One-Sample Test for Proportion CF Jeff Lin, MD., PhD. November 1, 2005	Approximated One-Sample Z Test for Proportion
©Jeff Lin, MD., PhD.	© Jeff Lin, MD., PhD. One Sample Test for Proportion, 1
DM-TKA Example In DM-TKR Data, there are 5 infective patients of total 78 patients, the sample proportion is 6.41% = 5/78. The infective probability in U.S. is about 1%. Do our sample differ from U.S. population?	<text><list-item><list-item><list-item><list-item><table-container><list-item><table-container><table-container></table-container></table-container></list-item></table-container></list-item></list-item></list-item></list-item></text>
Hypothesis	Test Statistics
 <i>H</i>₀ : <i>π</i> = <i>π</i>₀ = 0.01, <i>H_A</i> : <i>π</i> ≠ <i>π</i>₀. 	The observable sample proportion $\hat{\pi} = \frac{Y}{n} = \frac{\sum_{i=1}^{n} X_{i}}{n}, (2)$ The sample distribution of the sample proportion $\hat{\pi}$ $\hat{\pi} \sim N\left(\pi, \frac{\sqrt{\pi(1-\pi)}}{\sqrt{n}}\right)$ (3) The observed sample test statistic under H_{0} $Z = \frac{(\hat{\pi} - \pi_{0})}{\sqrt{(\pi_{0}(1-\pi_{0})/n)}} \sim N(0, 1)$ (4) (approximate distribution) (It is called approximated Z test since it use the Z statistic.)
©Jeff Lin, MD., PhD. One Sample Test for Proportion, 4	©Jeff Lin, MD., PhD. One Sample Test for Proportion, 5

Testing Hypothesis: Z Value I The test statistic Z depends upon 1. The sample proportion $\hat{\pi}$ 2. The hypothesized target general population prop 3. The population standard deviation, $\sqrt{\pi(1-\pi)}$. If the null hypothesis H_0 is true, then the hypothesis proportion $\pi_0 = 0.01$ is equal to the population prop	Method ortion π ized population oportion, π .	Testing Hypothesis: Z Val 1. Prescirbe Type I Error α 2. $Z_{1-\alpha/2}$ be the corresponding percentile from $P(Z < Z_{\alpha}) = \alpha$ 3. Under $H_0: \pi = \pi_0$, the observed test statistics $z = \frac{(\hat{\pi} - \pi_0)}{\sqrt{\pi_0(1 - \pi_0)}/\sqrt{n}}$.	lue Method m $N(0,1)$ such tat stic (5)
©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 6	©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 7
Testing Hypothesis: Z Value I 1. For two-sided alternative test, $H_A : \pi \neq \pi_0$ 2. Reject the H_0 when $ \mathbf{z} > Z_{1-\alpha/2}$.	Method	Critical Value and Critical Red Given the significant level α $P(Z > Z_{1-\alpha/2}) = \alpha$ $P\left(\left \frac{(\hat{\pi} - \pi)}{\sqrt{\pi(1 - \pi)}/\sqrt{n}}\right > Z_{1-\alpha/2}\right) = \alpha$ $P\left(\hat{\pi} < \pi - Z_{1-\alpha/2}\frac{\sqrt{\pi(1 - \pi)}}{\sqrt{n}} \text{ or } \hat{\pi} > 0$	egion Methods > $\pi + Z_{1-\alpha/2} \frac{\sqrt{\pi(1-\pi)}}{\sqrt{n}}$
©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 8	(5)Jeff Lin, MD., PhD.	One Sample Test for Proportion, 9
Critical Value and Critical Region Under $H_0: \pi = \pi_0$, we choose the two critical values z test are $c_{\alpha,1} = \pi_0 - Z_{1-\alpha/2} \frac{\sqrt{\pi_0(1-\pi_0)}}{\sqrt{n}}$ and $c_{\alpha,2} = \pi_0 + Z_{1-\alpha/2} \frac{\sqrt{\pi_0(1-\pi_0)}}{\sqrt{n}}$. We will reject the H_0 based on the critical region when $\hat{\pi} = \frac{y}{n} = \frac{\sum_{i=1}^n x_i}{n}$ $\hat{\pi} < c_{\alpha,1} = \pi_0 - Z_{1-\alpha/2} \frac{\sqrt{\pi_0(1-\pi_0)}}{\sqrt{n}}$. or $\hat{\pi} > c_{\alpha,2} = \pi_0 + Z_{1-\alpha/2} \frac{\sqrt{\pi_0(1-\pi_0)}}{\sqrt{n}}$.	n Methods ues for the two-sided (6) (7) (8) (9)	$\begin{array}{c} \textbf{Confidence Interval N} \\ \textbf{The two-sided } (1-\alpha)\times 100\% \text{ confidence interproportion } \pi \text{ based on the sample statistic } \hat{\pi}, \\ \textbf{alternative hypothesis } H_A: \pi \neq \pi_0, \text{ is} \\ P[Z < Z_{1-\alpha/2}] = 1-\alpha \\ P\left[\left \frac{\hat{\pi}-\pi}{\sqrt{\pi(1-\pi)}/\sqrt{n}}\right < Z_{1-\alpha/2}\right] = 1-\alpha \\ P\left[\left (\hat{\pi}-\pi)\right < Z_{1-\alpha/2}\times \frac{\sqrt{\pi(1-\pi)}}{\sqrt{n}}\right] \\ P\left[\pi > \hat{\pi} - Z_{1-\alpha/2}\times \frac{\sqrt{\pi(1-\pi)}}{\sqrt{n}}\right] \\ P\left[\pi > \hat{\pi} - Z_{1-\alpha/2}\times \frac{\sqrt{\pi(1-\pi)}}{\sqrt{n}}\right] \\ \textbf{and} \pi < \hat{\pi} + Z_{1-\alpha/2}\times \frac{\sqrt{\pi(1-\pi)}}{\sqrt{n}} \\ \hline \text{@Jeff Lin, MD., PhD.} \end{array}$	Aethod erval of the population and the two-sided $-\alpha$ $= 1 - \alpha$ $\overline{\pi} = 1 - \alpha.$

Confidence Interval Method

The two-sided $(1-\alpha)\times 100\%$ confidence interval of the population proportion π based on the sample statistic $\hat{\pi},$ is

$$\left(\hat{\pi} - Z_{1-\alpha/2} \times \frac{\sqrt{\hat{\pi}(1-\hat{\pi})}}{\sqrt{n}}, \ \hat{\pi} + Z_{1-\alpha/2} \times \frac{\sqrt{\hat{\pi}(1-\hat{\pi})}}{\sqrt{n}}\right).$$
(10)

We will reject the two-sided test when the two-sided $(1 - \alpha) \times 100\%$ confidence interval of the population does not contain the hypothesized population proportion π_0 under H_0 .

Confidence Interval Method

For $H_0: \pi = \pi_0$ versus $H_A: \pi \neq \pi_0$, we will reject the H_0 when

$$\pi_0 < \hat{\pi} - Z_{1-\alpha/2} \times \frac{\sqrt{\hat{\pi}(1-\hat{\pi})}}{\sqrt{n}},\tag{11}$$

or

$$\pi_0 > \hat{\pi} + Z_{1-\alpha/2} \times \frac{\sqrt{\hat{\pi}(1-\hat{\pi})}}{\sqrt{n}}.$$
 (12)

That is when the hypothesized proportion π_0 is below the lower or above the upper confident limit, we will reject H_0 .

One Sample Test for Proportion, 12	© Jeff Lin, MD., PhD.	One Sample Test for Proportion, 13

*p***-Value Method**

- 1. We have collected the data and the observed sample statistic is $\hat{\pi}.$
- 2. Consider the two-sided hypothesis $H_0: \pi = \pi_0$ versus $H_A: \pi \neq \pi_0$.
- 3. The observed two-sided Z test sample statistic is

$$=\frac{(\hat{\pi}-\pi_0)}{(\sqrt{\pi_0(1-\pi_0)}/\sqrt{n})}.$$
(13)

4. The p-value is defined as

• The *p*-value is the probability of obtaining a result as/or more extreme than you did by chance alone assuming the null hypothesis *H*₀ is true.

©Jeff Lin, MD., PhD

z

© Jeff Lin, MD., PhD

DM-TKA Example

In DM-TKR Data, there are 5 infective patients of total 78 patients, the sample proportion is 6.41% = 5/78. The infective probability in U.S. is about 1%. Do our sample differ from U.S. population?

p-Value Method

The p-value for two-sided test is calculated as

$$P(|\overline{Y}| > |\overline{y}| | \pi = \pi_0)$$

$$= P(|\hat{\pi} - \pi_0| > |\overline{x} - \pi_0| | \pi = \pi_0)$$

$$= P(\left|\frac{(\hat{\pi} - \pi_0)}{\sqrt{\pi_0(1 - \pi_0)}/\sqrt{n}}\right| > \left|\frac{(\overline{x} - \pi_0)}{\sqrt{\pi_0(1 - \pi_0)}/\sqrt{n}}\right| | \pi = \pi_0)$$

$$= P(|Z| > |z| | \pi = \pi_0)$$

$$= 2[1 - P(Z \le z | \pi = \pi_0)]$$

$$= 2[1 - \Phi(|z|)],$$

We will reject the two-sided null hypothesis H_0 when *p*-value, $2[1 - \Phi(|\mathbf{z}|)]$, is less than the significant level α .

© Jeff Lin, MD., PhD.

DM-TKA Example

1. We wish to test the null hypothesis and alternative hypothesis are

 $H_0: \pi=\pi_0(=0.01) \quad \text{versus} \quad H_A: \pi\neq\pi_0.$

- 2. We have collected the data.
- 3. The observed sample proportion ($\hat{\pi}$, test statistic) is 6.4%.
- 4. Let the significant level $\alpha = 0.05$, and $Z_{1-\alpha/2} = 1.960$.

© Jeff Lin, MD., PhD.

One Sample Test for Proportion, 14

©Jeff Lin, MD., PhD.

One Sample Test for Proportion, 17

One Sample Test for Proportion, 15

DM-TKA Example

For two-sided test, the critical value (and critical region) for $\hat{\pi}$ is

$$\begin{aligned} \pi_0 - Z_{1-\alpha/2} \frac{\sqrt{\pi_0(1-\pi_0)}}{\sqrt{n}} &= 0.01 - 1.960 \times \frac{0.01 * 0.99}{\sqrt{78}} \\ &= 0.01 + 1.960 \times 0.01127 \\ &= -0.0121 \end{aligned}$$
 and

$$\begin{aligned} \pi_0 + Z_{1-\alpha/2} \frac{\sqrt{\pi_0(1-\pi_0)}}{\sqrt{n}} &= 0.01 + 1.960 \times \frac{0.01 * 0.99}{\sqrt{78}} \\ &= 0.01 + 1.960 \times 0.01127 \\ &= 0.0322. \end{aligned}$$

Critical values, $(c_{\alpha,1}, c_{\alpha,2})$, are (-0.0121, 0.0322).

© Jeff Lin, MD., PhD

1. The observed sample test statistic, z, is calculated as

$$\mathsf{z} = \frac{(\hat{\pi} - \pi_0)}{\sqrt{\pi_0(1 - \pi_0)}/\sqrt{n}} = \frac{(0.0641 - 0.01)}{\sqrt{0.01 \cdot 0.09}/\sqrt{78}} = 4.80.$$

2. The observed sample test statistic, z, is 4.80 which is greater than the Z critical value, $Z_{1-\alpha/2} = 1.960$.

DM-TKA Example

3. So we reject the null hypothesis H_0 .

©Jeff Lin, MD., PhD.

One Sample Test for Proportion, 20

DM-TKA Example

1. The *p*-value based on the observed sample test statistic, z = 4.80, can be calculated as

 $2[1 - P(\hat{\pi} > |\bar{x}|) = 2[1 - \Phi(|\mathbf{z}|)] = \Phi(4.80) < 0.0001.$

- 2. The *p*-value, < 0.0001, is less than the significant level $\alpha = 0.05$.
- 3. So we reject the null hypothesis.

© Jeff Lin, MD., PhD

One Sample Test for Proportion, 22

DM-TKA Example

We decide to reject the null hypothesis ${\it H}_0$ if

or

$$\hat{\pi} > 0.0322 = \pi_0 + Z_{1-\alpha/2} \frac{\sqrt{\pi(1-\pi)}}{\sqrt{n}}$$

Now the observed sample proportion $\hat{\pi} = 6.41\% > 0.0322$, so we reject the null hypothesis.

One Sample Test for Proportion, 18	©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 19

DM-TKA Example

1. The two-sided $(1-\alpha)\times 100\%$ confidence interval for DM population proportion π based on the sample statistic, $\hat{\pi}$, can be calculated as

$$\begin{pmatrix} \hat{\pi} - Z_{1-\alpha/2} \times \frac{\sqrt{\hat{\pi}(1-\hat{\pi})}}{\sqrt{n}}, \ \hat{\pi} + Z_{1-\alpha/2} \times \frac{\sqrt{\hat{\pi}(1-\hat{\pi})}}{\sqrt{n}} \end{pmatrix}$$

= (0.00975, 0.1185).

One Sample Test for Proportion, 21

- 2. The $(1 \alpha) \times 100\%$ confidence interval for DM population proportion π is (0.00975, 0.1185).
- 3. This interval does not contain $\pi_0 = 0.01$.
- 4. So we reject the null hypothesis H_0 .

C leff I in MD PhD

DM-TKA Example: R

> y<-5; n<-78 # assign y and n in binomial > alpha<-0.05 # assign significant level alpha > pihat<-y/n # sample proportion</pre> > pihat [1] 0.06410256 > qihat<-1-pihat > se0<-sqrt(pi0*(1-pi0)/n) # s.e. under H0 > se1<-sqrt(pihat*qihat/n) # s.e. Under HA</pre> > Z1alpha<-qnorm(1-alpha/2) # Z_{1-alpha/2} quantile</pre> > ztest<-(pihat-pi0)/se0 # sample Z test statistic > ztest [1] 4.802281 © Jeff Lin, MD., PhD. One Sample Test for Proportion, 23

 $\hat{\pi} < -0.0121 = \pi_0 - Z_{1-\alpha/2} \frac{\sqrt{\pi(1-\pi)}}{\sqrt{n}}$

> crit1<-pi0-Z1alpha*se0 # critical vale c_{alpha,1}
> crit2<-pi0+Z1alpha*se0 # critical value c_{alpha,2}
> crit1
[1] -0.01208098
> crit2
[1] 0.03208098
> Z.CI.L<-pihat-Z1alpha*se1 # C.I. Lower
> Z.CI.U<-pihat+Z1alpha*se1 # C.I. Upper
> Z.CI.L
[1] 0.009745922
> Z.CI.U
[1] 0.1184592

©Jeff Lin, MD., PhD.

Power

If
$$H_A: \pi = \pi_A < \pi_0$$
 is true, then we will reject H_0 when

$$\hat{\pi} < c_{\alpha} = \pi_0 - Z_{1-\alpha/2} \frac{\sqrt{\pi_0(1-\pi_0)}}{\sqrt{n}} \tag{14}$$

$$\frac{(\hat{\pi} - \pi_A)}{\sqrt{\pi_A(1 - \pi_A)}/\sqrt{n}} < \frac{(\pi_0 - Z_{1-\alpha/2}(\frac{\sqrt{\pi_0(1 - \pi_0)}}{\sqrt{n}}) - \pi_A)}{\sqrt{\pi_A(1 - \pi_A)}/\sqrt{n}}.$$
 (15)

Power of One-sample Z Test for Proportion

- 1. The first thing is to decided the possible π value under $H_A,$ since different π value under H_A will have different power.
- 2. Suppose in the DM-TKR example, we have $\pi_0=0.01$ and $\pi=\pi_A=0.005$ or $\pi_A=0.05$ under $H_A.$

3. What is power of the two-sided test?

 $\mathsf{power} = P(\mathsf{reject}\ H_0 \mid H_A \text{ is true})$

 Power is the probability of making the correct decision when the null hypothesis is not true. Specially,

 $\mathsf{power}\ = 1 - \beta \ = \ P(\mathsf{reject}\ H_0: \pi = \pi_0 \mid H_A \text{ is true}).$

©Jeff Lin, MD., PhD.

Power

If
$$H_A : \pi = \pi_A < \pi_0$$
 is true,
power $= 1 - \beta = P(\hat{\pi} < c_{\alpha} \mid \pi = \pi_A)$ (16)
 $= P\left(\hat{\pi} < \pi_0 - Z_{1-\alpha/2} \frac{\sqrt{\pi_0(1-\pi_0)}}{\sqrt{\pi}} \mid \pi = \pi_A\right)$ (17)
 $= P\left(Z = \frac{(\hat{\pi} - \pi_A)}{\sqrt{\pi}} < \frac{(\pi_0 - Z_{1-\alpha/2} (\frac{\sqrt{\pi_0(1-\pi_0)}}{\sqrt{\pi}}) - \pi_A)}{\sqrt{\pi}} \mid \pi = \pi_A\right)$

$$= \Phi\left(Z < \frac{\sqrt{\pi_{A}(1-\pi_{A})}}{\sqrt{\pi_{A}(1-\pi_{A})}} \left(-Z_{1-\alpha/2} + \frac{(\pi_{0}-\pi_{A})}{\sqrt{\pi_{0}(1-\pi_{0})}}\right) | \pi = \pi_{A}\right)$$

$$= \Phi\left(\frac{\sqrt{\pi_{0}(1-\pi_{0})}}{\sqrt{\pi_{A}(1-\pi_{A})}} \left(-Z_{1-\alpha/2} + \frac{(|\pi_{0}-\pi_{A}|)}{\sqrt{\pi_{0}(1-\pi_{0})/n}}\right)\right).$$
(18)

©Jeff Lin, MD., PhD.

One Sample Test for Proportion, 26

One Sample Test for Proportion, 28

One Sample Test for Proportion, 24

©Jeff Lin, MD., PhD.

One Sample Test for Proportion, 27

One Sample Test for Proportion, 25

Power

If
$$H_A : \pi = \pi_A > \pi_0$$
 is true,
power $= 1 - \beta = P(\hat{\pi} > c_\alpha \mid \pi = \pi_A)$ (21)
 $= P(\hat{\pi} > \pi_0 + Z_{1-\alpha/2} \frac{\sqrt{\pi_0(1 - \pi_0)}}{\sqrt{\pi}} \mid \pi = \pi_A)$ (22)
 $= (\pi - \pi_A) \frac{(\pi_0 + Z_{1-\alpha/2} (\sqrt{\frac{\pi_0(1 - \pi_0)}{\sqrt{\pi}}}) - \pi_A)}{\sqrt{\pi}}$ (23)

$$= P\left(\mathsf{Z} = \frac{(\pi - \pi_A)}{\sqrt{\pi_A(1 - \pi_A)}/\sqrt{n}} > \frac{(\pi_0 + Z_{1-\alpha/2}(-\sqrt{n}) - \pi_A)}{\sqrt{\pi_A(1 - \pi_A)}/\sqrt{n}} \mid \pi = \pi_A\right)$$

$$= P\left(\mathsf{Z} > \frac{\sqrt{\pi_0(1 - \pi_0)}}{\sqrt{\pi_A(1 - \pi_A)}} \left(+ Z_{1-\alpha/2} + \frac{(\pi_0 - \pi_A)}{\sqrt{\pi_0(1 - \pi_0)/n}} \right) \mid \pi = \pi_A\right)$$

$$= 1 - \Phi\left(\frac{\sqrt{\pi_0(1 - \pi_0)}}{\sqrt{\pi_A(1 - \pi_A)}} \left(+ Z_{1-\alpha/2} + \frac{(\pi_0 - \pi_A)}{\sqrt{\pi_0(1 - \pi_0)/n}} \right) \right)$$

$$= \Phi\left(\frac{\sqrt{\pi_0(1 - \pi_0)}}{\sqrt{\pi_A(1 - \pi_A)}} \left(-Z_{1-\alpha/2} + \frac{(|\pi_0 - \pi_A|)}{\sqrt{\pi_0(1 - \pi_0)/n}} \right) \right). \tag{23}$$

If
$$H_A: \pi = \pi_A > \pi_0$$
 is true, then we will reject H_0 when

$$\hat{\pi} > c_{\alpha} = \pi_0 + Z_{1-\alpha/2} \frac{\sqrt{\pi_0 (1-\pi_0)}}{\sqrt{n}},\tag{19}$$

Power

© Jeff Lin, MD., PhD

$$\frac{(\hat{\pi} - \pi_A)}{\sqrt{\pi_A(1 - \pi_A)}/\sqrt{n}} > \frac{(\pi_0 + Z_{1 - \alpha/2}(\frac{\sqrt{\pi_0(1 - \pi_0)}}{\sqrt{n}}) - \pi_A)}{\sqrt{\pi_A(1 - \pi_A)}/\sqrt{n}}.$$
 (20)

© Jeff Lin, MD., PhD.

One Sample Test for Proportion, 29

path 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	Power So the power of the two-sided test $H_0: \pi = \pi_0$ versus $H_A: \pi \neq \pi_0$ for the specific alternative $\pi = \pi_A$, where the underlying distribution is approximately normal and the population variance σ^2 is estimated as $\pi_A(1 - \pi_A)$, is given exactly by power $= \Phi\left[\frac{\sqrt{\pi_0(1 - \pi_0)}}{\sqrt{\pi_A(1 - \pi_A)}}\left(-Z_{1-\alpha/2} + \frac{(\pi_0 - \pi_A)}{\sqrt{\pi_0(1 - \pi_0)/n}}\right)\right]$. (24)		 Power The power formula has nothing to do with observed sample statistic z, however, the power depends on π_A and its variance π_A(1 – π_A). If we consider H_A : π = π̂, that is, we calculated the power after the study, this is sometime called post-hoc power. It is not recommend by many statisticians. For one-sided test, we use Z_{1-α} (instead of Z_{1-α/2}). 	
DM-TKA Example 1. Suppose $H_A : \pi = \pi_A$, for example, $\pi_A = 0.05$. We have power $\psi(\sqrt{\pi_0(1-\pi_0)}(\sqrt{\pi_0(1-\pi_0)/n})) = 0.76612$. 2. If we assume $H_A : \pi_A = 0.09$, then the power is $\psi(\sqrt{\pi_0(1-\pi_0)}(-Z_{1-\alpha/2} + \frac{(\pi_0 - \pi_A)}{\sqrt{\pi_0(1-\pi_0)/n}})) = 0.9630$. (b) We the power formula has nothing to do with observed samples statistic z. If we consider $H_A : \pi = \hat{\pi}$, that is, we calculated the power after the study, this is sometime called post-hoc power. It is not recommend by many statisticians. (c) UNENCE DM-TKA Example: R > power.prop.two.sided.2.test (power<= myrop.two.sided.2.test	©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 30	©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 31
<pre>@MILM.MD_PROL</pre> Out Some the Properties 2 <pre>@MILM.MD_PROL Description DM-TKA Example: R > power.prop.two.sided.Z.test<function(pi0,pia,alpha,n) #="" (pia*(1-pia))="")="" *(-qnorm(1-alpha="" +abs(pi0-pia)*sqrt(n)="" 1="" 2)="" \n")="" cat("power=",power," power<-pnorm(power)="" power<-sqrt((pi0*(1-pi0))="" sqrt(pi0*(1-pi0)))="" {="" }=""> power.prop.two.sided.Z.test(0.01,0.05,0.05,78) power = 0.7661206 > power.prop.two.sided.Z.test(0.01,0.09,0.05,78) power = 0.96300652 </function(pi0,pia,alpha,n)></pre>	DM-TKA Exam 1. Suppose $H_A: \pi = \pi_A$, for example, π_A $\Phi\left(\frac{\sqrt{\pi_0(1-\pi_0)}}{\sqrt{\pi_A(1-\pi_A)}}\left(\frac{(\pi_0-\pi_A)}{\sqrt{\pi_0(1-\pi_0)/n}}\right)\right)$ 2. If we assume $H_A: \pi_A = 0.09$, then the p $\Phi\left(\frac{\sqrt{\pi_0(1-\pi_0)}}{\sqrt{\pi_A(1-\pi_A)}}\left(-Z_{1-\alpha/2}+\frac{(\pi_0 +\alpha_0)/2}{\sqrt{\pi_0(1-\pi_0)}}\right)\right)$	iple = 0.05. We have power = 0.76612. ower is $\frac{(1-\pi_A)}{1-\pi_0)/n}\Big) = 0.9630.$	DM- The power depends on the var the approximate Z test for pro- distribution. Note: the power formula has statistic z. If we consider H_A after the study, this is sometin recommend by many statistic	-TKA Example riance of π_A , so the direction of power of oportion is not as clear as normal nothing to do with observed sample $: \pi = \hat{\pi}$, that is, we calculated the power me called post-hoc power . It is not ians.
DM-TKA Example: R > power.prop.two.sided.Z.test<-function(pi0,pia,alpha,n) # 1 { power<-sqrt((pi0*(1-pi0))/(pia*(1-pia))) *(-qnorm(1-alpha/2) +abs(pi0-pia)*sqrt(n)/sqrt(pi0*(1-pi0))) power<-pnorm(power) cat("power = ",power,"\n") } > power.prop.two.sided.Z.test(0.01,0.05,0.05,78) power = 0.7661206 > power = 0.96320652	©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 32	©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 33
	<pre>DM-TKA Examp > power.prop.two.sided.Z.test<-func { power<-sqrt((pi0*(1-pi0))/(pi *(-qnorm(1-alpha/2) +abs(pi0-pia)*sqrt(n)/sqrt(power<-pnorm(power) cat("power = ",power,"\n") } > power.prop.two.sided.Z.test(0.01, power = 0.7661206 > power.prop.two.sided.Z.test(0.01, power = 0.9630652</pre>	<pre>le: R tion(pi0,pia,alpha,n) # 1 a*(1-pia))) pi0*(1-pi0))) 0.05,0.05,78) 0.09,0.05,78)</pre>	Exact Sm. Exact T	all-Sample Inference Test for Proportion

$n\pi_0(1-\pi_0) \ge 5.$		2. Let $Y \sim Bin(n, \pi_0)$ ur
 With modern computational power, it is not n large-sample approximation for the distribution Tests and confidence intervals can use the bin directly rather than its normal approximation. naturally for small samples, but apply for any 	 3. Let π̂ = y/n, be the c 4. The computation of th whether π̂ ≤ π₀ or π̂ 	
©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 36	©Jeff Lin, MD., PhD.
<i>p</i> -value of the Exact Test for	Proportion	<i>p</i> -value of t
1. If $\hat{\pi} \leq \pi_0$, then		1. If $\hat{\pi} \leq \pi_0$, then
$p - value/2 = P(\leq y \text{ successes in } n \text{ trial})$	als $ H_0 \rangle$ (25)	$p-value = 2 \times F$
$= \sum_{k=0}^{y} \binom{n}{k} \pi_0^k (1-\pi_0)^{n-k}$	(26)	= min
2. If $\hat{\pi} \geq \pi_0$, then		2. If $\hat{\pi} \geq \pi_0$, then

$$-\operatorname{value}/2 = P(\geq y \text{ successes in } n \text{ trials } | H_0)$$
 (27)

$$= \sum_{k=y}^{n} {n \choose k} \pi_0^k (1 - \pi_0)^{n-k}$$
(28)

© Jeff Lin, MD., PhD

p-value of the Exact Test for Proportion

We illustrate by testing $H_0: \pi=0.5$ against $H_A: \pi \neq 0.5$ for the survey results, y = 0, with n = 25. We noted that the score statistic equals z = -5.0. The exact *p*-value for this statistic, based on the null Bin(25, 0.5) distribution, is

 $P(|z| \ge 5.0) = P(Y = 0 \text{ or } Y = 25) = 0.5^{25} + 0.5^{25} = 0.00000006.$

the Exact Test for Proportion

$$- \text{ value } = 2 \times P(Y \le y) \tag{29}$$

$$= \min \left[2 \sum_{k=0}^{y} \binom{n}{k} \pi_0^k (1-\pi_0)^{n-k}, 1 \right]$$
(30)

$$p - \text{value} = 2 \times P(Y \ge y)$$
 (31)

$$= \min\left[2\sum_{k=y}^{n} \binom{n}{k} \pi_{0}^{k} (1-\pi_{0})^{n-k}, 1\right]$$
(32)

© Jeff Lin, MD., PhD.

One Sample Test for Proportion, 39

One Sample Test for Proportion, 37

C.I. of the Exact Test for Proportion

- 1. The exact $100(1-\alpha)\%$ confidence intervals consists of all π for which *p*-values exceed α in exact binomial tests.
- 2. The best known interval (Clopper and Person, 1934) uses the tail method for forming confidence intervals. it requires each one-sided *p*-value to exceed $\alpha/2$.

© Jeff Lin, MD., PhD

One Sample Test for Proportion, 40

© Jeff Lin, MD., PhD.

Exact Test for Proportion

- 1. We will base our test on exact binomial probabilities.
- 2. Let $Y \sim Bin(n, \pi_0)$ under H_0 .
- observed sample proportion.
- ne p-value depends on $\geq \pi_0.$

Exact Test for Proportion

1. The approximate Z test procedure to test the hypothesis $H_0: \pi = \pi_0$

versus $H_A:\pi\neq\pi_0$ depends on the assumptions is only true if

р

$$= \sum_{k=y}^{n} {n \choose k} \pi_0^k (1 - \pi_0)^{n-k}$$
(28)

One Sample Test for Proportion, 38

C.I. of the Exact Test for Prop	ortion	C.I. of the Exact Test for	Proportion
The lower and upper endpoints are the solutions in π	o to the equations	1. The Clenner and Person confidence interv	al aquals
$\sum_{k=y}^{n} \binom{n}{k} \pi_{0}^{k} (1-\pi_{0})^{n-k} = \alpha/2$		$\left[1 + \frac{n - y + 1}{y F_{2y,2(n - y + 1), \alpha/2}}\right]^{-1} < \pi < \left[1 + \frac{n - y + 1}{(y + 1)F}\right]^{-1}$	$\frac{n-y+1}{\frac{1}{2}(y+1),2(n-y),(1-\alpha/2)}\Big]^{-1},$ (34)
$ \text{and} \ \ \sum_{k=0}^y \binom{n}{k} \pi_0^k (1-\pi_0)^{n-k} = \alpha/2,$	(33)	where $F_{a,b,c}$ denotes the c quantile form the degrees of freedom a and b .	e F distribution with
except that the lower bound is 0 when $y = 0$ and the	upper bound is 1		
when $y = n$.		2. Example, When $y = 0$ with $n = 25$, the Clopper-Pea interval for π is $(0, 0.137)$.	rson 95% confidence
©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 42	©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 43
DM-TKA Example: Exact T	est	DM-TKA Example: Exact Test v	vith R binom.test
The exact $(1 - \alpha) \times 100\%$ confident interval is (0.02) exact two-sided test <i>p</i> -value is $0.001152 > \alpha = 0.05$ reject the null hypothesis H_0 based on the exact contained.	11,0.1433). The SAS: 0.0023). We idence interval and	<pre>> binom.test(x=5,n=78,p=0.01,alternat</pre>	<pre>ive = c("two.sided"),</pre>
<i>p</i> -value.		data: 5 and 78	le=78 n-walue=0 00115'
		alternative hypothesis:	13-70, p value-0.001102
		true probability of success is not eq	ual to 0.01
		95 percent confidence interval:	
		0.02113972 0.14328760 sample estimates:	
		probability of success	
		0.06410256	
©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 44	©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 45
DM-TKA Example: Exact C.I. and Asy	/mptotic C.I.	DM-TKA Example	: R
with R		> help(prop.test)	
<pre>> library(Hmisc)</pre>		<pre>> prop.test(x=5,n=78,p=0.01,alternati</pre>	<pre>ve = c("two.sided"),</pre>
> help(binconf)		<pre>correct=F,conf.level = 0.95) 1-comple propertiend test without</pre>	continuity correction
<pre>> binconf(x=5,n=78,alpha=0.05,method="all",</pre>	-	data: 5 out of 78, null probability	0.01
Exact 0.06410256 0.021139720 0.1432876	3	X-squared = 23.0619, df = 1, p-value	= 1.569e-06
Wilson 0.06410256 0.027689315 0.141436)	alternative hypothesis: true p is not	equal to 0.01
Asymptotic 0.06410256 0.009745922 0.1184592	2	95 percent confidence interval:	
		sample estimates:	
		۲ 0.06410256	
©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 46	©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 47

DM-TKA Exar	nple: Exact Tes	t with R	DM-TK	A Example: SAS
<pre>Warning message: Chi-squared approximation may be incorrect in: prop.test(x=5, n=78, p=0.01,alternative=c("two.sided"),</pre>		<pre>title "FREQ: One-sample Z test for proportion with 95% C.I."; proc freq data=dmtkanew order=data; exact binomial; tables infect / bin(p=0.01); run;</pre>		
©Jeff Lin, MD., PhD.		One Sample Test for Proportion, 48	(5) Jeff Lin, MD., PhD.	One Sample Test for Proportion, 49
DM-TK	A Example: SA	S	DM-TK	A Example: SAS
<pre>title "Categroical Data: Graphics of One-samp proc gchart data=dmtkane vbar infect / discre hbar infect / discret pie infect / discret pie infect / discret explode=1 slice=arr run;</pre>	le"; w ; te ; te ; e ; e ow percent=inside	e ;	The FREQ Procedure infect Frequency Perce 	Cumulative Cumulative nt Frequency Percent
©Jeff Lin, MD., PhD.		One Sample Test for Proportion, 50	⊚Jeff Lin, MD., PhD.	One Sample Test for Proportion, 51
DM-TKA Example: SAS		S	DM-TK	A Example: SAS
Binomial Proportion for Proportion (P) ASE 95% Lower Conf Limit 95% Upper Conf Limit	infect = 1 0.0641 0.0277 0.0097 0.1185		Exact Conf Limits 95% Lower Conf Limit 95% Upper Conf Limit	0.0211 0.1433
©Jeff Lin, MD., PhD.		One Sample Test for Proportion, 52	(© Jeff Lin, MD., PhD.	One Sample Test for Proportion, 53

DM-TK	A Example: SAS	5	DM-TKA Example: S	AS
Test of HO: Proportion =	0.01		Exact Test	
			One-sided Pr >= P 0.0012	
ASE under HO	0.0113		Two-sided = 2 * One-sided 0.0023	
Z	4.8023			
One-sided Pr > Z	<.0001		Sample Size = 78	
Two-sided Pr > Z	<.0001			
©Jeff Lin, MD., PhD.		One Sample Test for Proportion, 54	©Jeff Lin, MD., PhD.	One Sample Test for Proportion, 55