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Dependent Contingency Table
Matched-Pair Data: McNemar’s Test
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Example: Treatments for Arthritis with

Crossover Design

1. An investigator conduct a study to compare pain relief effects of two

different treatments for arthritis.

2. The two treatment groups should be as comparable as possible on

other prognostic factors, i.e.; age and clinical conditions.
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Example: Treatments for Arthritis with

Crossover Design

3. To accomplish this goal, a matched study is set up such that a
random member of each matched pair get treatment A in the first
week (period) then that member get treatment B in the second week
(period), whereas the other member gets treatment B in the first
week (period), then that member get treatment a in the second week

(period).
4. The outcome is whether pain exists or not in the end of each week.

5. The data are displaced in a 2 x 2 table as shown in Table 1.
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Example: Treatments for Arthritis with

Crossover Design

Table 1: Treatments for Arthritis with
Crossover Design: Independent 2 x 2
Table

Outcome

Treatment No Pain  Pain Total

A 146 54 | 200
B 134 66 | 200
Total 280 120 400
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Example: Treatments for Arthritis with

Crossover Design

1. There is a small difference in pain relief between two treatment

groups.
2. Pain relief in treatment A group is 146/200 = 0.73,
3. pain relief in treatment B group is 134/200 = 0.67.

4. The Yates-corrected chi-square statistic, X2, is 1.71 with x%, which is

not significant.
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Program

> # Independent Table
> DA.ind.tab<-matrix(c(146,54,134,66) ,nrow=2,byrow=T)
> 0A.ind.tab
[,11 [,2]
[1,1 146 54
[2,] 134 66
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Program

> # Independent Table
> chisq.test(0A.ind.tab,correct=F)

Pearson’s Chi-squared test

data: OA.ind.tab
X-squared = 1.7143, df = 1, p-value = 0.1904
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Example: Treatments for Arthritis with

Crossover Design

1. However, the use of this test is valid only if the two sample are

independent.

2. From the manner in which the samples were selected it is obvious that

they are not independent, because members of each matched are

similar in age and clinical condition.

3. Thus, chi-square test or Fisher's exact test cannot be used in this

situation.

4. How the can the two treatments be compared using a hypothesis test?
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Example: Treatments for Arthritis with

Crossover Design

1. A different type of 2 x 2 table arise in the context of matched pair
data.

2. Observations are collected in pairs where the members of each pair
are identical or nearly identical for a particular variable that interferes

with assessing a specific relationship, as in Table 2.

3. Frequently this particular variable is called a “confounder”. The
matched pair is the unit of analysis and pairs are classified according
to whether nor not the members of that pair had pain relief at each

end of week.
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Example: Treatments for Arthritis with

Crossover Design

Table 2: Treatments for Arthritis with
Crossover Design: Dependent 2 x 2
Table

Treatment B
Treatment A No Pain Pain Total

No Pain 130 16 | 146
Pain 4 50 54
Total 134 66 200
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Example: Treatments for Arthritis with

Crossover Design

1. The above table has 200 units rather than the 400 units.

2. Furthermore, there are 130 pairs in which both subjects had no pain

relief.

3. Sixteen pairs in which the treatment A had pain relief and the

treatment B had pain.

4. Four pairs in which the treatment A had pain and the treatment B
had pain relief.

®©Jeff Lin, MD., PhD. Dependent Contingency Table, 12

Example: Treatments for Arthritis with

Crossover Design
1. The dependence of the two samples can be illustrated by noting that

p[Treatment B with pain relief | Treatment A with pain relief]
= 130/146 = 0.89,

p[Treatment B with pain relief | Treatment A with pain]
= 4/50 = 0.08.

2. If the samples were independent, then these two probabilities should
be about the same, thus we conclude that the samples are highly

dependent and that the chi-square test can not be used.
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Dependent Contingency Table: Matched-Pair Data

(©Jeff Lin, MD., PhD. Dependent Contingency Table, 14

Dependent 2 x 2 Table with Matched-Pair Data

Consider a dependent 2 X 2 table of matched-pair data as in Table 3.

Table 3: McNemar's Test: Dependent 2 x 2 Table

Observed a Table Pair member B
Pair member A Outcome 1 Outcome 2 Total
QOutcome 1 a b a+b=mny (row 1 margin)
QOutcome 2 c d c+d = ny (row 2 margin)
Total a+c=n, b+d=n, a+b+c+d=n.=n
column 1 column 2 (grand total)
margin margin
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Dependent 2 x 2 Table with Matched-Pair Data

1. A concordant pair, (i.e., a 4+ d), is a matched in which the outcomes

is the same for each member of the pair.

2. A discordant pair, (i.e., b+ c), is a matched pair in which the

outcomes are different for the members of the pair.
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Dependent 2 x 2 Table with Matched-Pair Data

1. In Table 2, for 180 concordant pairs (130 + 50), the outcomes of two
treatments are the same, whereas for 20 discordant pairs (16 + 4),

the outcomes of the two treatments are different.

2. The concordant pairs provide no information about differences

between treatments and will not be used in the assessment.

3. Instead, we will focus on the discordant pairs, which can be divided

into two types: b and c. If each outcome of pairs are equal, then

about an equal number of b and c.
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McNemar’s Test: Testing Hypothesis

1. Let p be the probability that a discordant pair is an element of b of
the discordant pairs.

2. Thus we wish to test the hypothesis

1 1
HO:pziversus HA:p#E (1)
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McNemar’s Test: Point Estimation

Under null hypothesis Hy, the &[b] and Var[b] are

e = bzc. )
Var[b] = bl—c‘ (3)
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McNemar’s Test: Test Statistics

1 1
Hy: p =75 versus HA3P7é§ (4)
b+c¢  # discordant pairs
e(b) = =r——— (5)
2 2
b
Var(b) = IC 6)
b+c, .2
L (-2
Xne = —p5c (7
4
b—c|)?
o = LECl sym w8 ®)
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McNemar’s Test: Test Statistics

1. Thatis, X2 is asymptotically approximated chi-squared distribtuted

with with 1 degree of freedom.

2. The p-value is calculates as

p — value = P()(% > X2). 9)

3. For a two-sided test with significant level a, we reject Hy if

2 2
X >Xi1—a

4. We will assume that the normal approximation to the binomial

distribution holds, but this assumption will valid if
npg = (b+c)/4>5o0r (b+c) > 20.
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McNemar’s Test: Test Statistics

1. For discrete binomial correction, we sometime use

b+c 1,2
Xz*::(‘b_ 2 | 7o) (10)
me b+c
4
([b—c| -1)?
XZmC* = T pqe o ym ~ X% (11)

2. That is, X,z1nC is asymptotically approximated chi-squared distribtuted

with with 1 degree of freedom.

@©Jeff Lin, MD., PhD. Dependent Contingency Table, 22

Difference and Odds Ratio of Proportions of

Paired Samples
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Difference of Proportions of Paired Samples

1. Let 7r1 be the outcome 1 (as success) in pair member A, and let

7T41 be the outcome 1 in pair member B.

2. For binary responses, if each outcome of matched pairs are equal, the

null hypothesis is Hy : 7114 = 7147.

3. The inference for the dependent proportions is
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Difference of Proportions of Paired Samples

d = my—1m4, (12)

[ (1= my) + ma(1 = i) — 2(mme — M)

Var(d) = o= .

(13)
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Difference of Proportions of Paired Samples

Difference of Proportions of Paired Samples

1. Under Hy, an simple alternative estimated variance is

d = iy — 7o, (14)
V) = o2 (=) ¢ - ;m) — 2(fnrn — Funfn)] P2(d) ~ e T =2 LJ;C (18)
n n
(15)
[(7?12 + A1) — (A2 — ﬁz1)z] 2. The score test statistic
~ . (16) ;
Thus, (1—a) x100% C.I. for d: d+Zy 5 x \/62(d) a7 2 = say (19)
b—c
simplifiedto z = ——— 20
P (b+0)1/2 (20)
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Odds Ratio of Proportio of Paired Samples Example: Treatments for Arthritis with
Crossover Design
1. The odd ratio comparing the odds of outcome 1 (success) at
treatment B to treatment A is estimated by: o
Table 4: Treatments for Arthritis with
OR=2S (21) Crossover Design: Dependent 2 x 2
b
Table
2. Confidence intervals can be obtained as described in Breslow and Day
) ) ] Treatment B
(1981), section 5.2, or in Armitage and Berry (1987), chapter 16. Treatment A No Pain  Pain  Total
No Pain 130 16 | 146
Pain 4 50 54
Total 134 66 200
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Example: Treatments for Arthritis with McNear’s Test

1. In Table 4, McNemar's Test showed X%nc = 7.2, and p-value is 0.0073.

2. The marginal proportion of pain relief for treatment A is 0.73 and for
treatment B is 0.67, the difference between two proportion (B — A) is
-0.06.

3. The 95% C.l.for the difference is (—0.103, —0.0170), treatment A is

more effective than treatment B.
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Treatments for Arthritis with McNear’s Test: Program

> # Dependent Table

> (DA.tab<-matrix(c(130,16,4,50) ,nrow=2,byrow=T))
[,11 [,2]

[1,] 130 16

[2,] 4 50
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Treatments for Arthritis with McNear’s Test: Program

> mcnemar.test(0A.tab, correct=FALSE)
McNemar’s Chi-squared test

data: OA.tab
McNemar’s chi-squared = 7.2, df = 1, p-value = 0.00729
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Treatments for Arthritis with McNear’s Test: Program

> mcnemar.test (0A.tab, correct=TRUE)
McNemar’s Chi-squared test with continuity correction

data: OA.tab
McNemar’s chi-squared = 6.05, df = 1, p-value = 0.01391

@©Jeff Lin, MD., PhD Dependent Contingency Table, 33

Treatments for Arthritis with McNear’s Test: Program

> binom.test(0A.tab[1,2], (OA.tab[1,2]+0A.tab[2,1]), p=0.5)

Exact binomial test
data: OA.tab[1, 2] and (0A.tab[1, 2] + OA.tab[2, 1])
number of successes = 16, number of trials = 20, p-value = 0.01182

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:
0.563386 0.942666
sample estimates:
probability of success
0.8
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Treatments for Arthritis with McNear’s Test: Program

> marginal prop diff

> (0A.tab.prop<-prop.table(0A.tab))
[,11 [,2]

[1,] 0.65 0.08

[2,] 0.02 0.25

> margin.table(0A.tab.prop,2) [1]

[1] 0.67

> margin.table(0A.tab.prop,1) [1]

[1] 0.73
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Treatments for Arthritis with McNear’s Test: Program

> prop.diff<-(margin.table(0A.tab.prop,2) [1]
-margin.table(0A.tab.prop,1) [1])
> prop.diff
[1] -0.06
>
> # EQ 16
> (prop.diff+c(-1,1)*qnorm(0.975)*
sqrt ((sum(off.diag) -diff (off.diag) ~2)/sum(0A.tab)))
[1] -0.10303003 -0.01696997
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Treatments for Arthritis with McNear’s Test: Program

> (off.diag<-diag(0A.tab.prop[1:2,2:1]))
[1] 0.08 0.02
> # C.I.
> sum(off.diag)
[1] 0.1
> diff (off.diag)
[1] -0.06
> sum(DA.tab)
[1] 200
> # EQ 16
> (prop.diff+c(-1,1)*qnorm(0.975)*
sqrt ((sum(off.diag)-diff (off.diag) "2)/sum(0A.tab)))
[1] -0.10303003 -0.01696997
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Treatments for Arthritis with McNear’s Test: SAS

title "McNemar Test: Matched-Paired Data';
data mcne2 ;

input A B count ;

cards;

11 130

10 16

014

0 0 50

run;
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Treatments for Arthritis with McNear’s Test: SAS

proc freq data=mcne2 order=data page;
tables A*B / agree;
weight count;
exact agree;

run;
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Treatments for Arthritis with McNear’s Test: SAS

A B
Frequency|
Percent |
Row Pct |
Col Pct | 1l 0| Total
11 130 | 16 | 146
| 65.00 | 8.00 | 73.00
| 89.04 | 10.96 |
| 97.01 | 24.24 |
ol 4 | 50 | 54
| 2.00 | 25.00 | 27.00
| 7.41 | 92.59 |
| 2.99 | 75.76 |
Total 134 66 200

67.00 33.00 100.00
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Treatments for Arthritis with McNear's Test: SAS

McNemar’s Test

Statistic (8) 7.2000

DF 1

Asymptotic Pr > S 0.0073

Exact Pr >=§ 0.0118
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Reliability Studies with Kappa Statistic
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Two Surveys with Same Diet Questionnaire

1. A diet questionnaire was administered by mail to 537 female American

nurses on two separate occasions several months apart, Rosner (2000).

2. The questions asked included quantities eaten of more than 100
separate food items. The data obtained from the two surveys for the

amount of beef consumption are presented in Table 5.

3. How can the reproducibility of response for the beef consumption data

be quantified?
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Two Surveys with Same Diet Questionnaire

Table 5: 2 x 2 table of paired nutrition data

The Second Survey
The First Survey 1 <= serving/week > 1 serving/week Total

1 <= serving/week 136 92 228
> 1 serving /week 69 240 309
Total 205 332 537
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Two Surveys with Same Diet Questionnaire

A chi-square test for association between the survey 1 and survey 2
responses could be performed. However, this test would not give a
quantitative measure of reproducibility. There are
(136 + 240) /537 = 70.7% concordant responses.
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Reliability Studies with Kappa Statistic

How can the reproducibility of response be quantified in a dependent
2 x 2 table?

Table 6: Kappa: reliability of 2 x 2 table

The Second Survey
The First Survey 1 <= serving/week > 1 serving/week Total

1 <= serving/week ny| =a npp =>b ni.
> 1 serving /week ny1 =¢ nyy =d ny.
Total n1 ny n
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Reliability Studies with Kappa Statistic

1. We would like to compare the observed concordance rate Il and the
expected concordance ITg whether the responses of the subjects were

statistically independent.

2. The motivation behind this definition is that the questionnaire would

be virtually worthless if the frequency of consumption reported at one
survey had not relationship to the frequency of consumption reported

at a second survey.
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Reliability Studies with Kappa Statistic

1. The perfect agreement corresponds to IIn = 1. Thus Ilp —IIg is
the excess of the observers agreement.

2. We could use ITp — ITg as the measure of reproducibility.

3. However, it is preferable to use a measure that equals to 1 in the case
of perfect agreement and 0 if the responses on the two surveys are

completely independent.

4. The maximum possible value for IT5 —ITf is 1 — ITg, which is
achieved with ITp = 1.
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Reliability Studies with Kappa Statistic

5. Therefore, the x statistic, which is defined as (ITp — ITg) /(1 — Ig),
is used as the measure of reproducibility.
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Reliability Studies with Kappa Statistic

Reliability Studies with Kappa Statistic

1. Supposes there k response categories and the probability of response Under Hy:
in the it is 7t;4 for the first survey and 71 ; for the second survey. n;.
Ty = 5 (24)
2. These probabilities can be estimated from the row and column M = %/ ; (25)
margins of the contingency table.
Tij = TiyTi (26)
3. The expected concordance rate Il if the survey responses are n k k
independent is given E = i; i = i; Tt Toir - (27)
o —TIg
— 22
o (22)
k ..
My, = ) -4 (23)
="
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Reliability Studies with Kappa Statistic Reliability Studies with Kappa Statistic
The Kappa statistic is
I, _T1I 1. To test the two-sided (one-sided) hypothesis
e O (28)
1-TIIg
) 1 ) HO : x=0
k] = ————5 X (g +IIg — ) [m(my +my; 29
] n(1—TIg)2 { £+ T =) [l *l)]} (29) versusHy:  x#0, (Hy:x>0), (31)
Mo —-Y m my
_ o —Y iy, (30)
=Yy 2. Use the test statistic

1. x equals 0 when the agreement equals that expected by chance, and it

equals 1 when there is perfect agreement.

2. The stronger the agreement, the higher the values occur, for a given
pair of marginal distribution. Negative values occur when agreement

is weaker than expected by chance.
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,__ X
" se(x)
(1—a) x100% C.l. forkx = Z1_,/p s.e.(x), (33)

where s.e.(x) = \/02[x] = o[x]
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Two Surveys with Same Diet Questionnaire

1. k = 0378, s.e.(k) = 0.043, z = 8.8, p-value=2(1 — ®(8.8)) < 0.001,
and 95% confidence interval is (0.298,0.457).

2. It is rarely plausible that agreement is no better than expected by

chance.

3. Thus rather than testing Hy : & = 0, it is more important to estimate

strength of agreement, by constructing a confidence interval for x.
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Reliability Studies with Kappa Statistic: Guildlines
1. ¥ > 0.75 denotes excellent reproducibility.
2. 0.4 < x < 0.75 denotes good reproducibility.
3. k < 0.4 denotes marginal reproducibility.

In general, reproducibility is not good for many items in dietary survey,

indicating the need for multiple dietary assessments to reduce variability.
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Reliability Studies with Kappa Statistic: Notes

1. A weight form of the kappa statistic allows you to assign weights, or
scores, to the various categories so that you can incorporate such

consideration into the construction of the test statistic.

2. Gamma, Kendalll’s tau-b, Kendalll's tau-c, Somer’s D statistics
are all based on concordant and discordant pairs, that is, they use the
relative ordering on the levels of the variables to determine whether
association is negative, positive, or present at all. They differ mainly

on their strategies for adjusting for ties and sample size.
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Reliability Studies with Kappa Statistic Program

> # load package vcd
> library(vcd)
> help(Kappa)
> Kappa (survey.tab)

value ASE
Unweighted 0.3781906 0.04100635
Weighted 0.3781906 0.05504449

> confint (Kappa(survey.tab))

Kappa lwr upr
Unweighted 0.2978196 0.4585616
Weighted 0.2703054 0.4860758
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Reliability Studies with Kappa Statistic Program

# MACRO function from

# http://www.itc.nl/"rossiter/teach/R/R_ac.pdf
survey.tab<-matrix(c(136,92,69,240) ,nrow=2,byrow=T)
survey .kappa<-kappa(survey.tab)

vV V VvV VvV VvV

summary . kappa (survey .kappa)
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Reliability Studies with Kappa Statistic Program

kappa.stat <- function(o, w=FALSE)
{
n <- sum(o)
e <- outer(apply(o, 1, sum), apply(o, 2, sum))/n
if (is.matrix(w) == FALSE) {
qo <- 1-(po <- sum(diag(o))/n)
qe <- 1-(pe <- sum(diag(e))/n)
kappa <- 1-qo/qe
sk <- sqrt(poxqo/(n*qe~2))
sk0 <- sqrt(pe/(nxqe))
stopifnot (kappa >= 0)
z <- kappa/sk0
c("kappa"=kappa, "sigma-kappa"=sk, "sigma-kappa-0"=skO,
"95% lcl"=kappa-qnorm(0.975)*sk,
"95% ucl"=kappa+qnorm(0.975)*sk,
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"Z value"=z, "P value"=pnorm(z, lower=FALSE)*2)
}
else {
qow <- sum(w*o)/n
qow2 <- sum(w¥w¥o)/n
gew <- sum(wxe)/n
qew2 <- sum(wxwxe)/n
kw <- 1-qow/qew
skw <- sqrt((qow2-qow"2)/n/qew"2)
skwO <- sqrt((qew2-qew"2)/n/qew"2)
stopifnot (kw >= 0)
zw <- kw/skwO
c("kappa-w"=kw, "sigma-kappa-w"=skw, "sigma-kappa-w0"=skwO,
"95% lcl"=kw-qnorm(0.975)*skw, "95% ucl"=kw+qnorm(0.975)*skw,
"Z value"=zw, "P value"=pnorm(zw, lower=FALSE)*2)
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Reliability Studies with Kappa Statistic Program

> survey.tab<-matrix(c(136,92,69,240) ,nrow=2,byrow=T)
> kappa.stat (survey.tab)

kappa sigma-kappa sigma-kappa-0
3.781906e-01 4.100635e-02 4.472105e-02

95% 1lcl 957 ucl Z value P value
2.978196e-01 4.585616e-01 8.456657e+00 2.751526e-17
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Medical Tests: Diagnostic Tests and Screening Tests
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Screening Test and Diagnostic Test

Breast cancer is considered largely a hormonal disease. An important
hormone in breast-cancer resection is estradiol. The data in Table 10 on
serum estradiol were obtained from 213 breast-cancer cases and 432

age-matched controls. All women were age 50-59 years.
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Screening Test and Diagnostic Test

Table 7: Serum-Estradiol Data

Serum estradiol (pg/ml) Case (N =213) Controls (N = 432)

01-04 28 72
05-09 96 233
10-14 53 86
15-19 17 26
20-24 10 6
25-29 3 5
30+ 6
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Screening Test and Diagnostic Test
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Screening Test and Diagnostic Test

1. Evaluate the accuracy of the estradiol level as a diagnostic test.

(What is the optimal cut-off point?)

2. The preceding sample was selected to oversample cases. In the
general population, the prevalence of breast cancer is about 2%
among women 50 to 59 years old. Evaluate the usefulness of the
estradiol level as a diagnostic test. (What is the optimal cut-off point

when you consider the prevalence?)
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Screening Test and Diagnostic Test

1. What is the accuracy of a diagnostic test?
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Screening Test and Diagnostic Test

1. What is the accuracy of a diagnostic test?

2. What are the sensitivity and specificity?
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Screening Test and Diagnostic Test

1. What is the accuracy of a diagnostic test?
2. What are the sensitivity and specificity?

3. What are the predictive positive value and predictive negative value?
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Screening Test and Diagnostic Test

1. What is the accuracy of a diagnostic test?
2. What are the sensitivity and specificity?
3. What are the predictive positive value and predictive negative value?

4. What is the ROC curve?
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Screening Test and Diagnostic Test

1. What is the accuracy of a diagnostic test?

2. What are the sensitivity and specificity?

3. What are the predictive positive value and predictive negative value?
4. What is the ROC curve?

5. How to decide the cut-off point?
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Medical Tests:

Diagnostic Tests and Screening Tests
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Medical Tests:

Diagnostic Tests and Screening Tests

1. The purpose of diagnostic testing is to obtain objective evidence of

the presence or absence of a particular condition.

2. This evidence can be obtained to detect disease at its earliest stages
among asymptomatic persons in the general population, a process

referred to as screening.

3. Screening is an application of a test or procedure to asymptomatic,
apparently well individuals, in order to separate those with a relatively
high probability of having a given disease from those with a relatively

low probability of having the disease.
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screening test compared to “gold standard test”.

Medical Tests:

Diagnostic Tests and Screening Tests

. Investigators often conduct a study to evaluate a simple new

. The disease status is usually defined by “gold standard” test.

. In the simplest case the test will simply be classified as having a

positive (disease likely) or negative (disease unlikely) finding.

@©Jeff Lin, MD., PhD.
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Medical Tests:

Diagnostic Tests and Screening Tests

4. Further, suppose that there is a “gold standard” that tells us

whether or not a subject actually has the disease.

5. The definite classification might be based upon data from follow-up,

invasive radiographic or surgical procedures, or autopsy results.

6. In many cases, the “gold standard” itself will only be relatively

correct, but nevertheless the best classification available.
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Medical Tests:

Diagnostic Tests and Screening Tests

. Ideally, those with the disease should all be classified as having disease,

and those without disease should be classified as non-diseased.

often such correct classification occurs.

. For this reason, two indices of the performance of a test consider how

. However, classification of disease is not perfect, errors in

measurement lead to misclassification of outcome or exposure.
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Medical Tests:

True Positive Test and True Negative Test

1. A test is true positive test if the test is positive and the subject has

the disease.

2. A test is true negative test if the test is negative and the subject

does not have the disease.
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The Simplest Medical Tests
with a Dependent 2 x 2 Table
We can summarize a medical test results as 2 x 2 table as shown in
Table .

captionTrue Positive Test and True Negative
Test

Disease
Medical Test Present (D+) Absent (D-)

Positive (T+) | true positive | false positive

Negative (T-) | false negative | true negative
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Medical Tests: Sensitivity and Specificity

1. The sensitivity of a screening test of a disease is the probability that
the screening test of an individual is positive and test classify that

individual as having the disease given that person has the disease.

2. The specificity of a screening test of a disease is the probability that
the screening test of an individual is negative and test classify that
individual as not having the disease given that person does not have

the disease.
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Medical Tests: Sensitivity and Specificity

Sensitivity = P[T+ | D+] = P[Test Positive | Disease Present]
Specificity = P[T — | D—] = P[Test Negative | Disease Absent|

1. Sensitivity is sometimes called true positive rate (TFR).

2. Specificity is sometimes called true negative rate (TNR).
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Medical Tests:

False Positive Test and False Negative Test

1. A false positive test if the test is positive and the subject does not

have the disease.

2. A false negative test if the test is negative and the subject has the

disease.
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Medical Tests:

False Positive Test and False Negative Test

1. false-positive rate (FPR) is that 1 minus sensitivity.

2. false-negative rate (FNR) is that 1 minus sensitivity.
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Medical Tests: Positive Predictive Value

and Negative Predictive Value

1. The positive predictive value (PPV), PV, is the predictive value
of a positive test and is defined as the probability that a person has a
disease given that the test is positive (also known as predictive value

positive).

2. The negative predictive value (NPV), PV, is the predictive value
of a negative test and is defined as the probability that a person does
not have a disease given that the test is negative (also known as

predictive value negative).
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Medical Tests: Positive Predictive Value

and Negative Predictive Value

The PVt and PV~ are depend on the probability of disease occurrence

Medical Tests: Positive Predictive Value

and Negative Predictive Value

P[D+, T+]

(prevalence), P[D+], in population such that P[D+] + P[D—] = 1. PVt — P[D+ |T+] = (34)
P[T+]
_ P[T+ | D+]P[D+] (35)
P[T + | D+] x P[D+] + P[T + | D—] x P[D—]
(36)
_ sensitivity x P[D+]
"~ sensitivity x P[D+] + (1 — specificity) x P[D—]
(37)
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Medical Tests: Positive Predictive Value Medical Tests: Sample Data as 2 x 2 Table
and Negative Predictive Value The observed data is constructed as 2 x 2 table as in Table 8.
Table 8: Sensitivity and specificity: 2 x 2 Table
PV- = P[D- |T-]= PD—,T-] (38)
B ~ P[T-] Disease
P[T — | D—]P[D—] Medical Test ~ Present (D+) Absent (D-) Total
P[T — | D'H < P[D—H T P[T — ‘ D—] » P[D—] (39) Positive (T+) O11=a O1p=0b a+b=mny (row 1 margin)
Negative (T-) Oy1=c¢ Opp=d c+d = ny (row 2 margin)
Speciﬁcity % P[Df] Total uTc:InJ de:;t_z 1(1+hd+tct+|;l:n__:n
= FPrI o gpe o column column gran ota
(1 — sensitivity) x P[D+] + specificity x P[D—] margin margin
(40)
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Sensitivity and Specificity: Point Estimation Point Estimation: Positive Predictive Value
The estimated mean sensitivity and specificity are and Negative Predictive Value
sengti\vity = P[T+ |D+] = a (41) 1. The estimated mean PVT and PV~ actually depend on the disease
a ji_ ¢ prevalence.
specificity = P[T— |D—-]=— (42)
b+d 2. However, we can seen many clinical literatures calculated the PV T
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and PV~ as

4+ a
PV, = P[D T+] = 43
5= P+ T = (43)
_ d
PV, = P[D- |T-]= 44
L= PD- T = (44
3. The above two calculations are not exact the definition of original
PV and PV;}.
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Point Estimation: Positive Predictive Value

and Negative Predictive Value

The difficulty in that we usually have no information about the disease

prevalence.
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Medical Tests: Accuracy
1. Vague term
2. Missclassification probability

D(Test result # Disease Status)

= Disease Prevalence x (1 — Sensitivity)

+(1 — Disease Prevalence) x (1 — Specificity) (45)
P(Y#D)
= P(D=1)(1—Sen)+ (1—-P(D=1))(1—Spe); (46)

Where Y =1 if test result is postiive, Y = 0 if test result is negative;

and D =1 for disease and D = 0 for non-disease.
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Example: Breast Cancer and Estradiol Levels

1. Breast cancer is considered largely a hormonal disease.
2. In the population, the prevalence of breast cancer is about 2%.
3. An important hormone in breast-cancer is estradiol.

4. Investigators chose Estridal > 20pg/ml as an abnormal (having breast

cancer),

5. The data in Table 9. on serum estradiol were obtained from 213
breast-cancer cases and 432 age-matched controls, and all women
were age 50-59 years.
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Example: Estradiol and Breaset Cancer

Table 9: Estradiol and Breast Cancer: Case-Control Study

Breast

Estradiol Test Case (D+) Control (D-) Total

Positive (T+) > 20pg/ml 19 15 34

Negative (T-) < 20pg/ml 194 417 611

Total 213 432 645

e 19 e 417

Sensitivity = 313 = 0.089; Sepecificity = e 0.965. (47)
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Example: Estradiol and Breaset Cancer

In the population, the prevalence of breast cancer is about 2%.

_ Sen x P(D)
PPV(PVH) = o BID) + (1= Sep x (TP D))
_ 0.089(0.02) B .
~0.089(0.02) + (1 —0.965)(1 —0.02) 0.050;
NPV(PV—) = (1—Sep) x (1—P(D))

(1 —Sen) x P(D) + (1 —Sep) x (1—P(D))
(1-0.965)(1 — 0.02)

= (1-0.089)0.02 + (1 0965)(1—002) ~ &

(48)
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Example: Estradiol and Breaset Cancer

Thus, there is a 5% probability of breast cancer among 50-59-year-old
women with serum Estradiol > 20pg/ml. This is about 2.5 times the

general population rate (2%).
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Screening Test and Diagnostic Test

1. Sometimes, a new screening test is not a simple screening test.

2. The new screening test may provide several categories of response

rather than simply test positive or test negative.

3. In other instances, the results of the test are reported as continuous

variable.

4. In either case, the designation of a cut-off point for distinguishing test

positive versus test negative is arbitrary.

®©Jeff Lin, MD., PhD. Dependent Contingency Table, 96

Medical Tests: ROC Curve

Receiver Operating Characteristic Curve
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Example: Breast Cancer and Estradiol Levels

Breast cancer is considered largely a hormonal disease. An important
hormone in breast-cancer resection is estradiol. The data in Table 10 on
serum estradiol were obtained from 213 breast-cancer cases and 432

age-matched controls. All women were age 50-59 years.
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Example: Breast Cancer and Estradiol Levels

Table 10: Serum-Estradiol Level and Breaset Cancer Data

Serum estradiol (pg/ml) Case (N =213) Controls (N = 432)

01-04 28 72

05-09 96 233

10-14 53 86

15-19 17 26

20-24 10 6

25-29 3 5
30+
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Example: Breast Cancer and Estradiol Levels

1. Evaluate the accuracy of the estradiol level as a diagnostic test.
(What is the optimal cut-off point?)

2. The preceding sample was selected to oversample cases. In the
general population, the prevalence of breast cancer is about 2%
among women 50 to 59 years old. Evaluate the usefulness of the
estradiol level as a diagnostic test. (What is the optimal cut-off point

when you consider the prevalence?)
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Medical Tests: ROC Curve

1. Most tests have some quantitative aspect.
2. For Example, biomarkers for Cancer, PSA, CA-125.

3. Tests that invove an element of subjective assessment are often

ordinal in nature.

4. For example, radiologist’s reading images as “definitely”, “probably”,

“possibly”, “definite not”.
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Medical Tests: ROC Curve

1. The same statistical approach can be used only if we can select a cut
off point to distinguish “normal” from “abnormal,” which is not a

trivial problem.

2. The decision rule is based on whether or not the test result (or some

transformation of it) exceed a threshold value.
3. The choice a suitable threshold will vary with circumstances.

4. The choice threshold depends on the trade-off that is acceptable
between failing to detect disease and falsely identifying disease with
the test.
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Medical Tests: ROC Curve

The ROC curve is a device that simply describes the range of trade-offs
that can be ahieved by the test.
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Medical Tests: ROC Curve

1. Firstly, we can investigate to what extent the test results differ among

people who do or do not have the diagnosis of interest.
2. The receiver operating characteristic (ROC) plot is one way to do this.

3. These plots were developed in the 1950s for evaluating radar signal
detection. Only recently have they become commonly used in

medicine.
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Medical Tests: ROC Curve

A receiver operating characteristic plot is obtained by calculating the
sensitivity and specificity of every observed data value at several defined
cut-off pointsf (5-10 or more) and plotting sensitivity against

1 — specificity,
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Medical Tests: ROC Curve
1

Sensitivity

| - Specificity

Figure 1: Receiver Operating Characteristic Curve
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Medical Tests: ROC Curve

We just want to calculate sensitivity and specificity for this test, we have

to choose a “cutpoint” which separates “normal” from “abnormal”.
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Example: Estradiol and Breaset Cancer
Cut-Off Point at Estridal > 30pg/ml

If we chose Estridal > 30pg/ml as an abnormal (having breast cancer),

we can “collapse” some rows and get the following familiar 2 x 2 table:
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Example: Estradiol and Breaset Cancer
Cut-Off Point at Estridal > 30pg/ml

Table 11: Estradiol > 30pg/ml as a Cut-Off Point

Breast
Estradiol Test Present (D+) Absent (D-) Total
Positive (T+) > 30pg/ml 6 4 10
Negative (T-) < 30pg/ml 207 428 635
Total 213 432 645

Sensitivity = b 0.028; Sepecificity = % = 0.990. (49)

213 43
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Example: Estradiol and Breaset Cancer
Cut-Off Point at Estradiol > 20pg/ml

If we chose Estridal > 20pg/ml as an abnormal (having breast cancer),

we can “collapse” some rows and get the following familiar 2 x 2 table:
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Example: Estradiol and Breaset Cancer
Cut-Off Point at Estridal > 20pg/ml

Table 12: Estradiol > 20pg/ml as a Cut-Off Point

Breast

Estradiol Test Present (D+) Absent (D-) Total

Positive (T+) > 20pg/ml 19 15 34

Negative (T-) < 20pg/ml 194 417 611

Total 213 432 645

o 19 s 417

Sensitivity = 213 = 0.089; Sepecificity = m 0.965. (50)
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Example: Different Estradiol Cut-Off Points

Table 13: Sensitivity and Specificity of Different
Estradiol Cut-Off Points for Breast Cancer

Serum estradiol Cut Point Sensitivity Specivity

> 30 pg/ml 0.0281 0.990
> 25 pg/ml 0.0422 0.979
> 20 pg/ml 0.0892  0.965
> 15 pg/ml 0.1690  0.905
> 10 pg/ml 0.4178 0.706
> 5 pg/ml 0.8685 0.166
>0 pg/ml 1.0000 0.000
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Example: Estradiol and Breaset Cancer

ROC Curve for Estradiol and Breast Cancer
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Figure 2: ROC Curve for Estradiol and Breaset Cancer
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Example: Estradiol and Breaset Cancer
PPV and NPV

1. When choose a different “cutpoint” which separates “normal” from

“abnormal”, we will have different sensitivity and specificity.

2. We will have different positive predictive value and negative predictive
palue
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Example: Estradiol and Breaset Cancer
Cut-Off Point at Estridal > 20pg/ml

In the population, the prevalence of breast cancer is about 2%.

Table 14: Estradiol > 20pg/ml as a Cut-Off Point

Breast
Estradiol Test Present (D+) Absent (D-) Total
Positive (T+) > 20pg/ml 19 15 34
Negative (T-) < 20pg/ml 194 417 611
Total 213 432 645
Sensitivity = % = 0.089; Sepecificity = i;—; = 0.965. (51)
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Example: Estradiol and Breaset Cancer
Cut-Off Point at Estridal > 20pg/ml

In the population, the prevalence of breast cancer is about 2%.

Sen x P(D)
PPV(PV+) Sen x P(D) 4 (1 —Sep x (1 — P(D))
B 0.089(0.02) o
= 0.089(0.02) + (1 — 0.965) (1 —002) _ 00
o (1—Sep) x (1-P(D))
NPV(PV=) = = Sen) % P(D) + (1 — Sep) (1= P(D))
B (1—0.965)(1 — 0.02) = o5t
= [1=0.089)0.02 + (1 —0.965)(1 — 0.02) _ &L
(52)
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Example: Estradiol and Breaset Cancer
Cut-Off Point at Estridal > 20pg/ml

Thus, there is a 5% probability of breast cancer among 50-59-year-old
women with serum Estradiol > 20pg/ml. This is about 2.5 times the

general population rate (2%).
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Example: Different Estradiol Cut-Off Points

Table 15: PPV and NPV of Different
Estradiol Cut-Off Points for Breast Cancer

Serum estradiol Cut Point PPV NPV

> 30 pg/ml 0.058 0.318
> 25 pg/ml 0.039 0.515
> 20 pg/ml 0.049 0.651
> 15 pg/ml 0.035 0.848
> 10 pg/ml 0.028 0.961
> 5 pg/ml 0.020 0.996
>0 pg/ml 0.020 1.000
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Example: Estradiol and Breaset Cancer
(1-PPV) and NPV Curve for Estradiol and Breast Cancer
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Figure 3: (1-PPV) versus NPV Curve for Estradiol and Breaset Cancer
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Example: Estradiol and Breaset Cancer
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Example: Estradiol and Breaset Cancer

Est.mat<-matrix(

c(5,28,72,

10,96,233,

15,53,86,

20,17,26,

25,10,6,

30,3,5,

60,6,4)

,nrow=7,ncol=3,byrow=T)

Est.mat<-Est.mat [rev(rank(Est.mat[,1])),]
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Example: Estradiol and Breaset Cancer

Est.row.sum<-matrix(apply(Est.mat,1,sum),7,1) # row sum
Est.col.sum<-matrix(rep(matrix(apply(Est.mat,2,sum),1,3),7)

,7,3,byrow=T) # col sum
Est.col.cum<-apply(Est.mat, 2, cumsum) # col culmulative sum
Neg.mat<-Est.col.sum-Est.col.cum
sen.mat<-matrix(Est.col.cum[,2]/Est.col.sum(,2],7,1) # [1:6,]
sep.mat<-matrix(Neg.mat[,3]/Est.col.sum[,3],7,1) # [1:6,]
sen.sep<-cbind(sen.mat,sep.mat)
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Example: Estradiol and Breaset Cancer

Est.mat
Est.row.sum
Est.col.sum
Est.col.cum
Neg.mat

sen.sep
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Example: Estradiol and Breaset Cancer

prevD<-0.02

PPV<-(prevD#sen.mat)/(prevD*sen.mat+(1-sep.mat)*(1-prevD))

NPV<-((1-sep.mat)*(1-prevD))/
((1-sen.mat)*prevD+(1-sep.mat) * (1-prevD))

PPV.NPV<-cbind (PPV,NPV)
PPV.NPV
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Example: Estradiol and Breaset Cancer

plot(1-sep.mat,sen.mat,xlab="1-Specificity", type="n", bty="n",
ylab="Sensitivity", xlim=c(0,1), ylim=c(0,1),
main="ROC Curve for Estradiol and Breast Cancer")
points(l-sep.mat,sen.mat,pch=19,type="b", lwd=1)

(©Jeff Lin, MD., PhD. Dependent Contingency Table, 125




Example: Estradiol and Breaset Cancer

# ROC
plot(1-sep.mat,sen.mat,xlab="1-Specificity", type="b", bty="n",
axes=T, lty=1, lwd=1.5, pch=19,
main="ROC Curve for Estradiol and Breast Cancer",
ylab="Sensitivity", xlim=c(0,1), ylim=c(0,1))
points(1l-sep.mat,sen.mat,pch=19,type="b", lwd=1.5, lty=1)
axis(1,outer=FALSE,tick=1,1ty=0)
axis(2,outer=FALSE,tick=1,1ty=0)
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Example: Estradiol and Breaset Cancer

lines(c(0,1),c(0,0),1ty=1)
lines(c(1,1),c(0,1),1ty=1)

# =0

#
lines(c(0,0),c(0,1),1ty=1) # y=0

#

#

x=1

lines(c(0,1),c(1,1),1ty=1) y=1
lines(c(0,1),c(0,1),1ty=1)
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Example: Estradiol and Breaset Cancer

# PPV, NPV
plot (NPV,1-PPV, type="b", bty="n", cex=0.7,
axes=T, 1lty=1, lwd=1.5, pch=19,
main="(1-PPV) and NPV Curve for Estradiol and Breast Cancer",
xlab="Negative Predictive Value",
ylab="1-Positive Predictive Value",
x1lim=c(0,1), ylim=c(0,1))
points(NPV, (1-PPV) ,pch=19,type="b", 1lwd=1.5, 1lty=1)
axis(1,outer=FALSE,tick=1,1ty=0)
axis(2,outer=FALSE,tick=1,1ty=0)
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Example: Estradiol and Breaset Cancer

lines(c(0,1),c(0,0),1ty=1) #
lines(c(1,1),c(0,1),1ty=1) #
lines(c(0,0),c(0,1),1ty=1) # y=0
lines(c(0,1),c(1,1),1ty=1) #
lines(c(0,1),c(0,1),1ty=1) #

(©Jeff Lin, MD., PhD. Dependent Contingency Table, 129




