Analysis of Dependent Contingency Table	Dependent Contingency Table
CF Jeff Lin, MD., PhD.	
December 17, 2005	
© Jeff Lin, MD., PhD.	© Jeff Lin, MD., PhD. Dependent Contingency Table, 1
Dependent Contingency Table Matched-Pair Data: McNemar's Test	Example: Treatments for Arthritis with Crossover Design
	1. An investigator conduct a study to compare pain relief effects of two different treatments for arthritis.
	2. The two treatment groups should be as comparable as possible on other prognostic factors, i.e.; age and clinical conditions.
©Jeff Lin, MD., PhD. Dependent Contingency Table, 2	©Jeff Lin, MD., PhD. Dependent Contingency Table, 3
Example: Treatments for Arthritis with	Example: Treatments for Arthritis with
Crossover Design	Crossover Design
 To accomplish this goal, a matched study is set up such that a random member of each matched pair get treatment A in the first week (period) then that member get treatment B in the second week (period), whereas the other member gets treatment B in the first week (period), then that member get treatment a in the second week (period). The outcome is whether pain exists or pat in the end of each week 	Table 1: Treatments for Arthritis with Crossover Design: Independent 2 × 2 TableOutcomeTreatmentNo Pain Pain Total ATotal 200
4. The outcome is whether pain exists or not in the end of each week. 5. The data are displaced in a 2×2 table as shown in Table 1.	B 134 66 200 Total 280 120 400
©Jeff Lin, MD., PhD. Dependent Contingency Table, 4	© Jeff Lin, MD., PhD. Dependent Contingency Table, 5

Example: Treatments for Art Crossover Design		Prc # Independent Table > 0A.ind.tab > 0A.ind.tab	ogram ,66),mrow=2,byrow=T)
 There is a small difference in pain relief betwee groups. Pain relief in treatment A group is 146/200 = pain relief in treatment B group is 134/200 = The Yates-corrected chi-square statistic, X², i not significant. 	= 0.73, = 0.67.	[,1] [,2] [1,] 146 54 [2,] 134 66	
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 6	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 7
Program		Example: Treatme	nts for Arthritis with
> # Independent Table		Crossov	ver Design
<pre>> chisq.test(OA.ind.tab,correct=F)</pre>			
Pearson's Chi-squared test		 However, the use of this test is v independent. 	valid only if the two sample are
data: OA.ind.tab X-squared = 1.7143, df = 1, p-value = 0.1904			amples were selected it is obvious that se members of each matched are ion.
		3. Thus, chi-square test or Fisher's situation.	
		4. How the can the two treatments	be compared using a hypothesis test?
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 8	⊙Jeff Lin, MD., PhD.	Dependent Contingency Table, 9
Example: Treatments for Art	thritis with	Example: Treatme	nts for Arthritis with
Crossover Design		Crossov	ver Design
1. A different type of 2×2 table arise in the cor data.	ntext of matched pair	Crossover Design:	nts for Arthritis with : Dependent 2×2
 Observations are collected in pairs where the are identical or nearly identical for a particular with assessing a specific relationship, as in Ta 	r variable that interferes		reatment B o Pain Pain Total
 Frequently this particular variable is called a 'matched pair is the unit of analysis and pairs to whether nor not the members of that pair end of week. 	are classified according	Pain	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 10	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 11

Example: Treatments for Arthritis with Crossover Design	Example: Treatments for Arthritis with Crossover Design
1. The above table has 200 units rather than the 400 units.	1. The dependence of the two samples can be illustrated by noting that
2. Furthermore, there are 130 pairs in which both subjects had no pain relief.	p[Treatment B with pain relief Treatment A with pain relief] = 130/146 = 0.89,
3. Sixteen pairs in which the treatment A had pain relief and the treatment B had pain.	p[Treatment B with pain relief Treatment A with pain] = 4/50 = 0.08.
4. Four pairs in which the treatment A had pain and the treatment B had pain relief.	 If the samples were independent, then these two probabilities should be about the same, thus we conclude that the samples are highly dependent and that the chi-square test can not be used.
©Jeff Lin, MD., PhD. Dependent Contingency Table, 12	©Jeff Lin, MD., PhD. Dependent Contingency Table, 13
Dependent Contingency Table: Matched-Pair Data	Dependent 2 × 2 Table with Matched-Pair DataConsider a dependent 2 × 2 table of matched-pair data as in Table 3.Table 3: McNemar's Test: Dependent 2 × 2 TableObserved a TablePair member APair member BOutcome 1Outcome 1Outcome 2Outcome 2Total $a+b=n_1$. (row 1 margin)Outcome 2Total $a+c=n_1$ $b+d=n_2$ $a+b+c+d=n_2$ $n=n$ $column 1$ $column 2$ $(grand total)$ $margin$ $margin$ $margin$
©Jeff Lin, MD., PhD. Dependent Contingency Table, 14	© Jeff Lin, MD., PhD. Dependent Contingency Table, 15
 Dependent 2 × 2 Table with Matched-Pair Data A concordant pair, (i.e., a + d), is a matched in which the outcomes is the same for each member of the pair. A discordant pair, (i.e., b + c), is a matched pair in which the outcomes are different for the members of the pair. 	 Dependent 2 × 2 Table with Matched-Pair Data In Table 2, for 180 concordant pairs (130 + 50), the outcomes of two treatments are the same, whereas for 20 discordant pairs (16 + 4), the outcomes of the two treatments are different. The concordant pairs provide no information about differences between treatments and will not be used in the assessment. Instead, we will focus on the discordant pairs, which can be divided into two types: b and c. If each outcome of pairs are equal, then
©Jeff Lin, MD., PhD. Dependent Contingency Table, 16	about an equal number of b and c . ©Jeff Lin, MD., PhD. Dependent Contingency Table, 17

McNemar's Test: Testing Hypothesis

- 1. Let p be the probability that a discordant pair is an element of b of the discordant pairs.
- 2. Thus we wish to test the hypothesis

$$H_0: p = \frac{1}{2}$$
 versus $H_A: p \neq \frac{1}{2}$ (1)

McNemar's Test: Point Estimation

Under null hypothesis H_0 , the $\mathcal{E}[b]$ and $\mathbf{Var}[b]$ are

$$\mathcal{E}[b] = \frac{b+c}{2}.$$

$$\mathbf{Var}[b] = \frac{b+c}{4}.$$
(2)
(3)

McNemar's Test: Test Statistics

$$H_0: \qquad p = \frac{1}{2} \text{ versus } H_A: p \neq \frac{1}{2}$$
(4)

$$\mathcal{E}(b) = \frac{b+c}{2} = \frac{\# \text{ discordant pairs}}{2}$$
(5)

$$\operatorname{Var}(b) = \frac{b+c}{4} \tag{6}$$

$$X_{\rm mc}^2 = \frac{\left(\left| b - \frac{b+c}{2} \right| \right)^2}{\frac{b+c}{4}}$$
(7)

$$X_{\rm mc}^2 = \frac{(|b-c|)^2}{b+c}$$
 asym $\sim \chi_1^2$. (8)

© Jeff Lin, MD., PhD

© Jeff Lin, MD., PhD

McNemar's Test: Test Statistics

1. For discrete binomial correction, we sometime use

 $h \perp c = 2$

$$X_{mc^{\star}}^{2} = \frac{\left(|b - \frac{b+c}{2}| - \frac{1}{2} \right)^{2}}{\frac{b+c}{4}}$$
(10)

$$X_{mc^{\star}}^2 = \frac{(|b-c|-1)^2}{b+c} \text{ asym } \sim \chi_1^2.$$
 (11)

2. That is, $X^2_{\rm mc}$ is asymptotically approximated chi-squared distributed with with 1 degree of freedom.

© Jeff Lin, MD., PhD.

Dependent Contingency Table, 23

Dependent Contingency Table, 19

Dependent Contingency Table, 21

McNemar's Test: Test Statistics

- 1. That is, X^2 is asymptotically approximated chi-squared distributed with with 1 degree of freedom.
- 2. The p-value is calculates as

$$p - \text{value} = P(\boldsymbol{\chi}_1^2 \ge X^2). \tag{9}$$

3. For a two-sided test with significant level α , we reject H_0 if $X^2 > \boldsymbol{\chi}_{1,1-\alpha}^2.$

4. We will assume that the normal approximation to the binomial distribution holds, but this assumption will valid if $npq = (b+c)/4 \ge 5 \text{ or } (b+c) \ge 20.$

© Jeff Lin, MD., PhD.

© Jeff Lin, MD., PhD.

Difference and Odds Ratio of Proportions of **Paired Samples**

Dependent Contingency Table, 18

Dependent Contingency Table, 20

Difference of Proportions of Paired Samples	Difference of Proportions of Paired Samples
1. Let π_{1+} be the outcome 1 (as success) in pair member A, and let π_{+1} be the outcome 1 in pair member B.	$d = \pi_{1+} - \pi_{+1},$ $\mathbf{Var}(d) = \sigma_d^2 = \frac{[\pi_{1+}(1 - \pi_{1+}) + \pi_{+1}(1 - \pi_{+1}) - 2(\pi_{11}\pi_{22} - \pi_{12}\pi_{21})]}{n}$ (12)
2. For binary responses, if each outcome of matched pairs are equal, the null hypothesis is $H_0: \pi_{1+} = \pi_{+1}$.	(13) (13)
3. The inference for the dependent proportions is	
© Jeff Lin, MD., PhD. Dependent Contingency Table, 24	© Jeff Lin, MD., PhD. Dependent Contingency Table, 25
Difference of Proportions of Paired Samples	Difference of Proportions of Paired Samples
$\hat{d} = \hat{\pi}_{1+} - \hat{\pi}_{+1}, \tag{14}$	1. Under H_0 , an simple alternative estimated variance is
$\widehat{\mathbf{Var}}(\hat{d}) = \hat{\sigma}_d^2 = \frac{\left[\hat{\pi}_{1+}(1-\hat{\pi}_{1+}) + \hat{\pi}_{+1}(1-\hat{\pi}_{+1}) - 2(\hat{\pi}_{11}\hat{\pi}_{22} - \hat{\pi}_{12}\hat{\pi}_{21})\right]}{n}.$ (15)	$\hat{\sigma}^2(d) \approx \frac{\hat{\pi}_{1+} + \hat{\pi}_{+1} - 2\hat{\pi}_{11}}{n} = \frac{b+c}{n^2} $ (18)
$\approx \frac{\left[(\hat{\pi}_{12} + \hat{\pi}_{21}) - (\hat{\pi}_{12} - \hat{\pi}_{21})^2\right]}{n} $ (16)	2. The score test statistic \hat{d}
Thus, $(1 - \alpha) \times 100\%$ C.I. for \hat{d} : $\hat{d} \pm Z_{1-\alpha/2} \times \sqrt{\hat{\sigma}^2(\hat{d})}$ (17)	$z = \frac{d}{\partial(d)'}$ simplified to $z = \frac{b-c}{(b+c)^{1/2}}$ (19) (20)
	$(b+c)^{1/2}$
©Jeff Lin, MD., PhD. Dependent Contingency Table, 26	©Jeff Lin, MD., PhD. Dependent Contingency Table, 27
Odds Ratio of Proportio of Paired Samples	Example: Treatments for Arthritis with Crossover Design
1. The odd ratio comparing the odds of outcome 1 (success) at treatment B to treatment A is estimated by:	Table 4: Treatments for Arthritis with
$\widehat{OR} = \frac{c}{b} $ (21)	Crossover Design: Dependent 2×2 Table
2. Confidence intervals can be obtained as described in Breslow and Day (1981), section 5.2, or in Armitage and Berry (1987), chapter 16.	Treatment BTreatment ANo PainPainTotalNo Pain13016146Pain45054Total13466200
© Jeff Lin, MD., PhD. Dependent Contingency Table, 28	© Jeff Lin, MD., PhD. Dependent Contingency Table, 29

 Example: Treatments for Arthritis with McNear's Test In Table 4, McNemar's Test showed X²_{mc} = 7.2, and <i>p</i>-value is 0.0073. The marginal proportion of pain relief for treatment A is 0.73 and for treatment B is 0.67, the difference between two proportion (<i>B</i> - <i>A</i>) is -0.06. The 95% C.I.for the difference is (-0.103, -0.0170), treatment A is more effective than treatment B. 	<pre>Treatments for Arthritis with McNear's Test: Program > # Dependent Table > (DA.tab<-matrix(c(130,16,4,50),nrow=2,byrow=T)) [,1] [,2] [1,] 130 16 [2,] 4 50</pre>
©Jeff Lin, MD., PhD. Dependent Contingency Table, 30	©Jeff Lin, MD., PhD. Dependent Contingency Table, 31
Treatments for Arthritis with McNear's Test: Program	Treatments for Arthritis with McNear's Test: Program
<pre>> mcnemar.test(OA.tab, correct=FALSE)</pre>	<pre>> mcnemar.test(OA.tab, correct=TRUE)</pre>
McNemar's Chi-squared test	McNemar's Chi-squared test with continuity correction
data: OA.tab McNemar's chi-squared = 7.2, df = 1, p-value = 0.00729	data: OA.tab McNemar's chi-squared = 6.05, df = 1, p-value = 0.01391
©Jeff Lin, MD., PhD. Dependent Contingency Table, 32	©Jeff Lin, MD., PhD. Dependent Contingency Table, 33
Treatments for Arthritis with McNear's Test: Program	Treatments for Arthritis with McNear's Test: Program
<pre>> binom.test(OA.tab[1,2], (OA.tab[1,2]+OA.tab[2,1]), p=0.5)</pre>	<pre>> marginal prop diff > (OA.tab.prop<-prop.table(OA.tab)) [,1] [,2] [1,] 0.65 0.08 [2,] 0.02 0.25 > margin.table(OA.tab.prop,2)[1] [1] 0.67 > margin.table(OA.tab.prop,1)[1] [1] 0.73</pre>
©Jeff Lin, MD., PhD. Dependent Contingency Table, 34	© Jeff Lin, MD., PhD. Dependent Contingency Table, 35

Treatments for Artifitis with iv	lcNear's Test: Program	Treatments for Arthritis with	McNear's Test: Program
<pre>> prop.diff<-(margin.table(OA.tab.prop,2</pre>		<pre>> (off.diag<-diag(OA.tab.prop[1:2,2:1] [1] 0.08 0.02 > # C.I. > sum(off.diag) [1] 0.1 > diff(off.diag) [1] -0.06 > sum(OA.tab) [1] 200 > # EQ 16 > (prop.diff+c(-1,1)*qnorm(0.975)* sqrt((sum(off.diag)-diff(off.diag) [1] -0.10303003 -0.01696997</pre>	
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 36	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 37
Treatments for Arthritis with	McNear's Test: SAS	Treatments for Arthritis wit	th McNear's Test: SAS
<pre>title "McNemar Test: Matched-Paired Data data mcne2; input A B count; cards; 1 1 130 1 0 16 0 1 4 0 0 0 50</pre>	";	<pre>proc freq data=mcne2 order=data page; tables A*B / agree; weight count; exact agree; run;</pre>	
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 38	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 39
Fun; SJeff Lin, MD., PhD. Treatments for Arthritis with A B Frequency Percent 30w Pct 201 Pct 1 0 Total 		©Jeff Lin, MD., PhD. Treatments for Arthritis with McNemar's Test 	
Tun; ©Jeff Lin, MD., PhD. Treatments for Arthritis with A B Frequency Percent Row Pct Col Pct 1 0 Total 		Treatments for Arthritis wit McNemar's Test 	

Reliability Studies with	n Kappa Statistic	Two Surveys with Same	Diet Questionnaire
		 A diet questionnaire was administered nurses on two separate occasions seve 	
		 The questions asked included quantit separate food items. The data obtain amount of beef consumption are pres 	ed from the two surveys for the
		3. How can the reproducibility of respon be quantified?	se for the beef consumption data
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 42	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 43
Two Surveys with Same	Diet Questionnaire	Two Surveys with Same	Diet Questionnaire
	aired nutrition data Gecond Survey yeek > 1 serving/week Total 92 228 240 309 332 537	A chi-square test for association betwee responses could be performed. However quantitative measure of reproducibility. (136 + 240)/537 = 70.7% concordant	, this test would not give a There are
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 44	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 45
Reliability Studies with	h Kappa Statistic	Reliability Studies with	n Kappa Statistic
How can the reproducibility of response 2×2 table?	be quantified in a dependent	Reliability Studies with 1. We would like to compare the observ- expected concordance Π_E whether the statistically independent.	ed concordance rate Π_O and the
How can the reproducibility of response 2 × 2 table? Table 6: Kappa: reliabil The S	be quantified in a dependent	1. We would like to compare the observ expected concordance $\mathbf{\Pi}_E$ whether the	ed concordance rate Π_O and the ne responses of the subjects were is that the questionnaire would of consumption reported at one

Reliability Studies with Kappa Statistic	Reliability Studies with Kappa Statistic
1. The perfect agreement corresponds to $\Pi_O = 1$. Thus $\Pi_O - \Pi_E$ is the excess of the observers agreement.	5. Therefore, the \mathbf{x} statistic, which is defined as $(\mathbf{\Pi}_O - \mathbf{\Pi}_E)/(1 - \mathbf{\Pi}_E)$, is used as the measure of reproducibility.
2. We could use $\mathbf{\Pi}_O - \mathbf{\Pi}_E$ as the measure of reproducibility.	
3. However, it is preferable to use a measure that equals to 1 in the case of perfect agreement and 0 if the responses on the two surveys are completely independent.	
4. The maximum possible value for $\Pi_O - \Pi_E$ is $1 - \Pi_E$, which is achieved with $\Pi_O = 1$.	
© Jeff Lin, MD., PhD. Dependent Contingency Table, 48	© Jeff Lin, MD., PhD. Dependent Contingency Table, 49

Reliability Studies with Kappa Statistic

- 1. Supposes there k response categories and the probability of response in the i^{th} is π_{i+} for the first survey and π_{+i} for the second survey.
- 2. These probabilities can be estimated from the row and column margins of the contingency table.
- 3. The expected concordance rate Π_E if the survey responses are independent is given

$$\boldsymbol{\kappa} = \frac{\boldsymbol{\Pi}_O - \boldsymbol{\Pi}_E}{1 - \boldsymbol{\Pi}_E},$$
(22)
$$\boldsymbol{\Pi}_O = \sum_{i=1}^k \frac{n_{ii}}{n'},$$
(23)

©Jeff Lin, MD., PhD

Reliability Studies with Kappa Statistic

The Kappa statistic is

$$\boldsymbol{\kappa} = \frac{\boldsymbol{\Pi}_O - \boldsymbol{\Pi}_E}{1 - \boldsymbol{\Pi}_E} \tag{28}$$

$$\sigma^{2}[\mathbf{\kappa}] = \frac{1}{n(1-\mathbf{\Pi}_{E})^{2}} \times \left\{ \mathbf{\Pi}_{E} + \mathbf{\Pi}_{E}^{2} - \sum [\pi_{ii}(\pi_{i+} + \pi_{+i})] \right\}$$
(29)

$$= \frac{\Pi_O - \sum \pi_{i+} \pi_{+i}}{1 - \sum \pi_{i+} \pi_{+i}}$$
(30)

- 1. $\pmb{\kappa}$ equals 0 when the agreement equals that expected by chance, and it equals 1 when there is perfect agreement.
- 2. The stronger the agreement, the higher the values occur, for a given pair of marginal distribution. Negative values occur when agreement is weaker than expected by chance.

©Jeff Lin, MD., PhD.

Dependent Contingency Table, 52

Dependent Contingency Table, 50

Reliability Studies with Kappa Statistic

Under H_0 :

$$\pi_{i+} = \frac{n_i}{n},;$$
 (24)

$$\pi_{+i} = \frac{n_i}{n}; \qquad (25)$$

$$\pi_{ii} = \pi_{i+}\pi_{+i'};$$
 (26)

$$\mathbf{\Pi}_E = \sum_{i=1}^k \pi_{ii} = \sum_{i=1}^k \pi_{i+} \pi_{+i'} .$$
(27)

© Jeff Lin, MD., PhD.

Dependent Contingency Table, 51

Reliability Studies with Kappa Statistic

1. To test the two-sided (one-sided) hypothesis

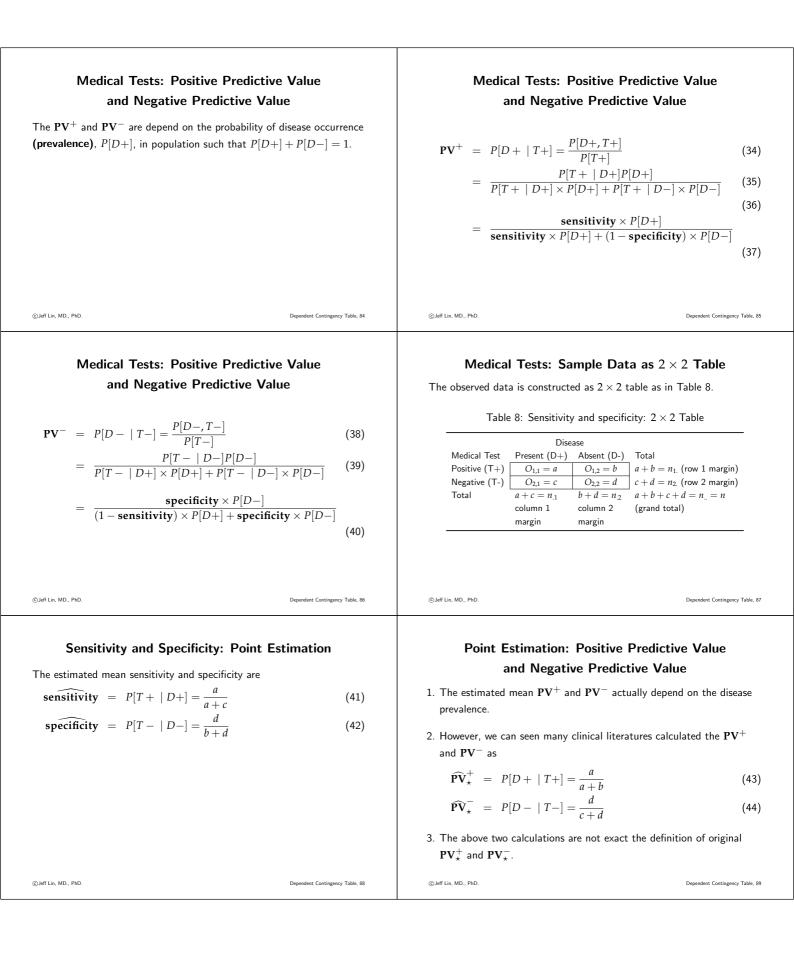
$$\begin{split} H_0: \quad \pmb{\kappa} &= 0 \\ \text{versus} H_A: \quad \pmb{\kappa} &\neq 0, \quad (H_A: \pmb{\kappa} > 0), \end{split} \tag{31}$$

2. Use the test statistic

$$z = \frac{\kappa}{s.e.(\kappa)} \tag{32}$$

$$(1 - \alpha) \times 100\%$$
 C.I. for $\kappa \kappa \pm Z_{1-\alpha/2}$ s.e.(κ), (33)

where $s.e.(\pmb{\kappa})=\sqrt{\sigma^2[\pmb{\kappa}]}=\sigma[\pmb{\kappa}]$


Two Surveys with Same Diet	Questionnaire	Reliability Studies with	Kappa Statistic: Guildlines
 k = 0.378, s.e.(k) = 0.043, z = 8.8, p-value and 95% confidence interval is (0.298, 0.457 		1. $\pmb{\kappa} > 0.75$ denotes excellent repro	-
2. It is rarely plausible that agreement is no be	ttor than expected by	2. $0.4 < \pmb{\kappa} \le 0.75$ denotes good re	producibility.
 It is rarely plausible that agreement is no better than expected by chance. 		3. $\pmb{\kappa} \leq 0.4$ denotes marginal reproducibility.	
3. Thus rather than testing $H_0: \mathbf{\kappa} = 0$, it is m strength of agreement, by constructing a co	•		ood for many items in dietary survey, etary assessments to reduce variabilit
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 54	©Jeff Lin, MD., PhD.	Dependent Contingency Table,
Reliability Studies with Kappa	Statistic: Notes	Reliability Studies with	ı Kappa Statistic Program
 A weight form of the kappa statistic allows scores, to the various categories so that you consideration into the construction of the te Gamma, Kendalli's tau-b, Kendalli's tau- are all based on concordant and discordant relative ordering on the levels of the variable association is negative, positive, or present a on their strategies for adjusting for ties and 	can incorporate such est statistic. -c, Somer's D statistics pairs, that is, they use the est to determine whether at all. They differ mainly	<pre>> # load package vcd > library(vcd) > help(Kappa) > Kappa(survey.tab)</pre>	
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 56	©Jeff Lin, MD., PhD.	Dependent Contingency Table,
Reliability Studies with Kappa S	tatistic Program	Reliability Studies with	n Kappa Statistic Program
<pre>> # MACRO function from > # http://www.itc.nl/~rossiter/teach/R/R_ac > survey.tab<-matrix(c(136,92,69,240),nrow=2 > survey.kappa<-kappa(survey.tab) > summary.kappa(survey.kappa)</pre>		<pre>kappa.stat <- function(o, w=FALSE { n <- sum(o) e <- outer(apply(o, 1, sum), if (is.matrix(w) == FALSE) { qo <- 1-(po <- sum(diag(o qe <- 1-(pe <- sum(diag(o kappa <- 1-qo/qe sk <- sqrt(po*qo/(n*qe²)) sk0 <- sqrt(po/(n*qe)) stopifnot(kappa >= 0) z <- kappa/sk0 c("kappa"=kappa, "sigma-k </pre>	apply(o, 2, sum))/n b))/n) b)) n) tappa"=sk, "sigma-kappa-0"=sk0,
		"95% lcl"=kappa-qnorm "95% ucl"=kappa+qnorm	

"Z value"=z, "P value"=pnorm(z, lo	wer=FALSE)*2)	Roliability Studios with	h Kanna Statistic Drogram
<pre>2 value -2, r value -phorm(2, 10 }</pre>			h Kappa Statistic Program
else {		> survey.tab<-matrix(c(136,92,69),240),nrow=2,byrow=T)
qow <- sum(w*o)/n		<pre>> kappa.stat(survey.tab)</pre>	
qow2 <- sum(w*w*o)/n			
qew <- sum(w*e)/n		kappa sigma-kappa sigm	
qew2 < sum(w*w*e)/n		3.781906e-01 4.100635e-02 4.4	er 21050-02
kw <- 1-qow/qew skw <- sqrt((qow2-qow^2)/n/qew^2)		95% lcl 95% ucl	Z value P value
skw0 <- sqrt((qew2-qew^2)/n/qew^2)		2.978196e-01 4.585616e-01 8.4	
<pre>stopifnot(kw >= 0)</pre>			
zw <- kw/skw0			
c("kappa-w"=kw, "sigma-kappa-w"=skw, "	sigma-kappa-w0"=skw0,		
"95% lcl"=kw-qnorm(0.975)*skw, "95% uc	=		
"Z value"=zw, "P value"=pnorm(zw, lowe	r=FALSE)*2)		
}			
}			
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 60	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 61
Medical Tests: Diagnostic Tests and	d Screening Tests	Screening Test	and Diagnostic Test
meaner rests. Diagnostic rests an			
		Breast cancer is considered largel	y a hormonal disease. An important
		-	on is estradiol. The data in Table 10 on
			m 213 breast-cancer cases and 432
		age-matched controls. All women	i were age 50-59 years.
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 62	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 63
Screening Test and Diagno	stic Test	Screening Test	and Diagnostic Test
Table 7: Serum-Estradiol D	ata		
Serum estradiol (pg/ml) Case $(N = 213)$ C	controls $(N = 432)$		
01-04 28	72		
05-09 96	233		
10–14 53	86		
15–19 17	26		
20–24 10	6		
25–29 3	5		
30+ 6	4		
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 64	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 65
- · · ·			

Screening Test and Diagnostic Tes 1. Evaluate the accuracy of the estradiol level as a diagno		Screening Test a 1. What is the accuracy of a diagno	nd Diagnostic Test
 (What is the optimal cut-off point?) 2. The preceding sample was selected to oversample cases. general population, the prevalence of breast cancer is a among women 50 to 59 years old. Evaluate the usefulne estradiol level as a diagnostic test. (What is the optima when you consider the prevalence?) 	bout 2% ss of the		
©Jeff Lin, MD., PhD. Dep	ndent Contingency Table, 66	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 67
Screening Test and Diagnostic Tes	t	Screening Test a	nd Diagnostic Test
1. What is the accuracy of a diagnostic test?		1. What is the accuracy of a diagno	ostic test?
2. What are the sensitivity and specificity?		2. What are the sensitivity and spec	cificity?
		3. What are the predictive positive	value and predictive negative value?
⊙Jeff Lin, MD., PhD. Dep	ndent Contingency Table, 68	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 69
Gan an, may rina. ay	neer contingency rube, oo	() ((((((((((((((((((Expension consingency rules of
Screening Test and Diagnostic Tes	t	Screening Test a	nd Diagnostic Test
1. What is the accuracy of a diagnostic test?		1. What is the accuracy of a diagno	ostic test?
2. What are the sensitivity and specificity?		2. What are the sensitivity and spec	cificity?
3. What are the predictive positive value and predictive neg	gative value?	3. What are the predictive positive	value and predictive negative value?
4. What is the ROC curve?		4. What is the ROC curve?	
		5. How to decide the cut-off point?	
©Jeff Lin, MD., PhD. Dep	ndent Contingency Table, 70	© Jeff Lin, MD., PhD.	Dependent Contingency Table, 71

Medical Tests: Diagnostic Tests and Screening Tests	Medical Tests: Diagnostic Tests and Screening Tests
	1. The purpose of diagnostic testing is to obtain objective evidence of the presence or absence of a particular condition.
	 This evidence can be obtained to detect disease at its earliest stages among asymptomatic persons in the general population, a process referred to as screening.
	3. Screening is an application of a test or procedure to asymptomatic, apparently well individuals, in order to separate those with a relatively high probability of having a given disease from those with a relatively low probability of having the disease.
© Jeff Lin, MD., PhD. Dependent Contingency Table, 72	© Jeff Lin, MD., PhD. Dependent Contingency Table, 73
Medical Tests: Diagnostic Tests and Screening Tests	Medical Tests: Diagnostic Tests and Screening Tests
 Investigators often conduct a study to evaluate a simple new screening test compared to "gold standard test". 	 Further, suppose that there is a "gold standard" that tells us whether or not a subject actually has the disease.
2. The disease status is usually defined by "gold standard" test .	 The definite classification might be based upon data from follow-up, invasive radiographic or surgical procedures, or autopsy results.
 In the simplest case the test will simply be classified as having a positive (disease likely) or negative (disease unlikely) finding. 	 In many cases, the "gold standard" itself will only be relatively correct, but nevertheless the best classification available.
© Jeff Lin, MD., PhD. Dependent Contingency Table, 74	©Jeff Lin, MD., PhD. Dependent Contingency Table, 75
Medical Tests:	Medical Tests:
Diagnostic Tests and Screening Tests	True Positive Test and True Negative Test
7. Ideally, those with the disease should all be classified as having disease, and those without disease should be classified as non-diseased.	1. A test is true positive test if the test is positive and the subject has the disease.
8. For this reason, two indices of the performance of a test consider how often such correct classification occurs.	2. A test is true negative test if the test is negative and the subject does not have the disease.
9. However, classification of disease is not perfect, errors in measurement lead to misclassification of outcome or exposure.	
© Jeff Lin, MD., PhD. Dependent Contingency Table, 76	© Jeff Lin, MD., PhD. Dependent Contingency Table, 77

The Simplest Medical Tests with a Dependent 2×2 TableWe can summarize a medical test results as 2×2 table as shown in Table .captionTrue Positive Test and True Negative TestDiseaseMedical TestDiseaseMedical TestPresent (D+)Absent (D-)True positivePositive (T+)True positiveMegative (T-)Table negative	 Medical Tests: Sensitivity and Specificity The sensitivity of a screening test of a disease is the probability that the screening test of an individual is positive and test classify that individual as having the disease given that person has the disease. The specificity of a screening test of a disease is the probability that the screening test of an individual is negative and test classify that individual as not having the disease given that person does not have the disease. 		
©Jeff Lin, MD., PhD. Dependent Contingency Table, 78	© Jeff Lin, MD., PhD. Dependent Contingency Table, 79		
Medical Tests: Sensitivity and Specificity	Medical Tests: False Positive Test and False Negative Test		
Sensitivity = $P[T + D+] = P[$ Test Positive Disease Present] Specificity = $P[T - D-] = P[$ Test Negative Disease Absent]	 A false positive test if the test is positive and the subject does not have the disease. 		
 Sensitivity is sometimes called true positive rate (TFR). Specificity is sometimes called true negative rate (TNR). 	2. A false negative test if the test is negative and the subject has the disease.		
©Jeff Lin, MD., PhD. Dependent Contingency Table, 80	© Jeff Lin, MD., PhD. Dependent Contingency Table, 81		
Medical Tests: False Positive Test and False Negative Test	Medical Tests: Positive Predictive Value and Negative Predictive Value		
 false-positive rate (FPR) is that 1 minus sensitivity. false-negative rate (FNR) is that 1 minus sensitivity. 	 The positive predictive value (PPV), PV⁺, is the predictive value of a positive test and is defined as the probability that a person has a disease given that the test is positive (also known as predictive value positive). The negative predictive value (NPV), PV⁻, is the predictive value of a negative test and is defined as the probability that a person does not have a disease given that the test is negative (also known as predictive value negative). 		
©Jeff Lin, MD., PhD. Dependent Contingency Table, 82	© Jeff Lin, MD., PhD. Dependent Contingency Table, 83		

Point Estimation: Positive Predictive Value and Negative Predictive Value The difficulty in that we usually have no information about the disease prevalence.	Medical Tests: Accuracy1. Vague term2. Missclassification probability $P(\text{Test result } \neq \text{ Disease Status})$ = Disease Prevalence × (1 - Sensitivity) $+(1 - \text{Disease Prevalence}) × (1 - \text{Specificity})$ $P(Y \neq D)$ = $P(D = 1)(1 - \text{Sen}) + (1 - P(D = 1))(1 - \text{Spe});$ (46)Where $Y = 1$ if test result is postiive, $Y = 0$ if test result is negative;and $D = 1$ for disease and $D = 0$ for non-disease.	
©Jeff Lin, MD., PhD. Dependent Contingency Table, 90	©Jeff Lin, MD., PhD. Dependent Contingency Table, 91	
 Example: Breast Cancer and Estradiol Levels Breast cancer is considered largely a hormonal disease. In the population, the prevalence of breast cancer is about 2%. An important hormone in breast-cancer is estradiol. Investigators chose Estridal ≥ 20pg/ml as an abnormal (having breast cancer), The data in Table 9. on serum estradiol were obtained from 213 breast-cancer cases and 432 age-matched controls, and all women were age 50-59 years. 	Example: Estradiol and Breaset CancerTable 9: Estradiol and Breast Cancer: Case-Control StudyBreastEstradiol TestCase (D+) Control (D-) TotalPositive (T+) ≥ 20 pg/ml19191534Negative (T-) < 20 pg/ml1919645Sensitivity = $\frac{19}{213} = 0.089$;Sepecificity = $\frac{417}{432} = 0.965$. (47)	
©Jeff Lin, MD., PhD. Dependent Contingency Table, 92	©Jeff Lin, MD., PhD. Dependent Contingency Table, 93	
Example: Estradiol and Breaset Cancer In the population, the prevalence of breast cancer is about 2%. $PPV(PV+) = \frac{Sen \times P(D)}{Sen \times P(D) + (1 - Sep \times (1 - P(D)))}$ $= \frac{0.089(0.02)}{0.089(0.02) + (1 - 0.965)(1 - 0.02)} = 0.050;$ $NPV(PV-) = \frac{(1 - Sep) \times (1 - P(D))}{(1 - Sen) \times P(D) + (1 - Sep) \times (1 - P(D)))}$ $= \frac{(1 - 0.965)(1 - 0.02)}{(1 - 0.029)} = 0.651.$ (48)	Example: Estradiol and Breaset Cancer Thus, there is a 5% probability of breast cancer among 50-59-year-old women with serum Estradiol ≥ 20 pg/ml. This is about 2.5 times the general population rate (2%).	

©Jeff Lin, MD., PhD.

Dependent Contingency Table, 94

©Jeff Lin, MD., PhD.

Dependent Contingency Table, 95

 Screening Test and Diag Sometimes, a new screening test is not a s The new screening test may provide several rather than simply test positive or test neg In other instances, the results of the test a variable. In either case, the designation of a cut-off positive versus test negative is arbitrary. 	imple screening test. I categories of response ative. re reported as continuous	Medical Tests: ROC Curve Receiver Operating Characteristic Curve		
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 96	©Jeff Lin, MD., PhD.		Dependent Contingency Table, 97
Example: Breast Cancer and	Estradiol Levels	Example: Breast Ca	ancer and E	stradiol Levels
Breast cancer is considered largely a hormona hormone in breast-cancer resection is estradic serum estradiol were obtained from 213 breas age-matched controls. All women were age 5	ol. The data in Table 10 on t-cancer cases and 432	Serum estradiol (pg/ml) Ca 01-04 05-09 10-14 15-19 20-24 25-29 30+		
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 98	©Jeff Lin, MD., PhD.		Dependent Contingency Table, 99
 Example: Breast Cancer and Evaluate the accuracy of the estradiol leve (What is the optimal cut-off point?) The preceding sample was selected to over general population, the prevalence of brea among women 50 to 59 years old. Evaluate estradiol level as a diagnostic test. (What when you consider the prevalence?) 	el as a diagnostic test. sample cases. In the st cancer is about 2% e the usefulness of the	 Medical Tests: ROC Curve Most tests have some quantitative aspect. For Example, biomarkers for Cancer, PSA, CA–125. Tests that invove an element of subjective assessment are often ordinal in nature. For example, radiologist's reading images as "definitely", "probably", "possibly", "definite not". 		A–125. sessment are often
©Jeff Lin, MD., PhD.	Dependent Contingency Table, 100	©Jeff Lin, MD., PhD.		Dependent Contingency Table, 101

Medical Tests: ROC Curve	Medical Tests: ROC Curve	
 The same statistical approach can be used only if we can select a cut off point to distinguish "normal" from "abnormal," which is not a trivial problem. 	The ROC curve is a device that simply describes the range of trade-offs that can be ahieved by the test.	
2. The decision rule is based on whether or not the test result (or some transformation of it) exceed a threshold value.		
3. The choice a suitable threshold will vary with circumstances.		
 The choice threshold depends on the trade-off that is acceptable between failing to detect disease and falsely identifying disease with the test. 		
©Jeff Lin, MD., PhD. Dependent Contingency Table, 102	© Jeff Lin, MD., PhD. Dependent Contingency Table, 103	3
Medical Tests: ROC Curve	Medical Tests: ROC Curve	
1. Firstly, we can investigate to what extent the test results differ among people who do or do not have the diagnosis of interest.	A receiver operating characteristic plot is obtained by calculating the sensitivity and specificity of every observed data value at several define cut-off pointsf (5-10 or more) and plotting sensitivity against	
2. The receiver operating characteristic (ROC) plot is one way to do this.	$1-{\sf specificity},$	
 These plots were developed in the 1950s for evaluating radar signal detection. Only recently have they become commonly used in medicine. 		
© Jeff Lin, MD., PhD. Dependent Contingency Table, 104	© Jeff Lin, MD., PhD. Dependent Contingency Table, 105	5
Medical Tests: ROC Curve	Medical Tests: ROC Curve	
I - Specificity Figure 1: Receiver Operating Characteristic Curve	We just want to calculate sensitivity and specificity for this test, we have to choose a "cutpoint" which separates "normal" from "abnormal".	2
©Jeff Lin, MD., PhD. Dependent Contingency Table, 106	© Jeff Lin, MD., PhD. Dependent Contingency Table, 107	7

Example: Estradiol and Breaset Cancer Cut-Off Point at Estridal ≥ 30 pg/ml		•	Example: Estradiol and Breaset Cancer Cut-Off Point at Estridal ≥ 30 pg/ml		
If we chose Estridal \geq 30pg/ml as an abnormal (having breast cancer), we can "collapse" some rows and get the following familiar 2 × 2 table:		Table 11: Estradiol	Table 11: Estradiol ≥ 30 pg/ml as a Cut-Off Point		
			Breast		
		Estradiol Test	Present (D+) Absent (D-) Total		
		Positive (T+) ≥ 30 pg/ml	6 4 10		
		Negative (T-) < 30 pg/ml	207 428 635		
		Total	213 432 645		
		Sensitivity $=$ $\frac{6}{213}$ $=$ 0.028;	Sepecificity $=\frac{428}{432}=0.990.$ (49)		
⊜Jeff Lin, MD., PhD.	Dependent Contingency Table, 108	©Jeff Lin, MD., PhD.	Dependent Contingency Table,		
Example: Estradiol and	Breaset Cancer	Example: Estra	diol and Breaset Cancer		
Cut-Off Point at Estrac		-	at Estridal ≥ 20 pg/ml		
			P8/		
= 10/	$1 \ge 20 \text{pg/ml}$ as an abnormal (having breast cancer), some rows and get the following familiar 2 \times 2 table: Table 12: Estradiol $\ge 20 \text{pg/ml}$ as a Cut-Off Po		$\geq 20 \mathrm{pg/ml}$ as a Cut-Off Point		
			Breast		
		Estradiol Test	Present (D+) Absent (D-) Total		
		Positive (T+) ≥ 20 pg/ml	19 15 34		
		Negative (T-) < 20 pg/ml	194 417 611		
		Total	213 432 645		
		Sensitivity $=$ $\frac{19}{213} = 0.089;$	Sepecificity $=\frac{417}{432}=0.965.$ (50)		
⊙Jeff Lin, MD., PhD.	Dependent Contingency Table, 110	©Jeff Lin, MD., PhD.	Dependent Contingency Table,		
Example: Different Estradi Table 13: Sensitivity and Spe	cificity of Different		diol and Breaset Cancer e for Estradiol and Breast Cancer		
Estradiol Cut-Off Points for Bre	ast Cancer				
Serum estradiol Cut Point Se	nsitivity Specivity	Sensitivity			
	0.0281 0.990		•		
	0.0422 0.979				
$\geq 20 \; { m pg/ml}$ 0	0.0892 0.965	g J			
$\geq 15~{ m pg/ml}$ 0	0.1690 0.905	0.0 0.2	0.4 0.6 0.8 1.0		
$\geq 10 \; { m pg/ml}$ 0	0.4178 0.706		1–Specificity		
- 18/	0.8685 0.166	Figure 2: ROC Curve	for Estradiol and Breaset Cancer		
> 0 ng/ml 1	0000 0.000				
$\geq 0 \text{ pg/ml}$ 1					

 Example: Estradiol and Breaset Cancer PPV and NPV 1. When choose a different "cutpoint" which separates "normal" from "abnormal", we will have different sensitivity and specificity. 2. We will have different positive predictive value and negative predictive palue 	Example: Estradiol and Breaset Cancer Cut-Off Point at Estridal ≥ 20 pg/mlIn the population, the prevalence of breast cancer is about 2%.Table 14: Estradiol ≥ 20 pg/ml as a Cut-Off PointBreastEstradiol Test Positive (T+) ≥ 20 pg/mlPresent (D+)Absent (D-)Total191534Sensitivity = $\frac{19}{213} = 0.089$;Sepecificity = $\frac{417}{432} = 0.965$. (51)
© Jeff Lin, MD., PhD. Dependent Contingency Table, 114	© Jeff Lin, MD., PhD. Dependent Contingency Table, 115
Example: Estradiol and Breaset Cancer Cut-Off Point at Estridal ≥ 20 pg/ml In the population, the prevalence of breast cancer is about 2%. PPV(PV+) = $\frac{\text{Sen} \times P(D)}{\text{Sen} \times P(D) + (1 - \text{Sep} \times (1 - P(D)))}$ = $\frac{0.089(0.02)}{0.089(0.02) + (1 - 0.965)(1 - 0.02)} = 0.050;$ NPV(PV-) = $\frac{(1 - \text{Sep}) \times (1 - P(D))}{(1 - \text{Sen}) \times P(D) + (1 - \text{Sep}) \times (1 - P(D))}$ = $\frac{(1 - 0.965)(1 - 0.02)}{(1 - 0.089)0.02 + (1 - 0.965)(1 - 0.02)} = 0.651.$ (52)	Example: Estradiol and Breaset Cancer Cut-Off Point at Estridal ≥ 20pg/ml Thus, there is a 5% probability of breast cancer among 50-59-year-old women with serum Estradiol ≥ 20pg/ml. This is about 2.5 times the general population rate (2%).
©Jeff Lin, MD., PhD. Dependent Contingency Table, 116	© Jeff Lin, MD., PhD. Dependent Contingency Table, 117
Example: Different Estradiol Cut-Off PointsTable 15: PPV and NPV of Different Estradiol Cut-Off Points for Breast CancerSerum estradiol Cut Point PPV NPV $\geq 30 \text{ pg/ml}$ 0.0580.318 $\geq 25 \text{ pg/ml}$ 0.0390.515 $\geq 20 \text{ pg/ml}$ 0.0490.651 $\geq 15 \text{ pg/ml}$ 0.0280.961 $\geq 5 \text{ pg/ml}$ 0.0200.996 $\geq 0 \text{ pg/ml}$ 0.0201.000	Example: Estradio and Brease Cancer (1-PPV) and NPV Curve for Estradiol and Breast Cancer $0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
© Jeff Lin, MD., PhD. Dependent Contingency Table, 118	© Jeff Lin, MD., PhD. Dependent Contingency Table, 119

Example: Estradiol and Breaset Cancer Example: Estradiol and Breaset Cancer Ext.col.numc=matrix(pepty(Stt.mat,2,num),1,3),7) (3,5yrsP1) following set.col.numCat.col.num wennet<=Stri(Stt.col.num(2,1/1) following mennet<=Stri(Stt.col.num(2,1/2) fat.col.num(2,1/1) follo) wennet<=Stri(Stt.col.num(2,1/2) fat.col.num(2,1/1) follo) wennet<=Stri(Stt.col.num(2,1/2) fat.col.num(2,1/1) following mennet<=Stri(Stt.col.num(2,1/2) fat.col.num(2,1/1) following wennet<=Strift(Stt.col.num(2,1/2) fat.col.num(2,1/1) following wennet<=Strift(Stt.col.num(2,1/1) following wenne<=Str				
Example: Estradiol and Breaset Cancer Example: Estradiol and Breaset Cancer Est.col.cum 7,3,byrown?) # col.cum 200 Bet.col.cum 9,ast 200 Bet.col.cum 200 200 Meg.ast 200 200 Bet.col.cum 200 200 Detuction 200 200 Detuction <th colspan="2">Example: Estradiol and Breaset Cancer</th> <th colspan="2">Est.mat<-matrix(c(5,28,72, 10,96,233, 15,53,86, 20,17,26, 25,10,6, 30,3,5, 60,6,4) ,nrow=7,ncol=3,byrow=T)</th>	Example: Estradiol and Breaset Cancer		Est.mat<-matrix(c(5,28,72, 10,96,233, 15,53,86, 20,17,26, 25,10,6, 30,3,5, 60,6,4) ,nrow=7,ncol=3,byrow=T)	
Est.row.sums-matrix(apply(Est.mst,1,eum),7,1) # row sum Est.col.sums-matrix(rep(matrix(apply(Est.mst,2,eum),1,3),7)	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 120	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 121
Example: Estradiol and Breaset Cancer prevD<-0.02 PFV<-(prevD*sen.mat)/(prevD*sen.mat+(1-sep.mat)*(1-prevD)) NFV<-((1-sep.mat)*(1-prevD))/ ((1-sen.mat)*prevD+(1-sep.mat)*(1-prevD)) PFV.NPV<-cbind(PPV,NPV) PFV.NPV	<pre>Est.row.sum<-matrix(apply(Est.mat,1,sum),7,1) Est.col.sum<-matrix(rep(matrix(apply(Est.mat,2,7,3,byrow=T) # col sum Est.col.cum<-apply(Est.mat,2,cumsum) Neg.mat<-Est.col.sum-Est.col.cum sen.mat<-matrix(Est.col.cum[,2]/Est.col.sum[,2,7,3,2,2,2,2</pre>	<pre># row sum !,sum),1,3),7) # col culmulative sum !],7,1) # [1:6,]</pre>	Est.mat Est.row.sum Est.col.sum Est.col.cum Neg.mat	ol and Breaset Cancer
<pre>prevD<-0.02 PPV<-(prevD*sen.mat)/(prevD*sen.mat+(1-sep.mat)*(1-prevD)) NPV<-((1-sep.mat)*(1-prevD))/ ((1-sen.mat)*prevD+(1-sep.mat)*(1-prevD)) PPV.NPV<-cbind(PPV,NPV) PPV.NPV</pre>	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 122	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 123
©Jeff Lin, MD., PhD. Dependent Contingency Table, 124 @Jeff Lin, MD., PhD. Dependent Contingency Table, 124	<pre>prevD<-0.02 PPV<-(prevD*sen.mat)/(prevD*sen.mat+(1-sep.mat)*(1-prevD)) NPV<-((1-sep.mat)*(1-prevD))/ ((1-sen.mat)*prevD+(1-sep.mat)*(1-prevD)) PPV.NPV<-cbind(PPV,NPV)</pre>		<pre>plot(1-sep.mat,sen.mat,xlab="1-Specificity", type="n", bty="n", ylab="Sensitivity", xlim=c(0,1), ylim=c(0,1), main="ROC Curve for Estradiol and Breast Cancer")</pre>	
	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 124	©Jeff Lin, MD., PhD.	Dependent Contingency Table, 125

<pre># ROC # ROC plot(1-sep.mat,sen.mat,xlab="1-Specificity", type="b", bty= axes=T, lty=1, lwd=1.5, pch=19, main="ROC Curve for Estradiol and Breast Cancer", ylab="Sensitivity", xlim=c(0,1), ylim=c(0,1)) points(1-sep.mat,sen.mat,pch=19,type="b", lwd=1.5, lty=1) axis(1,outer=FALSE,tick=1,lty=0) axis(2,outer=FALSE,tick=1,lty=0)</pre>	lines(c(0,1),c(0,0),lty=1) # x=	1 0
©Jeff Lin, MD., PhD. Dependent	Contingency Table, 126 ©Jeff Lin, MD., PhD.	Dependent Contingency Table, 127
<pre># PPV, NPV plot(NPV,1-PPV, type="b", bty="n", cex=0.7, axes=T, lty=1, lwd=1.5, pch=19, main="(1-PV) and NPV Curve for Estradiol and Breast C: xlab="Negative Predictive Value", ylab="1-Positive Predictive Value", xlim=c(0,1), ylim=c(0,1)) points(NPV,(1-PPV),pch=19,type="b", lwd=1.5, lty=1) axis(1,outer=FALSE,tick=1,lty=0) axis(2,outer=FALSE,tick=1,lty=0)</pre>	<pre>lines(c(0,1),c(0,0),lty=1) # x= lines(c(1,1),c(0,1),lty=1) # x= lines(c(0,0),c(0,1),lty=1) # y= lines(c(0,1),c(1,1),lty=1) # y= lines(c(0,1),c(0,1),lty=1) #</pre>	1 0 1
©Jeff Lin, MD., PhD. Dependent	Contingency Table, 128 (C)Jeff Lin, MD., PhD.	Dependent Contingency Table, 129

Т