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Introduction
e If X and Y are two random variables, the probability
distribution that defines their simultaneous behavior is a
: : : P Joint Probability Distribution.
Discrete Jointly Distributed oint Frobability Distribution
Examples:
- — Signal transmission: X is high quality signals and Y low
Random Varlables quality signals.
— Molding: X is the length of one dimension of molded part, Y
is the length of another dimension.
¢ Thus, we may be interested in expressing probabilities
expressed in terms of X and Y, e.g.,
P(2.95<X<3.05and 7.60 <Y <7.8)
2005/10/23 Jeff Lin, MD_PhD 3 12005/10/23 Jeff Lin, MD. PhD. 4
Introduction to Multiple RVs Two Discrete Random Variables
« Range of random variables (X,Y) is the set of points
(x,y) in 2D space for which the probability that X = x
Sy Q Sx and Y =y is positive.
e If X and Y are discrete random variables, the joint
’ probability distribution of X and Y is a description of
— the set of points (x,y) in the range of (X,Y) along with
- the probability of each point.
_ ¢ Sometimes referred to as Bivariate probability
distribution, or Bivariate distribution.
2005/10/23 Jeff Lin, MD_PhD 12005/10/23 Jeff Lin, MD. PhD. [
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Joint Probability Mass Function

Let X and Y be two discrete rv’s defined on the
sample space of an experiment. The joint
probability mass function p(x, y) is defined for
each pair of numbers (X, y) by

p(x,y)=P(X=xandY =Y)

Let A be the set consisting of pairs of (X, y)
values, then

P[(x,v)e A]: > p(x,y)
(x.y) eA

Jeff Lin, MD, PhD
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Joint Probability Mass Function

* The joint probability mass function of the
discrete random variables X and Y, denoted as
fiy(x,y) satisfies:

M fy (xy)=0
(2)22 fr (X y)=1
Xy

B fxy (X Y)=P(X =x,Y =)

| 20051023 Jeff Lin, MD, PhD,

Marginal Probability Distributions

¢ Individual probability distribution of a random variable
is referred to as its Marginal Probability Distribution.
* Marginal probability distribution of X can be

determined from the joint probability distribution of X
and other random variables.

» Marginal probability distribution of X is found by
summing the probabilities in each column, for Y,
summation is done in each row.

2005/10/23
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Marginal Probability Mass Functions
The marginal probability mass

functions of X and Y, denoted py(X) and
py(y) are given by

Px () =D.pX%Y) Py(¥)=D p(XY)
y X

2005/10/23 Jeff Lin MD, PhD

Marginal Probability Distributions

e If X and Y are discrete random variables with joint
probability mass function fyy(x,y), then the marginal
probability mass function of X and Y are

fr(X)=P(X =x)=>Y f,(X,Y)

fo(y)=P((Y =y)=> f, (X,Y)

Ry

where R, denotes the set of all points in the range of (X,
Y) for which X = x and Ry denotes the set of all points
in the range of (X, Y) for which Y =y

2005/10/23 Jeff Lin, MD_PhD

Multiple Discrete RVs

* Example: Consider 3 coin flips

X = Number of Heads

1 first and third outcomes are the same
Y = ]
0 otherwise

X(HHH) = 3. Y(HHH) =1
X(HHT) = 2,Y(HHT) =0
X(TTT) = 0,Y(TTT) = 1

* Rvs X and Y are defined on the same underlying experiment !!

2005/10/23 Jeff Lin MD, PhD
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Multiple Discrete RVs

e Sxy ={(z,9),2€{0,1,2,3},y € {0,1}}

Pxy(2,0) = P{HHT.THH}]

e Joint PMF of X and Y

1/8 (x,4) =(0,1),(1,1),(2,1), or (3,1)
Pxy(x,y) =< 1/4 (z,y) = (1,0), or (2,0)
0 otherwise

XEY o

R T S R T A

X\Y Vi Y, Y, Yin fx(xi)
X oY) foy) - f(xlay]') - F (XY ()
X | FOoY) f(x%,Y,) - f(Xz,y,») e F G, ) | ()
% | FOGYD TO0Y) - FOGY) o TV | Fix)
X[ FO0YD) TOGY) o FOGY) - FOGYm) | fi(X)
LoDl f,00)  fy(%) f,09) £y (V) 1
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Multiple Discrete RVs Multiple Discrete RVs
Representation of Joint PMF Representation of Joint PMF
* Example: Joe gets pulled over by a cop and is administered two 1. List
tests. Suppose that Joe has to pay $200 for each test he fails. Let 063 z=0,y=0
X be the amount he has to pay for the 1% test and Y the amount 0.07 =0,y =200
he pays for the 2" test. Py y(z,y) =< 0.06 x=200,y=0
0.24 z = 200,y = 200
1st test 2nd test 0 otherwise
0.9 - pass ,
0.7 Pass < 2. Matrix
0.1 Fail e
. 0.2 Pass 'y (2 y y=0 y = 200
0.3™ Fail < x=0 0.63 0.07
Fail
0.8 # = 200 0.06 0.24
2005/10/23 Jeff Lin, MD_PhD 1 12005/10/23 Jeff Lin, MD. PhD. 16
Multiple Discrete RVs aly -
u |p | Let outcomes be e, and the random variables be (X, Y),
where X be the numbers of heads showing on the coin,
Ex and Y be the numbers of spots showing on the die,

A fair coin is thrown two times and a fair
die is thrown one time simultaneously.
Find the probability of getting not more
than one head on the coin and two spots
shown on the die by letting two-
demensional random variables.

2005/10/23 Jeff Lin, MD_PhD

Xe{0,1,2) Ye{l,2,-,6

For example: P(X, Y) [ Y=t [v=2 [v=3 | v=4 |v=5 | v=6
e=(H|—L3):>X(e)=2’Y(e)=3 X=0 124 | 1724 | 124 | 124 | 124 | 124
X=1 /12 [ 1/12 | 112 | /12 | 112 | 1/12

X=2 124 124 [ 124 | 124 | 1724 [ 1724

The cumulative distribution function:

F (1L,2)=P(X(e)<LY(e)<2)
=P{(T,D,(TH,1),(HT,1),(TT,2),(TH, 2),(HT, 2)})
=6/24
=1/4

2005/10/23 Jeff Lin MD, PhD
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Multiple Discrete RVs

Three balls are drawn from a box containing 4
red balls, 3 yellow balls, 5 blue balls. If we
let X, Y denote the numbers of red and
yellow balls chosen respectively, find the
joint probability mass function of X and Y.

2005/10/23 Jeff Lin, MD_PhD 19

Ans:

Let joint probability mass function be P, (X, ¥)
P, (0,0)=,C,/,,C, =10/220

Py (07 1) = (3C\)(5Cz)/|z C3 =30/220

Py (0,2)=(,C,)(,C,)/,C, =15/220

Px (033) =3 C3 /12 C3 =1/220

Py (1,0)=(,C))(;C,)/,,C, =40/220

P (LD =(C);C),C)/,C, =60/220
Py (1,2)=(,C)(C,)/,C,=12/220

va (2a O) = (4C2)(5C\)/|2 C3 = 30/220

P (2,1)=(,C,)(C,)/,C,=18/220

P, (3,0)=(,C,)/(,,C,)=4/220

Otherwise : Py (X, y)=0

| 20051023 Jeff Lin, MD, PhD,

A supermarket has two express lines. Let
X and Y denote the numbers of customers
in the first and in the second respectively
at any given time. Find  P(x-y|=1)

by using the joint probability mass function

Multiple Discrete RVs

« A supermarket has two express lines. Let X and
Y denote the numbers of customers in the first
and in the second respectively at any given time.
Find P(x-y=1) by using the joint probability
mass function below.

below.
— - - - - i,]j i=0 i=1 i=2 i=3
Py(i, i) | =0 | =1 i=2 i=3 Pxi(l.1)
i=0 0.1 0.2 0 0 i=0 0.1 0.2 0 0
i=1 0.2 0.25 0.05 0 i=1 0.2 0.25 0.05 0
i=2 0 0.05 0.05 0.025 i=2 0 0.05 0.05 0.025
i=3 0 0 0.025 0.05 i=3 0 0 0.025 0.05
2005/10/23 Jeff Lin, MD_PhD 21 12005/10/23 Jeff Lin, MD. PhD.
A supermarket has two express lines. Let X and Y denote the numbers of
customers in the first and in the second respectively at any given time. Find
P(‘X— y‘ =1) by using the joint probability mass function below. Ans:
ij i=0 i=1 i=2 i=3
Pxv(i, ) P(‘X—y‘zl)
i=0 0.1 0.2 0 0 .
i=l | 02 | 025 | 0.05 0 :‘;‘::1 Px (. 1)
i=2 0 0.05 0.05 0.025
- =p (0, D+ 0)+ 2)+ D+p.(3 2)+ 3
— T T s To0s oo B (0, D+ Py (L 0+ P (1, D+ Py (2 D+ Py B 2+ P (2. 3)

Ans:
P(x-y|=1 =‘z‘: P (i 1)
ji-jf=1
=Py (0. D)+ Py (1,0)+ Py (1, 2) + Py (2, 1) + Py (3. 2) + Py (2.3)
=0.24+0.2+0.05+0.05+0.025+0.025

=0.55
Therefore, the probability is 0.55

2005/10/23 Jeff Lin, MD_PhD 23

=0.2+0.2+0.05+0.05+0.025+0.025
=055

Therefore, the probability is 0.55

2005/10/23 Jeff Lin MD, PhD
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Continuous Jointly Distributed

Random Variables

2005/10/23 Jeff Lin, MD, PhD 2

Two Continuous Random Variables

* Analogous to the probability density function of
a single continuous random variable, a Joint
probability density function can be defined over
two-dimensional space.

| 20051023 Jeff Lin, MD, PhD,

Joint Probability Density Function

Let X and Y be continuous rv’s. Then f (X, Y)
is a joint probability density function for X
and Y if for any two-dimensional set A

P[(X.Y)e A]=[] f(x y)dxdy

If A is the two-dimensional rectangle

{(x,y):a<x<b,c<y<d},

bd
P[(X,Y)eA]:”f(x,y)dydx

ac
Jeff Lin, MD, PhD

2005/10/23

Marginal Probability Density Functions

The marginal probability density functions of
X and Y, denoted fy(x) and f,(y), are given by

fx(x):jf(x,y)dy for —oo< X <00

fY(y):If(x,y)dx for —oo< Y < oo

—0

2005/10/23 Jeff Lin MD, PhD

Marginal Probability Distribution

* If the joint probability density function of
continuous random variables X and Y is fy(x,y),
the marginal probability density function of X
and Y are

00 = [ fo uydy a4 £ (y)= [ fy (X y)dx
R, Ry
where R, denotes the set of all points in the range
of (X,Y) for which X = x and R denotes the set
of all points in the range of (X,Y) for which Y =
y.

2005/10/23

Jeff Lin, MD, PhD 29

Marginal Probability Distribution

* A probability involving only one random
variable, e.g., P(a < X <b), can be found from
the marginal probability of X or from the joint
probability distribution of X and Y.

* For example:

P(a< x<b)=Pa<x<b,-0<Y <ow)=

f [ (X y)xdy =j{ [ fxex, y)dy}dx = J f (0

X X

1023 Lin, MD, PhD. 30
1200 i il
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A = shaded
rectangle

P[(X.Y)eA]

= Volume under density surface above A

2005/10/23 Jeff Lin, MD, PhD 3l

Joint Probability Distribution

¢ The probability that (X,Y) assumes a value in the region
R equals the volume of the shaded region.

fxyla, y

Probability that (X, Y is in the region R is determined
by the volume of f'yy(x, v over the region R.

| 20051023 Jeff Lin, MD, PhD, 3

fxy(x, )

Two Continuous Random Variables

X
Joint probability density function for the lengths of different
dimensions of an injection-molded part;
P(2.95 <X <3.057.60 <Y < 7.80)
2005/10/23 Jeff Lin, MD_PhD 33 1 2005/10/23 Jeff Lin, MD. PhD. 34
Consider an electronic system containing two components, one for backup. Ans:
Suppose the two components have identical performance characteristics. Step 1 —To represent the failure event in term of X and Y
Let X and Y be random variables denoting their life spans, with : Step 2 —To find R in the two-dimensional range space Ry,
X Step 3 —To calculate th bability b; : —
¢ _ ﬂ2eﬂ(x+y7 ifXZO,yZO,/1>0 ep 0 calculate the probability by P(fallure)f‘”‘ fxv(x! y) dx dy
(X Y) = 0 otherwise The system fails only if both component fail. !
Before modification:
Later, the system itself is modified so that one component is kept on
reserve and activated only when the other needs replacing. Find the Let E be the event that the system fails before modification.
probability that the system fails to last far more than 1000 hours before E={"X <1000"N"Y <1000"}
and after modification. And determine is the system become more reliable
after modification. P(E)=P(X <£1000,Y <1000) y
:Hf(x,y)dxdy R
Before modification: o0 100 1000
Component 2 _ I J‘ e dx dy 1
0 0
0o 0o
Component | = J.ﬂe “dx- J-ﬂe 7 dy 1000 X
After modification: 0 0
Component 2 100022
=(1-e™")
2005/10/23 Jeff Lin, MD_PhD 3 1 2005/10/23 Jeff Lin, MD. PhD. 36
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Ans:
After modification:
Let F be the event that the system fails after modification.

F={"X +Y <1000"}
P(F)=P(X +Y <1000)

:_[_[f(x, y) dx dy

0

1000 [1000-y 1000
=[| [ #zererdx |dy X-+y=1000
1000-y
/Ie’*{ | 2 dx }dy
0

2 [7 e ]:]0007\/ dy

1000

Il
JpS—- °'—-§ JpS—-

1

2

0

e [17 e #1000~y ]dy

1
ce—,

—1—e "% 100048 ""

Therefore, the system is more reliable after modification.

Jointly Distributed

More Than Two Random Variables

2005/10/23 Jeff Lin, MD, PhD 3
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More Than Two Random Variables

If X, X,,...,X, are all discrete random variables,
the joint pmf of the variables is the function
P(X|,.... X)) = P(X| = Xp,...X, = Xp)
If the variables are continuous, the joint pdf is the
function f such that for any n intervals
[a,b], ...[anb], P(a < X, <b,...a, £ X, <b,)
bl bn
= J'I F(X(5emer Xp )AXy..0X;

a

Multiple Discrete Random Variables
Multinomial Probability Distribution
Suppose a random experiment consists of a series of n trials. Assume that
(1) The result of each trial is classified into one of k classes.
(2)  The probability of a trial generating a result in class [, class 2, ..., class k
is constant over the trials and equal to py. p,. ..., p;. respectively.
(3)  The trials are independent.
The random variables X, X5, ..., X} that denote the number of trials that result in
class 1, class 2, ..., class £, respectively, have a multinomial distribution and the
joint probability mass function is
P =x, =0, . g=x) = ————p{' pP...pf¥ (5-13)
X1:X. o Xpe

GR35 AP 2 qF coo T 2 S Rl g SF A oo =L

2005/10/23 Jeff Lin, MD_PhD 39
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Multiple Discrete Random Variables
Multinomial Probability Distribution

Each trial in a multimomial random experiment can be regarded as either generating or not
generating a result in class i, foreach 7 ="1,2, ... k Because the random variable X; is the
number of trials that result in class i, X; has a binomial distribution.

[f X, Xy, ., X have a multinomial distribution, the marginal probability distribu-
tion of X; s binomial with

EX) = npy and V(X) = npy{1 = py) (5-14)

2005/10/23 Jeff Lin, MD_PhD 41

Multiple Continuous Random Variables
Definition

Ifthe joint probability density function of continuous random variables Xj, X ..., X,
S fr, xﬂ(-\ 1+3y..., ;) the marginal probability density function of X;is

)= |

J ﬁ"’\'} _)(ﬂ(.'l‘l. Xy "‘PJ dl.'l‘\ n‘t\'g . “’Ii—l fh'H.| fh'p (S-T)}

R,
where R denotes the set of all points in the range of Xj, Xy, ..., X, for which
Xi=x,

2005/10123 Jeff Lin, MD_PhD 4
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Independent Random Variables

Two random variables X and Y are said to be

Independent Random Variables independent if for every pair of X and y
values
P(X, y) = Px (X)- Py ()

when X and Y are discrete or
f(xy)=fx(X)- fy (y)

when X and Y are continuous. If the
conditions are not satisfied for all (X, y) then
X and Y are dependent.

2005/10/23 Jeff Lin, MD, PhD 43 | 2005/10/23 Jeff Lin MD, PhD
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Independence -
More Than Two Random Variables

In the case that X, X,, X5, ... X, is a independent
sample from f(x) then the joint density of X;, X,, X, ...

Independence -
More Than Two Random Variables

The random variables X, X,,...,X, are X is:
independent if for every subset Xil , Xi2 yeus Xj .
of the variables, the joint pmf or pdf of the f(x
subset is equal to the product of the marginal fX), Xg, X, - X9 ) = 1:[ (X')
pmf’s or pdf’s.
2005/10/23 Jeff Lin, MD_PhD 4, 12005/10/23 Jeff Lin, MD. PhD. 46
Example:
Suppose that X;, X,, X3, ... X, is a sample The joint density of X, X%, X5, ... X; Is:
from the Normal distribution with mean x f (X%, %, ) :Hf (%)
and standard deviation o. i=l
n l(xl_ l)
= 1 e7§ J;
| (g i N2wo
f(x)= e? o 0 (%)
(%)=~ | sk
= .8 "
(27)
2005/10/23 Jeff Lin, MD, PhD. 4  2005/10/23 Jeff Lin, MD, PhD, 48]
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Example: The joint density of X, Xy, X3, ... X, is:
Suppose that X, X,, X5, ... X, 1S a sample :

pp 1 2. 3 e p f(xl,xz,...,xn)zl If()(l)
from the Exponential distribution with i

parameter A. 0
T2 X Xgsen X, 20
i =9i=1
x> .
f (xI ) = Ae % =0 0 otherwise
0 X <0
—AZ":xl
n P
=JA%e T X, XX, 20
0 otherwise
2005/10/23 Jeff Lin, MD, PhD. 49] 2005/10/23 Jeff Lin, MD, PhD. 50

Conditional Probability Function

— — - Let X and Y be two continuous rv’s with joint pdf
Conditional Probabil Ity Function f (X, y) and marginal X pdf f,(x). Then for any X
value X for which fy(x) > 0, the conditional
probability density function of Y given that X = x

is
f
fyx (y1x) = fix(’;/))

If X and Y are discrete, replacing pdf’s by pmf’s
gives the conditional probability mass function
of Y when X = x.

—0o<Yy<®©

2005/10/23 Jeff Lin, MD, PhD 1 2005/10/23 Jeff Lin MD, PhD 3

Conditional Distribution Conditional Probability

Definition: * Because a conditional probability mass function
. oy fyx(y) 1s a probability mass function for all y in
Let (X, Y) be a discrete r.v. with jpmf, R,, the following properties are satisfied:

p(Xi, yj ).The conditional pmf’s are defined by

‘ (1) fy(y) 20
P(X = XY=Y)= Pxy( X |V )= p(xy;) | PylY;
( X1 yJ) X|Y( Xl y_] ) p(Xl y_l) pY(yJ) (2); fY\x(y) =1
> py(y;) (#0) (3) P(Y=y[X=x) = fy,(y)

2005/10/23 Jeff Lin, MD, PhD 3 2005/10/23 Jeff Lin MD, PhD 54
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Conditional Probability & Independence
ANECREHE R ESIVE B TRk
* For discrete random variables X and Y, if any one of the E‘L Iﬂjn ﬁ :1>J )E‘ﬂs fﬁj l: IE}*\I
following properties is true, the others are also true, and
Xand Y are 1ndependent. X (% J7\|E§|:F R Y @?Tﬁﬁ@ﬁ) FL\E
(D fiy(xy) = fx(x) fy(y) ~ forallxandy B [0 Gl 1 G
(2) fy(y) = fy(y) for all x and y with fy(x) > 0 0 CTED 1,200 480 1,630
(3) fy(x) = fx(x) for all x and y with fy(y) > 0 1 (FEkD 240 480 720
(4)P(X € A,Y € B)=P(X € A)P(Y € B) for any sets g 7 1,440 960 2,400
A and B in the range of X and Y respectively.
« If we find one pair of x and y in which the
equality fails, X and Y are not independent.
2005/10/23 Jeff Lin, MD, PhD. 12005/10/23 Jeff Lin, MD, PhD, 56
" foose - F(x |y) puiRiF#yss
XZY U AT PR ﬁ &)
X CRLAEERFS Y CRENEREAES) fie Y Y=0 Y =1
BAE) | 0 () LEE) | ™ X Gt D) CEifD
0 CPED 0.50 0.20 0.7 X=0 CTED 0.83 0.5
1 (D 0.10 0.20 03 X =1 (J&ED 0.17 0.5
Fit f,) 0.60 040 10
2005/10/23 Jeff Lin, MD_PhD 12005/10/23 Jeff Lin, MD. PhD. 2
O
F(y | x) pufEEF#=F
” X0 v Expected Values,
Y (TED (FEED) . .
Y=0 Ghivg) 071 033 Covariance, and Correlation
Y=1 (F) 0.29 0.67
2005/10/23 Jeff Lin, MD, PhD. 9 12005/10/23 Jeff Lin, MD, PhD, 60
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Expected Values Covariance and Correlation

* When two or more random variables are defined
on a probability space, it is useful to describe
how they vary together, i.c., measure the
relationship between the variables.

Let X and Y be jointly distributed rv’s with pmf
p(x, y) or pdf f (x, y) according to whether the
variables are discrete or continuous. Then the

ted value of a function h(X, Y t
expected value of a function h(X, Y), denoted * A common measure of the relationship between
E[h(X, V)T or i ox vy

two random variables is the covariance.

is zz h(X,¥)-p(X,¥Y) discrete
Xy

I I h(x,y)- f(x,y)dxdy continuous

—00 —00
2005/10/23 Jeff Lin, MD, PhD 6l | 2005/10/23 Jeff Lin MD, PhD 6

Covariance

Covariance . ,
* The covariance between the random variables X

The covariance between two rv’s X and Y is and Y, denoted as cov(X,Y) or oy, is

Cov(X.Y) = E[(X =4 )(Y = )] Gy = EI(X - 1) (Y - )] = E(XY) - i iy

>3 (= )y -y )p(x,y)  discrete o _
Xy » Covariance is a measure of the linear

=4 0 o relationship between random variables.
j I (X—ax )(Y— ) (X, y)dxdy continuous
2005/10/23 Jeff Lin, MD_PhD 03 12005/10/23 Jeff Lin, MD. PhD. 04
Covariance

Short-cut Formula for Covariance « If the points in the joint probability distribution

of X and Y that receive positive probability tend

to fall along a line of positive (or negative) slope,

COV( X,Y ) -E ( XY ) — Ly - Ly Oy 18 positive (or negative).

o If the relationship between the random variables
is nonlinear, the covariance might not be
sensitive to the relationship.

2005/10/23 Jeff Lin, MD, PhD 13 2005/10/23 Jeff Lin MD, PhD 66
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Correlation

* The correlation between random variables X and Y,
denoted as pyy, is

_ cov( X,Y) _ Ox
PR ROV YY) ooy

* The correlation scales the covariance by the standard
deviation of each variable.

* It is dimensionless quantity that can be sued to
compare the linear relationship between pairs of
variables in different units.

2005/10/23 Jeff Lin, MD, PhD 13

Correlation

* Because 6y > 0 and o > 0, if the covariance
between X and Y is positive, negative, or zero,
the correlation between X and Y is positive,
negative, or zero respectively.

* If the points in the joint probability distribution
of X and Y that receive positive probability tend
to fall along a line of positive (or negative) slope,
Pxy 1s near +1 (or -1).

| 20051023 Jeff Lin, MD, PhD,

Correlation

* For any two random variables X and Y
-1 <pygy <+l
* If pyy €quals +1 or -1, the points in the joint
probability distribution that receive positive
probability fall exactly along a straight line.

* Two random variables with nonzero
correlation are said to be correlated.

Correlation Proposition

1. If X and Y are independent, then p =0,
but p = 0does not imply independence.

2. p=lor —1iffY =aX +b
for some numbers a and b with @ # 0.

3. If a and c are either both positive or both
negative, Corr(aX + b, cY + d) = Corr(X, Y)

2005/10/23 Jeff Lin, MD_PhD 09 ] 12005/10/23 Jeff Lin, MD. PhD. 20
2 Al 1 » +l
COV(X,Y)entt 5, ek %
*
Y i} I Y .
(X~ 1) <0 (X= 1) >0 * «
(Y=py)>0 (y—py)>0 * *
* *
Hy « N *
*
* *
m v
(X=15)<0 (X=11x)>0
(y—py)<0 (Y- 4y)<0
by X X
2005/10/23 Jeff Lin, MD_PhD 1 12005/10/23 Jeff Lin, MD. PhD. L
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An example for a correlation

AR that is close to unity
y
: 3 ® 0.4
=TT 2 0.1 0.1
* 1 e 0.1 = 0.1
0.2
Qe
1 2 < x
2005/10/23 Jeff Lin, MD_PhD 1 2005/10/23 Jeff Lin, MD._PhD. 4
An example of unity correlation ﬁlﬁjﬁ’%ﬁg\%p =+1
Y
e (0.2
® 0.6
e 0.2
1 2 3
X
2005/10/23 Jeff Lin, MD_PhD 12005/10/23 Jeff Lin, MD. PhD. 20
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X, Y%&’FE'F%;E o =0
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AT < [&r3 AT} 53 —_
X, Y &@?ﬂﬁ#’aaﬁkréﬁ [ X, Y &.@,[E.“%Fﬁ% 7, 0 =0
v Y
. .
.
- - .
. . s ¢
* * . .
. .. " . ¢
-
* o . * e, e *
X X
2005/10/23 Jeff Lin MD PhD 200510123 Jeff Lin, MD PhD
- ) [503 H
X, YE&;:’IE:?“&LIEEF,% [ Correlation and Independence
» If X and Y are independent random variables,
Oxy=Pxy =0
Y
. . ¢
* * *
. . M *
N - * *
¢ .o ¢ M
. . .
X
2005/10/23 Jeff Lin, MD, PhD 81 1200510123 Jeff Lin MD PhD
- = - & =&
- - & =&
* & =&
(e} Positive covariance / (b Zaro covariance
All points are of ¥
+ - equal probability
= = = / 3 - -
fe) Megative covariance fef) Zoro covariance 200571023 Jeff Lin, MD PAD. 24
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Conditional Probability

* Let R, denote the set of all points in the range of
(X,Y) for which X=x. The conditional mean of
Y given X = x, denoted as E(Y[X) or piy,, is

Covariance, and Correlation E(Y [x)=Y ¥y, (y)

RX

Conditional Expected Values,

* And the conditional variance of Y given X = x,
denoted as V(Y[x) or %y, is

V(Y [x)= Z(y - ,Uy\x)z fr(Y)= Z y? fyn ()= /uﬁz(\x

2005/10/23 Jeff Lin, MD, PhD 8 | 2005/10/23 Jeff Lin MD, PhD 36

. , _ Introduction to Multiple RVs
Conditional Expectation and Variance

* The conditional expectation of ar.v. X given + Example: Consider 3 coin flips

s 4 : : X = Number of Heads
that Y_y 18 deﬁned m the dlSCI‘Cte casc by y = { 1 first and third outcomes are the same

0 otherwise
E(XTY =y, ) =2 X Pyy (X1Yy) X(HHH) = 3.Y(HHH) =1
VX, X(HHT) = 2.Y(HHT) =0

i i X(TTT) = 0,Y(TTT) = 1
* and in the continuous case by (TTT) = 0,Y(TTT)

* Rvs X and Y are defined on the same underlying experiment !!

E(X|Y =y) = [xfy (x|y)dx

2005/10/23 Jeff Lin, MD, PhD. 3  2005/10/23 Jeff Lin, MD, PhD, 38
Conditional Expected Value Conditional Expected Value
Pxyley) | y=0 y=1 y=2 | Px(x)
S =0 001 © 0 0.01
Example: Toss a coin 3 times r=1 009 009 © 0.18
X =number of heads in 3 independent tosses =2 0 0 0.81 0.81
Y = maximum number of consecutive heads Py (y) 010 009 08l
Compute E[X|Y =y], y=0, 1,2 and 3 vxy = E[XY]
2 2
vy Gey)
0 3y =0 " = Z Z .’L‘yPX,Y(.'Iz'7y)
By =g =4 5 V23 2=0y=0
3 4=3 = (1)(1)0.09 + (2)(2)0.81 = 3.33
pxy = yxy — EIX]E[Y]
=333-18-1.71=0.252
2005/10/23 Jeff Lin, MD_PhD 89 12005/10/23 Jeff Lin, MD. PhD. 90 |

15



05B10STO06 Joint Distribution

2005/10/23

2005/10/23 Jeff Lin, MD, PhD

9l

Bivariate Normal Random Variable

And Bivariate Normal Distribution

| 20051023 Jeff Lin, MD, PhD,

Bivariate Normal Distribution
Definition

The probability density function of a bivariate normal distribution is

5-6 Bivariate Normal Distribution

Examples of bivariate normal distributions.

7
ip . | : - (.\' i |Ly) .
folv.y. oy op g bg p) = e e T 7 forts
InoyoyV1 = p Al -p)l o sy ;
. By
AR K
Yot = wlly - - . Y
0=y —wy) -y I o u \
i T T (5 32) “‘,‘ﬁ%mww-' - x ny x
TyTy oy Y " hx ey 5 [ By
for —2 < v < wand —= < y < %, with parameters oy > 0, 0y > 0, =% < py< =,
—o <y <o and =1 <p<l,
2005/10/23 Jeff Lin, MD_PhD 93 1 2005/10/23 Jeff Lin, MD. PhD. 94
Ex: Ans:
A bivariate normal random variable (X, Y) has the joint probability density function: X _
W XTH Y hy
2 2 oy o,
X— X— - _
1 ( o_ﬂx] *ZPXV(TM](%]JF[%J U =2p wtv (vfvau)%(ljvaz)u2 _ (V*vau)2 o
f (% y)= Sexp —=— o : 20-p) 20-p,,) 21-p,7) 2
2”0x6v\/17va 2 lfva
[y—m L X*l‘sz
where—o0 < X < +c0and —o0 < y < 400 f00=]" [ 1 o oy w 0 =)’ dy
(1) Find f,(x) and f,(y) 270, V2mo,1-py, 2Ai-p.) 20

(2) Showthat p v, is the correlation coefficient of (X, Y)
(3) Determine E(Y | x)
Ans:
(1) The probability density function of X is
£,00=["f(xy)dy
The probability density function of Y is
f,(0=] f(xy)dx

2005/10/23 Jeff Lin, MD_PhD

" >
[y*[/tv + P ~*‘(X*#x)]]
Ux
D d

20,'(1-py )

_ ! p{f(x—ux)‘},r 1 y
V270, 20,° ” meﬁ/lfp,(\,Z

1 (=)
~ 270, e“’{ 2. }

| 2005/10/23 Jeff Lin MD, PhD
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Ans:
Similarly,
1 (y-u)
f.(y)= L2
;7 “‘{ 20, }

Therefore, X ~N(x,0,°), Y ~N(4,0,7)
(2) The correlation coefficient is:

Cov(X.Y) _ EIX —a)(Y )]
WOV ) 0,0,

A

=[5 (%][C—‘j £, (x ) dxdy

Ans:

Let u=X"fe y_Yoi
X Uv
dx=o,du, dy=o,dv
Cov (X,Y) ¢ 1 { uz—ZpXYuv+v3}
= u-v- Xp| — 5 o, 0, dudv
WOV LL 2706,0,\1- pe 21-p)

vy 1 R CEY: ' P G
7[*@{1’}]@\/17%2 p{ 2(17pr)}du} exP[ Z}dv

:j/ vav-cxp v dv
N2z " 2
v v

= = dv
ol oz exp{ > }
=P

Therefore, 0 4y is the correlation coefficient of (X, Y)

2005/10/23 Jeff Lin, MD PhD 9 1 2005/10/23 Jeff Lin, MD_PhD 98
Ans:
The conditional probability density function is:
£ty =)
X - - - -
[[y%)fp ‘[H’*H_ Distribution of Functions of
_ 1 B o, XV oy -
Tt o ) Random Variables
[)"[M + P (x4, )]]
_ 1 oy
T e i—py D 26, (1= py)
This is the probability density function of N(,uV + Pyy -:;L"(X—/lX ), af(l—pr)j
Therefore, E[Y |X]=u, +p,, -%(x — 1)
2005/10/23 Jeff Lin, MD_PhD 99 12005/10/23 Jeff Lin, MD. PhD. 100

Distribution of Functions of
Random Variables

e Let X is a random variable, then we can
transform X into another form, such as

Y=log (X), or Y=1/X, or Y=-X, or Y=X> ... etc
¢ Y is still a random variable

* Distribution of Y, (a function of X), is called the
distribution of function of random variable, X.

2005/10/23 Jeff Lin, MD_PhD 101

Methods for Determining the Distribution
of Functions of Random Variables

1. Distribution function method
2. Moment generating function method

3. Transformation method

2005/10/23 Jeff Lin MD, PhD

102
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Transformations
Theorem

Then the joint probability density function of
Uy, Uy,..., U, is given by:

Let X, X,,..., X, denote random variables QU U, ) = (X %,) d (X, X,)
with joint probability density function oo v (U, u,)
f(X,y Xy X, ) =f(x,-%)9 i
dx, dx,
Letu, = hl(Xlﬂ Xos- s Xn)- q (X x ) dUI dUn
Uy = hy(Xy, Xy ey Xp)- where J=— 00 gl :
d (ul’...,un)
_ dx dx
Uy = Np(X s Xgen ey Xp)- - .. .
Jacobian of the transformation dU1 dUn
define an invertible transformation from the X’s to the u’s -
2005/10/23 Jeff Lin, MD_PhD 10, 1 2005/10/23 Jeff Lin, MD._PhD. 104
The Distribution of a Function of a Distribution of Functions of
Random Variable Random Variables
« Here, the probability density function of a random variable X is known. . EXI

How do we determine the probability density function of some functions,
say g(X) of it.

Method 1: Express the event that g(X)<Yy in terms of X being in
some set.
Method 2: If g(X) is a strictly monotone(either increasing or

decreasing) and differentiable function of X, use the
below formula to find the probability density function of
random variable Y defined by Y = g(X).

f 1
(=] 80
0 if y # g(x) forall X

j—yg ‘(y)‘ if y = g(x) for some x

Note:  y=9(X),x=9g"(y)

2005/10/23 Jeff Lin, MD_PhD

* X ~N(u,0?),then
e Z=(X-u) o ~ N(0,1) (Standard Normal)

2005/10/23 Jeff Lin MD, PhD

100

Distribution of Functions of
Random Variables

Let X have a normal distribution with mean 0, and
variance 1. (standard normal distribution)

2
X
1 -

Let W= X2
Find the distribution of W.

2005/10/23 Jeff Lin, MD_PhD

Thus if X has a standard Normal distribution then
W= X2
has density

1 _Low
g(w)=—=w 2e 2

2z

This distribution is the Gamma distribution with o = %2
and A =%. (Known as chi-squared distribution.)

ifw=0.

This distribution is also the #2 distribution with v=1
degree of freedom.
(Chi-squared distribution with 1 degree of freedoom)

2005/10/23 Jeff Lin MD, PhD
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The Joint Probability Distribution of a
Function of Random Variables

. Here, the joint probability density function of two jointly continuous
random variable X;, X, are known. How do we determine the joint
probability density function of the random variables Y, and Y,
which are the functions of X;and X, .

where Y, =0,(X,, X)) and =0,(X,, X,)

It should be assumed that the functions g, and g, satisfy the
following conditions:

1. 9, and 9: are two one-to-one-functions.
So there exist unique h, and h, such that:

X =h (Y, ¥.), %, =h(y,, )

2005/10/23 Jeff Lin, MD, PhD

The Joint Probability Distribution of a
Function of Random Variables

2. 9, and 9, have continuous partial derivatives at all points (x,, X,).

Hence:
6959
x| _d9,89, 9,09
J(X, %)= R 11X,
(Xlxz)&%axlaxz ox, ox allx, X,
ox X

. Under the previous two conditions, the joint probability density
function of the random variables Y, and Y, is given by:

fw:(yu yz) = fx‘x: (XH Xz)“](xu Xz)‘il

| 2005/10/23 Jeff Lin MD, PhD 110

Ex:
X and Y is jointly continuous random variable with the joint probability
density function f,y. Find the joint probability density function of A and B
by given that X and Y are independent and uniformly distributed in the

interval (0, 1), also: A= X +Y, B=X-Y
Ans:
Let g(xy)=Xx+Yy, g,(%y)=x-y
1
J(x,y):‘ | =-2
a+b a-b a+b a-b
fe(@b)=[306 V) fxv(f 7) - xv(i 7)

|

- 0<a+bh<2, -l1<a-b<l
fw(a,b)_{z *

0

otherwise

The Joint Probability Distribution of a
Function of Random Variables

Suppose that X and Y are independent random
variables each having an exponential distribution
with parameter A (mean 1/4)

f,(x)=2e" for x>0
f,(y)=2e™ for y>0

Fxy)=f(x) f(y)

=% for x>0, y=0

LetW=X+Y.
Find the distribution of W.
2005/10/23 Jeff Lin, MD_PhD 111 12005/10/23 Jeff Lin, MD. PhD. 112
e
i 1 (0w)
First step

Find the distribution function of W =X +Y
GW)=P[W<=<w]=P[ X+Y<w]

¥y
1 (0.w)

2005/10/23

Jeff Lin, MD, PhD

10123 Lin MD _PhD 114
1200
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AT X g dx

A5
_l(eﬂ

= [1 —e M- /Iwe’“”]

| 20051023 Jeff Lin, MD, PhD,

110

Second step
Find the density function of W
g(w) = G'(w).
d —Aw —Aw
= W [1 —e ™" - Awe ]
—Aw
=l e™-21 d—we’;W +Wde
dw dw

= [le’“’ -2+ ﬂzwe’lw}

Hence if X and Y are independent random variables
each having an exponential distribution with parameter

A then W has density

g(w)=A’we™ for w0

This distribution can be recognized to be the Gamma
distribution with parameters & = 2 and

1. Zhaving a Standard Normal distribution

and
2. U having a »? distribution with v degrees
of freedom
. T Z
Find the distribution of t= T
A
2005/10/23 Jeff Lin, MD_PhD 119

=Awe™™  for w>0
2005/10/23 Jeff Lin, MD_PhD 1l 12005/10/23 Jeff Lin, MD. PhD. 1l
Example: Student’s t Distribution
P The density of Z is:
Let Z and U be two independent random R
ables with: f(2)=—p=e
variables with: T

2005/10/23 Jeff Lin MD, PhD
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Therefore the joint density of Z and U is:

v, 2+u

uz e ?

1)
f(z,u)f(z)h(u)\/g(v)
2

The distribution function of T is:

Z t

G(t)=P[T <t]=P| ==<t|=P|Z< U
foel o o]

2005/10/23 Jeff Lin, MD, PhD

121

Therefore:

| 20051023 Jeff Lin, MD, PhD,

122

and

9V =

l E2%11" V+1, _vil

\/E\/;r("j —+1

v
2

2005/10/23 Jeff Lin, MD_PhD

or

F(‘/Hj .
g(t):—z(t—Jrl) o K(t—+1

v+l

5

N m/l“(;) v v
where
Iz [ v+ 1)
Ko\ 2 )
vl [Vj
2
12005/10/23 .EffLin MD. PhD. 124

Student’s t Distribution

v+l

g(t)=K [EHJ_Z
1%

where

2005/10/23 Jeff Lin, MD_PhD

Student — W.W. Gosset

Worked for a distillery
Not allowed to publish

Published under the
pseudonym ““Student

2005/10/23 Jeff Lin MD, PhD
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t distribution

standard normal distribution

2005/10/23 Jeff Lin, MD_PhD 12

Distribution of the Max and Min
Statistics

Let X;, X, ... , X, denote a sample of size n from

the density f(X).

Let M = max(X;) then determine the distribution
of M.

Repeat this computation for m = min(x;)

| 20051023 Jeff Lin, MD, PhD,

The Probability Integral Transformation

This transformation allows one to convert
observations that come from a uniform distribution
from 0 to 1 to observations that come from an
arbitrary distribution.

Let U denote an observation having a uniform
distribution from 0 to 1.

1 0<u<l
-]

0 elsewhere

2005/10/23 Jeff Lin, MD_PhD 120

Let f(x) denote an arbitrary density function and
F(x) its corresponding cumulative distribution
function.

Let X=F"'(U)
Find the distribution of X.
G(x)=P[X <x]=P[F'U)<x]
=P[U<F(x)]
=F(x)
Hence.

9(x)=G'(x)=F'(x)=f(x)

2005/10/23 Jeff Lin MD, PhD

130

Thus if U has a uniform distribution from 0 to 1.
Then

X=F"'U)

has density f(x).

0.16
0.14
0.12
0.1
0.08
0.06
0.04 o
0.02 H

0

T T T )
0 b} 10 15 20

2005/10/23 Jeff Lin, MD_PhD 131

The Distribution of

a Linear Combination

2005/10/23 Jeff Lin MD, PhD
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Joint Distributions

* Sums and differences
— The expectation of sums is the sum of expectations

E(X+Y)=E(X)+E(Y)

E(a+bX +cY)=a+bE(X)+cE(Y)

2005/10/23 Jeff Lin, MD, PhD 1

Joint Distributions

e Sums and differences

— The variance of a sum is the sum of variances, plus
twice the covariance

V(X +Y)=V(X)+V(Y)+2Cov(X,Y)

V(a+bX +cY)=bV(X)+cV(Y)+2bcCov(X,Y)

| 20051023 Jeff Lin, MD, PhD,

134

Joint Distributions

¢ Sums and differences

— If two variables are uncorrelated (covariance is 0),
the variance of a sum is the sum of variances

V(X +Y)=V(X)+V(Y)

V(a+bX +cY)=bV(X)+cV(Y)

2005/10/23 Jeff Lin, MD_PhD 1

Difference Between
Two Random Variables

E(X;=X,)=E(X;)-E(X,)
and, if X, and X, are independent,

V(X = X5)=V (X)) +V(X,)

2005/10/23 Jeff Lin MD, PhD

130

Joint Distributions

¢ Sums and differences

— The variance of a sum is the sum of
variances plus twice the sum of
every possible covariance:

V(a+bX +cY +dZ)=bV(X)+cV(Y)+dV(Z)
+2bcCov(X,Y )+ 2bdCov(X,Z)+2cdCov(Y,Z)

2005/10/23 Jeff Lin, MD_PhD 1

Joint Distributions

¢ Sums and differences

— The covariance of a sum with a third variable is the
sum of covariances:

Cov(X +Y,Z)=Cov(X,Z)+Cov(Y,Z)

Cov(a+bX +cY,Z)=hCov(X,Z)+cCov(Y,Z)

2005/10/23 Jeff Lin MD, PhD
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Sums of Random Variables
and Long-Term Average

SUMS OF RANDOM VAREABLES

Let X, X,.,..., X, be a sequence of random variables, and let S, be their
sum:
Sn:X1+X2+"'+Xn (5.1)

In this section, we find the mean and variance of S, , as well as the pdf of S,
in the important special case where the X;'s are independent random
variables.

Mean and variance of Sums of Random variables

In Section 4.7, it was shown that regardless of statistical dependence, the
expected value of a sum of n random variables is equal to the sum of the
expected values:

E[X,+ X, +..+ X ]=E[X,]+..+ E[X,] (5.2)

2005/10/23 Jeff Lin, MD, PhD 139

Linear Combination

Given a collection of n random variables
Xi,--.» X, and n numerical constants a,,...,a,,
the rv

n
Y =a X +..+a, X, = > aX;
i1

is called a linear combination of the X;’s.

| 20051023 Jeff Lin, MD, PhD,

140

Expected Value of a Linear Combination

Let X,,..., X, have mean values £4, 4, Hn
and variances of 0-12,0-22,...,0-3, respectively

Whether or not the X;’s are independent,
E(alxl +...+anxn): alE(X1)++anE(Xn)

2005/10/23 Jeff Lin, MD_PhD 141

Variance of a Linear Combination

If X,,..., X, are independent,
V(a X +...+anXp ) =arV (X)) +..+agV (X,)

_.2 2 2 2
=ajof +...+a;0;

and

(222 2 2
Oa X, +.+a,X, _\/al oy t...ta,0p

2005/10/23 Jeff Lin MD, PhD

142

Variance of a Linear Combination

For any X,,..., X,

n
V(a1X1+...+aan)=ZZaiajC0V<Xi,Xj)
i0

—_

2005/10/23 Jeff Lin, MD_PhD 14

Covariance of Random Variables

« Relation between variance and covariance:
Var(iXJ:Cov(iX,,Z":XJ)
:Z":Zn:Cov(Xl, X))
e
=3 Var (X)+ Y 3 Cov (X,, X,)
=3 Var (X)) 4233 Cov (X,, X )
i=l i<j
If X; and X; are independent, then :

Var (3 X,) =3 Var(X,)

Jeff Lin MD, PhD

2005/10/23
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Covariance of Random Variables

*  Properties of covariance:
1. Cov(X,Y)=Cov(Y,X)

2. Cov(X,X)=Var(X)

3. Cov(aX,Y)=aCov(X,Y)

4 cOv(ix,,ixjjziiccv(x,,vl)

2005/10/23 Jeff Lin, MD_PhD 145

Difference Between
Normal Random Variables

If X;, X,,...X, are independent, normally
distributed rv’s, then any linear combination
of the X;’s also has a normal distribution. The
difference X, — X, between two independent,
normally distributed variables is itself
normally distributed.

1023 Lin, MD, PhD. 146
1200 Jeff

Mean and Variance of an Average

c If X =X+ X, +... +X,)/pwith E(X)) = p
fori=1,2,...,p
E(X) = n
* If Xy, X,, .., X, are also independent with V(Xi)
=c?fori=1,2,...,p,

V(X) =c*/p

Some Important Results

2005/10/23 Jeff Lin, MD_PhD 14

| 2005/10/23 Jeff Lin MD, PhD 1481

Multiple Discrete Random Variables
Multinomial Probability Distribution
Suppose a random experiment consists of a series of n trials. Assume that
(1) The result of each trial is classified into one of & classes.
(2)  The probability of a trial generating a result in class |, class 2, ..., class k
is constant over the trials and equal to py, py. ..., py. respectively.
(3)  The trials are independent.
The random variables X}, X5, ..., X, that denote the number of trials that result in
class 1, class 2, ..., class k, respectively, have a multinomial distribution and the
joint probability mass function is
1!
PXy=x,X5=x,.... 5 =x) =————p{' p2... pf* (5-13)
w00 5]

e 5 = 3 3R occ A T =B jp sl gy 3F A oo A g = L

Multiple Discrete Random Variables
Multinomial Probability Distribution
Each trial in a multinomial random experiment can be regarded as either generating or not
generating a result in class , foreach 1= 1,2, ..., k. Because the random variable X; is the
number of trials that result in class 7, X; has a binomial distribution,

[fX,, Xy, ..., X, have a multinomial distribution, the marginal probability distribu-
tion of ;15 binomial with

EX) = npy and VCY) = npi(1 = p) (5-14)

2005/10/23 Jeff Lin, MD_PhD 149

10/23 Lin MD, PhD. 150
j il

25



05B10STO06 Joint Distribution

2005/10/23

Some Important Results

e X~N(u,o?),then
Z=(X-u) o ~ N(0,1) (Standard Normal)

e X~N(u,0?),then

W =2Z2is »* v=1 (chi-squared dist. With 1.d.f))
e Z~ N(0,1), U~ »? v=m degrees of freedom, then
» 'jy; is Student’s t distribution with m d.f.
e U :;(2 v=m, V ~ 2 v=n, then

(U/m) / (V/n) ~F (m, n) d.f.
e T2=F(l,m)

2005/10/23 Jeff Lin, MD_PhD 151

Some Important Results

* Let X, X,, ..., X, denote a independent identical
sample of size n from the density f(x).

e LetY=Y X, +X,+ ... +X,

* Sum of Bernoulli random variables is a Binomial
random variable

* Sum of Poisson ( 1) is a random variable with
Poisson (n A).

* Sum of Exponential (8 ) is a random variable
with Gamma (n, 0)

| 2005/10/23 Jeff Lin MD, PhD 152

Some Important Results

* Let X}, X, ..., X, denote a independent identical
sample of size n from the density f(X).

s LetY=Y X, +X,+...+X,

e Sum of Normal N( 1z, 0 2), is a random variable with
N(n ¢ ,no2).

. X is a random variable with N( 1z, o 2/n).

Expected Value of a Linear Combination

Let X,,..., X, have mean values £4, - Hn

and variances of 0-12,0-22,...,0-,3, respectively

Whether or not the X;’s are independent,
E(aX|+..+a,X,)=aE(X))+...+a,E(X,)

2005/10/23 Jeff Lin, MD_PhD 1

2005/10/23 Jeff Lin MD, PhD 154

Variance of a Linear Combination

For any X,,..., X,

n
V(a1X1+...+aan)=ZZaiajC0V<Xi,Xj)
0

—_

Thanks !

2005/10/23 Jeff Lin, MD_PhD 1
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