Γ

=

∫
∞

∞−

−−

−−

2005/10/18 Jeff Lin, MD.. PhD. 117

Gamma Distribution 
(Special Cases)

A Gamma RV with parameters λ and r=1, it is exponential 
distribution

Chi-squared Distribution
If λ =1/2, r=(1/2)n, n=1,2,3,…., 

Erlang Distribution
If r is an integer

( )
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x
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exxf
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Gamma Distribution

A continuous rv X has a gamma 
distribution if the pdf is

1 /1 0
( ; , ) ( )

           0                otherwise

xx e x
f x

α β
αα β β α

− −⎧ ≥⎪= Γ⎨
⎪
⎩

where the parameters satisfy 0, 0.α β> >
The standard gamma distribution has 1.β =
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Mean and Variance

The mean and variance of a random 
variable X having the gamma distribution

( ; , ) aref x α β

2 2( ) ( )E X V Xµ αβ σ αβ= = = =
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Gamma Distributions

Gamma Distributions
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Gamma & Exponential Distributions
• Exponential and gamma distributions find 

application in queuing theory and reliability 
studies.
– Time between customer arrivals at a terminal

– Time to failure of electrical components

The exponential distribution is a special 
case of the gamma distribution.
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Def 5.3.4

Normal Distribution
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Normal Distribution

• The most widely used model for the distribution of 
random variables.

• Whenever a random experiment is replicated, the 
random variable that equals the average (or total) result 
over the replicates tends to have a normal distribution as 
the number of replicates becomes larger.

• Normal distribution arises in the study of numerous 
basic physical phenomena (e.g., velocity of molecules in 
a gas)
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Normal Distributions

2 2( ) /(2 )1( )
2

xf x e xµ σ

σ π
− −= − ∞ < < ∞

A continuous rv X is said to have a 
normal distribution with parameters  

and ,  where  and µ σ µ− ∞ < < ∞
0 ,  if the pdf of  isXσ<
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Normal Distribution

• Random variables with different means and 
variances can be modeled by normal 
probability density function with appropriate 
choice of the center and width of the curve.

• The value of E(X) = µ determines the center of 
the probability density function.

• The value of V(X) = σ2 determines the width.
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Normal Distributions

Normal probability density functions for 
selected values of the parameters µ and σ2



2004 ST05 Common Distributions 2005/10/18

22

2005/10/18 Jeff Lin, MD.. PhD. 127

The Normal Probability Distribution

Points of 
Inflection

µ µ σ+ µ σ+ 2 µ σ+ 3µ σ−µ σ− 2µ σ− 3

σ

µ µ σ+ µ σ+ 2 µ σ+ 3µ σ−µ σ− 2µ σ− 3

σ
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Characteristics of the Normal Distribution

• Bell Shaped, symmetric
• Points of inflection on the bell shaped curve are 

at µ – σ and µ + σ. That is one standard deviation 
from the mean

• Area under the bell shaped curve between µ – σ
and µ + σ is approximately 2/3.

• Area under the bell shaped curve between µ – 2σ
and µ + 2σ is approximately 95%.
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Normal Curve (Bell Shape Curve)

68%
95%

99.7%

Approximate percentage of area within 
given standard deviations (empirical 
rule).
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There are many Normal distributions
depending on by µ and σ

0
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Normal Distribution

Probability that a measurement exceed 13

P (X > 13)
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Normal Distribution

• There is no closed-form expression for the 
integral of a normal provability density function.

• Probabilities based on the normal distribution 
are typically found numerically or from a 
table.
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Width of a Normal Distribution
> pnorm(1,0,1)-pnorm(-1,0,1)
[1] 0.6826895
> pnorm(2,0,1)-pnorm(-2,0,1)
[1] 0.9544997
> pnorm(3,0,1)-pnorm(-3,0,1)
[1] 0.9973002
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Normal Distribution

• Due to symmetry, P(X > µ) = P(X < µ) = 0.5
• Probability that a measurement falls far from µ is 

small, and at some distance from µ the 
probability of an interval can be approximated as 
zero.

• Width of the normal distribution = 6 σ
• Area under the normal probability density 

function from -∞ < µ < ∞ is 1.
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Standard Normal pdf

Standard normal pdf

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

If µ=0, σ2 =1, It is standard 
normal distribution
~Z=N(0, 1)

Symmetrical

P(X<µ)=0.5

A normal RV, X, with  
parameters of µ and σ can be 
converted into a N(0,1) 
standard normal RV by:

σ
µ−

=
XZ
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Standard Normal Distributions

2 / 21( ;0,1)
2

zf z e
σ π

−=

The normal distribution with parameter 
values                              is called a 
standard normal distribution.  The 
random variable is denoted by Z.  The 
pdf is

0 and 1µ σ= =

The cdf is

z− ∞ < < ∞

( ) ( ) ( ; 0,1)
z

z P Z z f y dy
−∞

Φ = ≤ = ∫
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Standard Normal Distribution
The distribution of a normal random variable 

with mean 0 and variance 1 is called a 
standard normal distribution.

-4 -3 -2 -1 0 1 2 3 4
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Standard Normal Distribution

• The letter Z is traditionally used to represent a 
standard normal random variable.

• z is used to represent a particular value of Z.
• The standard normal distribution has been 

tabularized.
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Nonstandard Normal Distributions

To Standard Normal Distributions
If X has a normal distribution with 
mean     and standard deviation    , then µ σ

XZ µ
σ
−

=

has a standard normal distribution.
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Standard Normal Cumulative Areas

0      z

Standard 
normal 
curve

Shaded area = ( )zΦ
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Standard Normal Distribution

Properties:
• The total area under the normal curve is equal to 1
• The distribution is bell-shaped and symmetric; it extends 

indefinitely in both directions, approaching but never 
touching the horizontal axis

• The distribution has a mean of 0 and a standard deviation 
of 1

• The mean divides the area in half, 0.50 on each side
• Nearly all the area is between z = -3.00 and z = 3.00
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Appendix A : Table I

• The table contains the area under the standard normal 
curve between -∞ and a specific value of z

0 z0 z
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You can easily calculate probabilities for normal
distributions if you know the values for the standard
normal cdf.

• A simple rule is that

Pr(a < X < b) = Pr{X<b} - Pr{X < a}.
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P z( 0. )< − =98 .01635

Example

Find the area to the left of -0.98; P(z < -0.98)

000−0.98

Area asked for

−0.98−0.98

Area asked for > pnorm(-0.98,0,1)
[1] 0.1635431
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0735.09265.00000.1)45.1( =−=>zP

Example

Find the area under the normal curve to the 
right of z = 1.45; P(z > 1.45)

9265.0

145.

Area asked for

0 z

9265.0

145.

Area asked for

145.

Area asked forArea asked for

0 z0 z

> 1-pnorm(1.45,0,1)
[1] 0.07352926
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4265.05000.09265.0)45.1( =−=<zP

Example
Find the area to the between z = 0 and of z = 

1.45; P(0 < z < 1.45)

• Area between two points = differences in two 
tabled areas

1 45.0 z1 45.1 45.0 z0 z

> pnorm(1.45,0,1)-pnorm(0,0,1)
[1] 0.4264707
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Some More Practices

P(Z>1.26)

P(Z<-.86)

P(Z>-1.37)

P(-1.25<Z<0.37)

P(Z<-4.6)

P(Z>z)=0.05

P(-z<Z<z)=0.99
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Result: (Symmetry properties of the standard normal 
distribution). 
 
From the symmetry properties of the standard normal 
distribution, 
 
 Φ(-x) = Pr(X ≤ -x ) = Pr( X > x) =  
  1 - Pr(X ≤ x) = 1 - Φ(x). 
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This property is depicted in the following figure.
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• Example 
 

Pr( X ≤ -1.96) = Pr ( X ≥ 1.96) = 0.025  
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Standard Normal Distribution

a.  

Area to the left of  0.85 = 0.8023

b.  P(Z > 1.32)

Let Z be the standard normal variable.    
Find (from table)

( 0.85)P Z ≤

1 ( 1.32) 0.0934P Z− ≤ =
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Find the area to the left of 1.78 then 
subtract the area to the left of –2.1. 

= 0.9625 – 0.0179

= 0.9446

c.  ( 2.1 1.78)P Z− ≤ ≤

= ( 1.78) ( 2.1)P Z P Z≤ − ≤ −
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Notation1and z zα α−

will denote the value on the 
measurement axis for which the area 
under the z curve lies to the right of 

zα0

Shaded area 

1

( )
( )

P Z z
P Z z

α

α

α
α−

= ≥ =
= ≥ =

1 or z zα α−

1 or z zα α−
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=  2[P(z < Z ) – ½] 
P(z < Z < –z ) = 2P(0 < Z < z)  

z = 1.32  

Ex. Let Z be the standard normal variable.  Find z if  a.  
P(Z < z) = 0.9278.

Look at the table and find an entry 
= 0.9278 then read back to find

z = 1.46.

b.  P(–z < Z < z) = 0.8132

=  2P(z < Z ) – 1 = 0.8132
P(z < Z ) = 0.9066 
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Normal Distribution

• If X is a normal variable with E(X) = µ and V(X) 
= σ2, the random variable

is a normal random variable with E(X) = 0 and 
V(X) = 1.  

Z is a standard normal random variable.

σ
µ−

=
XZ
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Normal Distribution
• Given a random Variable X having a normal 

distribution with μx = 10 and σx = 2, find 
the probability that X < 8.

-4 -3 -2 -1 0 1 2 3 4

4 6 8 10 12 14 16

z

x
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Normal Distribution

• Suppose X is a normal random variable with mean µ
and variance σ2.  Then,

• P(X ≤ x) = P(               ≤ ) = P(Z ≤ z)

where Z is a standard normal random variable, and 
z =  (x- µ ) / σ is the z-value obtained by 
standardization X

• The probability is obtained by entering Appendix 
Table-I with z = (x- µ) / σ. 

σ
µ−X

σ
µ−x
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2

To get this we must use some results:

1. E(X + c) = E(X) + c.
2. E(cX) = c E(X).
3. Var(X + c) = Var(X)
4. Var(cX) = c  Var(X).
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Using these results we have:

E(Z) E X 1 E X

1 E(X)

1 0.

Var(Z) Var X

1 2
Var X

1 2
Var(X)

2
2 1.

=
−L

NM
O
QP = −

= −

= − =

=
−L

NM
O
QP

= F
HG

I
KJ −

= F
HG

I
KJ

= =

µ
σ σ

µ

σ
µ

σ
µ µ

µ
σ

σ
µ

σ

σ

σ

b g

b g

b g

b g

b g
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Evaluation of Probabilities for Any Normal Distribution
via Standardization

If X is N( ,  2 ) and 

Z = X - then

Pr(a < X < b) = Pr a - Z b

Pr Z b Pr Z a

b a -

µ σ
µ

σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

< <
−F

H
I
K

= <
−F

H
I
K − <

−F
H

I
K

=
−L

NM
O
QP − L

NM
O
QPΦ Φ

2005/10/18 Jeff Lin, MD.. PhD. 161

This follows because

a < X < b is equivalent to

a - < X - < b - is equivalent to

a - < X - < b - is equivalent to

a - < Z < b -

Therefore

Pr(a < X < b) =  Pr a - < Z < b -

µ µ µ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

.

.F
H

I
K
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This procedure is known as standardization of a normal
variable.

However, because Z is N( 0,  1)

( < < ) = - < < -

< - -

- -

Pr Pr

Pr Pr

a X b a Z b

Z b Z a

b a

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

F
H

I
K

= F
H

I
K − <F

H
I
K

= F
H

I
K − F

H
I
KΦ Φ
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Ex. Let X be a normal random variable 
with              

= 0.2266

( ) 65 8065
20

P X P Z −⎛ ⎞≤ = ≤⎜ ⎟
⎝ ⎠

( ).75P Z= ≤ −

Find  ( 65).P X ≤
80  and  20.µ σ= =

> pnorm(65,80,20)
[1] 0.2266274
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For example:
The probability of being borderline hypertensive 
when Diastolic Blood Pressure (X) is N( 80,  144) 
is                            

Pr(90 < X < 95) = Pr 90 - 80
12

< Z < 95 - 80
12

Pr 0.83 < Z < 1.25
F 1.25 F 0.83
0.8944 0.7967 0.0977.

F
H

I
K

=
= −
= − =

a f
a f a f

> pnorm(95,80,sqrt(144))-
pnorm(90,80,sqrt(144))
[1] 0.0966786
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Width of a Normal Distribution

2005/10/18 Jeff Lin, MD.. PhD. 166

Normal Distribution
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Normal Distribution

2005/10/18 Jeff Lin, MD.. PhD. 168

Normal distribution (Cont.)
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Normal Curve (Bell Shape Curve)

68%
95%

99.7%

Approximate percentage of area within 
given standard deviations (empirical 
rule).
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Normal Distribution
• Characteristics

– Bell-shaped curve
– -∞ < x < +∞
–μ determines distribution location and is the 

highest point on curve
– Curve is symmetric about μ
–σ determines distribution spread
– Curve has its points of inflection at μ +σ
–μ + 1σ covers 68% of the distribution
–μ + 2σ covers 95% of the distribution
–μ + 3σ covers 99.7% of the distribution
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Normal Distribution

-4 -3 -2 -1 0 1 2 3 4

σ

σσ σ

μ
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Normal Distribution

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8

n(x; μ = 0, σ = 1) n(x; μ = 5, σ = 1)

f(x)

x
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• The entire shape of the normal distribution is determined by
the two parameters µ and σ.

• If two normal distributions

1.  have the same variance σ2 ,
2.  have different means µ1 and µ2, and
3.  µ1 < µ2 then

their density functions look like the following:
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Normal Distribution

-4 -3 -2 -1 0 1 2 3 4

n(x; μ = 0,σ = 0.5)

n(x; μ = 0,σ = 1)

f(x)

x



2004 ST05 Common Distributions 2005/10/18

30

2005/10/18 Jeff Lin, MD.. PhD. 175

Similarly, two normal curves with

1.  the same means but
2.  different variances ( σ2

2 > σ1
2 )

then their probability distribution functions are represented
in the following figure:
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Normal Distribution

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8

f(x)

x

n(x; μ = 0, σ = 1)

n(x; μ = 5, σ = .5)
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Normal Distribution

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

μ + 1σ covers 
68% 

μ + 2σ covers 
95% 

μ + 3σ covers 
99.7% 
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Ex. A particular rash shown up at an 
elementary school.  It has been 
determined that the length of time that the 
rash will last is normally distributed with

6 days and  1.5 days.µ σ= =
Find the probability that for a student 
selected at random, the rash will last for 
between 3.75 and 9 days.
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( ) 3.75 6 9 63.75 9
1.5 1.5

P X P Z− −⎛ ⎞≤ ≤ = ≤ ≤⎜ ⎟
⎝ ⎠

( )1.5 2P Z= − ≤ ≤

= 0.9772 – 0.0668

= 0.9104

> pnorm(9,6,1.5)-pnorm(3.75,6,1.5)
[1] 0.9104427
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Definition:

The (100 x u)th percentile of the standard normal
distribution is denoted by zu..

It is defined by the relationship

Pr(X < Zu ) = u, where X is N( 0, 1).
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Percentiles of 

an Arbitrary Normal Distribution

(100p)th percentile 
for normal

(100 )th for
standard normal

p
µ σ

⎡ ⎤
= + ⋅⎢ ⎥

⎣ ⎦( ),µ σ
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• The function Zu is sometimes referred to as the Inverse 

Normal Function.   
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Normal Approximation to 
the Binomial Distribution

• For many physical systems, the binomial model 
is appropriate with an extremely large values for 
n.

• In these cases, it is difficult to calculate 
probabilities by using the binomial distribution.

• Normal approximation is most effective  in these 
cases.
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Normal Approximation to 
the Binomial Distribution

• If X is a binomial random variable,

is approximately a standard normal random variable. 
• The approximation is good for 

np > 5 and n(1-p) > 5
• The approximation is good when n is large relative 

to p.

)1( pnp
npXZ
−

−
=
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Let X be a binomial rv based on n trials, each 
with probability of success p.  If the binomial 
probability histogram is not too skewed, X may 
be approximated by a normal distribution with

 and .np npqµ σ= =

Normal Approximation to the 
Binomial Distribution

0.5( ) x npP X x
npq

⎛ ⎞+ −
≤ ≈ Φ ⎜ ⎟⎜ ⎟

⎝ ⎠
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Ex. At a particular small college the pass rate 
of Intermediate Algebra is 72%.  If 500 
students enroll in a semester determine the 
probability that at least 375 students pass. 

500(.72) 360npµ = = =

500(.72)(.28) 10npqσ = = ≈

375.5 360( 375) (1.55)
10

P X −⎛ ⎞≤ ≈ Φ = Φ⎜ ⎟
⎝ ⎠

= 0.9394> pnorm(375.5, 360, 10)
[1] 0.9394292
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• Consider the following graphs.
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Normal Approximation to 
the Binomial Distribution

• Note that as n gets large, the binomial 
distribution becomes more symmetric.

• Indeed if n is large relative to p, the binomial 
is well approximated by the normal 
distribution.

2005/10/18 Jeff Lin, MD.. PhD. 189

Normal Approximation to Binomial
When np > 5 and n(1-p) > 5, 

the approximation is good.
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• Note that as n gets large, the binomial distribution becomes 
more symmetric. 

 
• Indeed if n is large relative to p, the binomial is well 

approximated by the normal distribution. 
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Normal Approximation 
to the Binomial

If x is binomial, n trials each with probability of success p 
and n and p are such that np ≥ 5 and n(1-p) ≥ 5, then

x is approximately normal with )1( pnpandnp −== σµ
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Binomial Approximation Example

• A lot of chips contains 1000 chips.  The process 
produces 2% defects.

• X: #of defects, follows Binomial

• Approx. Normal
%111099.0)25(1)25( ==<−=> XPXP

129385.1
)02.01)(02.0(1000

)02.0(100025
=

−
−

=Z

%131294.0)129385.1(1)25( ==<−=> XZXP
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Relationship between the Normal and 
Binomial Distributions

• Consider b(x;15,0.4).  Bars are calculated from 
binomial. Curve is normal approximation to 
binomial.

b(x;n=15, p=.40)

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x

f(x
)
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Normal Approximation to the 
Binomial distribution

• X has a Binomial distribution with 
parameters n and p

[ ] [ ]2
1

2
1 +≤≤−≈= aYaPaXP

• Y has a Normal distribution

npq

np

=

=

σ

µ

correction continuity2
1 =
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-

0.0500

0.1000

0.1500

0.2000

0.2500

0 2 4 6 8 10 12 14 16 18 20
-

0.0500

0.1000

0.1500

0.2000

0.2500

0 2 4 6 8 10 12 14 16 18 20

Binomial distribution

-

0.0500

0.1000

0.1500

0.2000

0.2500

a
-

-0.5

Approximating

Normal distribution

P[X = a]

2
1−a 2

1+a
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-

0.0500

0.1000

0.1500

0.2000

0.2500

a
-

-0.5

[ ]2
1

2
1 +≤≤− aYaP
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-

0.0500

0.1000

0.1500

0.2000

0.2500

a
-

-0.5

P[X = a]
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Using the Normal approximation to the  
Binomial distribution

Where Y has a Normal distribution with:

( )( ) 049.230.70.20

14)70.0(20

===

===

npq

np

σ

µ

[ ] [ ]2
1

2
1 131213 ≤≤≈= YPXP
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Hence
[ ]5.135.12 ≤≤ YP

⎥⎦
⎤

⎢⎣
⎡ −

≤
−

≤
−

=
049.2

145.13
049.2

14
049.2

145.12 YP

= 0.4052 - 0.2327 = 0.1725

[ ]24.073.0 −≤≤−= ZP

Compare with 0.1643

> pnorm(13+1/2,20*0.7,sqrt(20*0.7*(1-0.7)))-
pnorm(13-1/2,20*0.7,sqrt(20*0.7*(1-0.7)))
[1] 0.1715179

> dbinom(13,20,0.7)
[1] 0.164262
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-

0.0500

0.1000

0.1500

0.2000

0.2500

a b
-

-0.5

2
1−a 2

1+b

[ ]bXaP ≤≤
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-

0.0500

0.1000

0.1500

0.2000

0.2500

a b
-

-0.5

2
1−a 2

1+b

[ ]2
1

2
1 +≤≤− bYaP
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Example

• X has a Binomial distribution with 
parameters n = 20 and p = 0.70

[ ]1411 want We ≤≤ XP
[ ]1411 eexact valu The ≤≤ XP

( ) ( ) ( ) ( )614911 30.070.0
14
20

30.070.0
11
20

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

)14()13()12()11( pppp +++=

5357.01916.01643.01144.00654.0 =+++=
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Using the Normal approximation to the  
Binomial distribution

Where Y has a Normal distribution with:

( )( ) 049.230.70.20

14)70.0(20

===

===

npq

np

σ

µ

[ ] [ ]2
1

2
1 14101411 ≤≤≈≤≤ YPXP
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Hence
[ ]5.145.10 ≤≤ YP

⎥⎦
⎤

⎢⎣
⎡ −

≤
−

≤
−

=
049.2

145.14
049.2

14
049.2

145.10 YP

= 0.5948 - 0.0436 = 0.5512

[ ]24.071.1 ≤≤−= ZP

Compare with 0.5357

>pnorm(14+1/2,20*0.7,sqrt(20*0.7*(1-0.7)))-
pnorm(11-1/2,20*0.7,sqrt(20*0.7*(1-0.7)))
[1] 0.5525405
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Comment:

• The accuracy of the normal 
appoximation to the binomial 
increases with increasing values 
of n
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Normal Approximation to 
the Poisson Distributions

• If X is a Poisson random variable with E(X) = λ and 
V(X) = λ,

is approximately a standard normal random variable.  
The approximation is good for λ > 5.

λ
λ−

=
XZ
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Normal Approximation to the Poisson Distribution 
 
A Poisson distribution with parameter : is approximated by a 
normal distribution with mean and variance both equal to µ. 
 
Pr(X=x) is approximated by 
 
 1)  the area under an N(µ, µ) density from x-1/2 to x+1/2 

for x>0 
 
 2)  the area to the left of 1/2 for x = 0. 
 
This approximation is used for µ ≥ 10. 
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Compute 
where Y is distributed N( A, A) =  N(10, 10).

Pr(Y 19.5) =1- Pr(Y 19.5) =1- 19.5- 10
10

1- 9.5
10

Pr( ) Pr( . )

( . )

. .

X Y≥ = ≥

≥ ≤ F
H

I
K

= F
H

I
K = −

= − =

20 19 5

1 3 00

1 9987 0 0013

λ λ

Φ

Φ Φ

> 1-pnorm(19.5,10,sqrt(10))
[1] 0.001331560
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Example:  Bacteriology 
 
• Consider the distribution of the number of bacteria in a 

petri plate of area A.   
 

• Assume that the probability of observing x bacteria is 
given exactly by a Poisson distribution with parameter  
 m = λA, where λ = 0.1 and A = 100 cm2 [ m = s2 = .1 
(100) = 10 ]. 
 

• Suppose 20 bacteria are observed in this area.  How 
unusual is that event.   
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Linear Combination of 
Random Variables
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Linear Combinations
of Random Variables

A linear combination L of the random variables
X1, X2, . . . , Xn is defined as any function of the form
L = c1X1+ c2X2 + . . . + cnXn where
c1, c2, . . . , cn are any fixed constants.
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Results:
Suppose that L is the linear combination of
random variables X1, X2,  .  .  .  ,  Xn given by  

L =  ciXii 1

n

Then the expected value of L is given by

E(L) =  ciE(Xii 1

n
),

and the variance of L is given by 

Var(L) =  ci
2Var(Xii 1

n
).

=
∑

=
∑

=
∑
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Result:

If X1, X2,...,Xn are independent normal random 
variables with expected values  1, 2 ,..., n
and variances 1

2, 2
2,..., n

2 and
L is any linear combination 

L =  ciXi then
i 1

n

E(L) = ci i i 1

n
 and 

Var(L) = ci
2

i
2.

i 1

n

µ µ µ

σ σ σ

µ

σ

=
∑

=
∑

=
∑
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Example:

Suppose X1 and X2 represent serum-creatinine levels for
two different individuals with end-stage renal disease.
Then

1) The sum L= X1 + X2 is a linear combination with  c1 =
1 and c2 = 1.

a) The sum X1 + X2 will be normally distributed.

b) The mean of the sum will be µ1 + µ2 and

c) the variance will be σ1
2 + σ2

2
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2) The difference L= X1 - X2 is also a linear combination
with  c1 = 1 and c2 = -1.

a) The difference will be normally distributed.

b) The mean of the difference will be µ1 - µ2 and

 c) the variance will be σ1
2 + σ2

2.
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3) The average L= (X1 + X2)/2 is also a linear combination
with  c1 = 0.5 and c2 = 0.5.

a) The average will be normally distributed.

b) The mean of the average will be

0.5µ1 + 0.5µ2 .

c) the variance will be

.25σ1
2 + .25σ2

2.
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4) If the mean for both measures is 1.4 and the standard
deviation is 0.5 then the average of the two serum-creatinine
levels will be

i) normally distributed

ii) the mean will be (1.4 + 1.4)/2 = 1.4

iii) and the variance of the mean will be

var(average) = 0.52 Var(X1) + 0.52 Var(X2)
= 0.25(0.25) + 0.25(0.25)
= 0.125

iv) Therefore the average is N(1.4, 0.125).

5) the mean of a sample has the same mean as the population
but it has a smaller variance.


