
Person-Time Data

CF Jeff Lin, MD., PhD.

December 14, 2005

c©Jeff Lin, MD., PhD.

Incidence

1. Cumulative incidence (incidence proportion)

2. Incidence density (incidence rate)
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Cumulative Incidence

Cumulative Incidence is the proportion of the population will develop

illness during the specified time period.

Cumulative Incidence (C.I.)

=
number of NEW cases of disease during a period

population exposed during this period
(1)
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Cumulative Incidence: Example

Lung cancer in a community, Jan 1 – Dec 31, 1980:

Population 3,500,000

Cases 96,250 (1250 new cases)

Cumulative incidence 0.36/1000 per year

Prevalence 2.71%
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Person-Time Data

1. In a cohort study, we identify groups of exposed and unexposed

individuals at baseline, and compared the proportion of subjects who

developed disease over time between two groups.

2. We referred to these proportions as cumulative incidence (CI)
rates (i.e., the probability that a person no prior disease will develop a

new case of the disease over some pre-specified time period).
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Person-Time Data

3. Cumulative incidence (CI) rates are proportions where the person is

the unit of analysis and must range between 0 and 1.

4. When we discuss the analysis of categorical data, where the person

was the unit of analysis.

5. In an actual prospective study design, each subject contributes the

study with different follow-up time (i.e., person-time).
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Incidence Rate
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Example: Prevalence and Incidence Rate

Figure 1: Incidence Rate and Follow-Up with Pearson-Time
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Incidence Rate: Pearson-Time

Pearson-Years

1. Person-time is the sum of the amount of time each individual is

observed while free of disease.

2. pearson-years is the sum of the amount of years each individual is

observed while free of disease.

3. Each subject may contribute a different amount of person-years.
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Incidence Rate: Pearson-Years

Person-time at risk is the denominator for incidence rates of disease

1000 person-years at risk

= 100,000 people for 1/100 years (2)

= 10,000 people for 1/10 years

= 1000 people for 1 years

= 100 people for 10 years

= 20 people for 50 years
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Incidence Rate: Pack-Years for Smoking

1 × 365 pack-year

= 0.5 × 365 for 2 years

= 2 × 365 for 0.5 years
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Incidence Rate

An incidence rate (incidence density) is defined as the number of new

cases of disease during a defined period of time, divided by the total

person-time of observation.

Incidence Rate (I.R.)

=
number of NEW cases of disease during a period

total person-time of observation
(3)
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Example: Period Prevalence and Incidence Rate

Incidence and Pearson−years

● ●

●

● ●

●

●

● ●

● ●

| | | | | | | | | | | |

80 81 82 83 84 85 86 87 88 89 90

A

B

C

D

E

F

G

Years

Su
bje

ct

X: Death, 0: Alive PY

Figure 2: Incidence and Prevalence
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Cumulative Incidence Rates and Incidence Rate

1. In computing cumulative incidence rates, we implicitly assume that all

subjects are followed for the same period of time T.

2. This is not always the case.

3. So, the first issue to consider in a cohort study is the appropriate unit

of analysis for each group.

4. If subject is used as the unit of analysis, then the problem is that

different subject contribute different amounts of person-time to the

analysis, and the assumption of a constant probability of an event for

each subject would then be violated.
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5. If a person-year is used as the unit of analysis (i.e., one person

followed for one year), then since each subject can contribute more

than one-person-year to the analysis, the important assumption of

independence for the binomial distribution would be violated.
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Breast Cancer and Oral Contrapcetive Use

1. A hypothesis of much recent interest is the possible association

between the use of oral contraceptives (OC) and the development of

breast cancer. To address this issue, data were collected in the

Nurses’ Healthy Study where disease-free women were classified in

1976 according to OC status (Current user/pat user/never user).

2. A mail questionnaire was sent out every two years in which OC status

was updated and breast cancer status was ascertained over the next

two years.

3. For each woman, an among of time that the woman is a current user

or a never user of OC’s (ignoring past use) can be calculated and this

person-time can be accumulated over the entire cohort of nurses.
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4. Thus, each nurse contributes a different among of person-time to the

analysis.
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Breast Cancer and Oral Contrapcetive Use

5. The data are presented in Table 1 for current and never users of OC’s

between women 40-44 years of age.

6. How should these data be used to assess any differences in the

incidence rate of breast cancer by OC-use group?
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Breast Cancer and Oral Contrapcetive Use

Table 1: Relationship between breast-cancer

incidence and OC use between 40-44 year-old

women in the Nurse’s Health Study

OC-use Number of cases Number of

Group Cases Pearson-years

Current users 13 4,761

Past Users 164 121,091

Never Users 113 98,091
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Person-Time Data: Rare Event Rate

1. What is the distribution of the number of event from time 0 to T
(where T is some long period of time, 1 year or 20 years) ?

2. Three assumption must be made about the incidence. Consider an

general small subinterval of the time period T, denoted by ∆T.
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Person-Time Data: Rare Event Rate Assumptions

1. Rare Event Occurring Probability, Rare Event Rate:

(a) The probability of one event occurring in a very short time period is

very small.

(b) The probability of observation 1 event is directly proportional to the

length of the time interval ∆T.

P(1 event) = λ∆T (4)

for some constant λ.

(c) The probability of observing 0 event over ∆T is approximately

1 − λ∆T.

(d) The probability of observing more than 1 event over this time

interval is essentially 0.
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Person-Time Data: Rare Event Rate Assumptions

2. Stationary:

(a) Assume that the number of events per unit time is the same

throughout the entire time interval T.

(b) Thus, and increase in the incidence of the event as time goes one

within the time period T would violate this assumption.

(c) Note that T should not be overly long, because this assumption is less

likely to hold as T increases.

(d) Independence: In a event occurs within time subinterval, it has no

bearing on the probability of event in the next time subinterval.

(e) This assumption would be violated in some situations, (i.e., an

epidemic situation or number of insurance claims in a period), because
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a new event occurs, then subsequent event are likely to build up over

a short period of time until after the epidemic subsides.

(f) However, in clinical situations, these assumptions are not usually valid
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Person-Time Data: Rare Event Rate

(a) Given the assumptions, the Poisson probability corresponding can be

derived.

(b) The probability of k events occurring in a time period T for a Poisson

random variable with parameter λ is

P(X = k) =
e−µµk

k!
, k = 1, 2, . . . (5)

where µ = λT and e is approximately 2.171828.

(c) In many instances we can not predict whether the assumptions for the

Poisson distribution are satisfied.

(d) Fortunately, the relationship between the expected value and variance

of the Poisson distribution provides an important guideline that helps

identify random variables that follow this distribution.

(e) For a Poisson corresponding with parameter µ, the mean and variance
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are both equal to µ.

(f) This fact is useful, because if we have a data set from a discrete

corresponding where the sample mean and sample variance are about

the same, then we can preliminarily identify it as a Poisson

corresponding and use various tests to confirm this hypothesis.

(g) Note: Calculating Poisson Probabilities can be easily achieved by

current computing environment.
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Point Estimation for the Poisson Distribution

1. Suppose we assume that the number of events X over T person-years

is Poisson distributed with parameter µ = λT.

2. An unbiased estimator of λ is given by λ̂ = X/T, where X is the

observed number of events over T person-years.

3. If λ is the incidence rate per person-year, T is the number of

person-years of follow-up, and we assume Poisson corresponding for

the number of events X over T person-years, then the expected value

of X is given by E(X) = λT.

4. Therefore,

E(λ̂) = E(X)/T = λT/T = λ (6)
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Thus, λ̂ is the unbiased estimator of λ.
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Confidence Interval for the Poisson Distribution

1. Suppose we assume that the number of events X over T person-years

is Poisson distributed with parameter µ = λT.

2. An unbiased estimator of λ is given by λ̂ = X/T, where X is the

observed number of events over T person-years.

3. If λ is the incidence rate per person-year, T is the number of

person-years of follow-up, and we assume Poisson corresponding for

the number of events X over T person-years, then the expected value

of X is given by E(X) = λT.
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Confidence Interval for the Poisson Distribution

4. Therefore,

E(λ̂) = E(X)/T = λT/T = λ (7)

5. Thus, λ̂ is the unbiased estimator of λ.
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Confidence Interval for the Poisson Distribution

6. The question remains as to how to obtain an interval estimate for λ.

7. We use a similar approach as was used to obtain exact confidence

limits for the binomial proportion p.

8. For this purpose, it will be easier to fist obtain a confidence interval

for µ, the expected number of events over time T of the form (µ1, µ2)

and then obtain the corresponding confidence variance for λ form

(µ1/T, µ2/T).
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Confidence Interval for the Poisson Distribution

9. An exact (1 − α) × 100% confidence interval for the Poisson

parameter λ is given (µ1/T, µ2/T), where µ1 and µ2 satisfy the

equations

P(X ≥ x|µ = µ1) =
α

2
=

∞

∑
k=x

e−µ1µk
1

k!
= 1 −

x−1

∑
k=0

e−µ1µk
1

k!
(8)

P(X ≤ x|µ = µ2) =
α

2
=

x
∑
k=0

e−µ1µk
1

k!
(9)

and x is the observed number of events, T is the number of

person-years of follow-up.
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Poisson Approximate to the Binomial Distribution

1. The Poisson distribution appears to fit well in some applications.

2. Another important use for the Poisson distribution is as an

approximation to the binomial distribution. Consider the binomial

distribution for large n and small π.

3. The mean of this distribution is given by nπ and the variance by

nπ(1 − π). note that 1 − π is approximate equal to 1 for small π,

thus, nπ(1 − π) ≈ nπ.

4. Therefore, the mean and variance of the binomial distribution are

almost equal in this case.
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5. So the binomial corresponding with large n and small π can be

accurately approximated by a Poisson distribution with parameter

µ = nπ.
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Poisson Approximate to the Binomial Distribution

6. The rationale for using this approximation is that the Poisson

corresponding is easier to work with than the binomial distribution.

7. The binomial distribution involve expression such as
(n

k
)
, πk and

(1 − π)n−k, which are cumbersome for large n.

8. How large should n be or how small should p be before approximation

is adequate?

9. A conservative rule is to use the approximation with n ≥ 100 and

π ≤ 0.01.
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Inference for One-Sample Poisson Distribution

1. Exact Method

2. Approximate Method
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Inference for One-Sample Poisson Distribution

Exact Method
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Inference for One-Sample Poisson Distribution

Exact Method

1. Let

X = total observed number of events for members of the study popul

pi = probability of event for the ith individual

2. The most common event in medical studies is death for a particular

disease.
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Inference for One-Sample Poisson Distribution

Exact Method

3. Under the null hypothesis that the event rates for the study

population are the same as those for the known population, the

expected number of events µ0 is given by

µ0 =
n
∑
i=1

pi (10)
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Inference for One-Sample Poisson Distribution

Exact Method

4. If the disease under study is rare, then the observed number of events

may be considered approximately Poisson distributed with unknown

expected value µ.

5. Let X be a Poisson random variable with expected value µ.

6. We wish to test the hypothesis

H0 : µ = µ0 versus µ �= µ0 (11)
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Inference for One-Sample Poisson Distribution

Exact Method

7. Using a two-sided test with significance level α, the procedures can be

followed as:

(a) We first compute

X = observed number of events in the study population (12)

(b) Under H0, the random variable X will follow a Poisson corresponding

with parameter µ0.

(c) Obtain the two-sided (1 − α) × 100% confidence interval for µ based

the observed x of X.
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Inference for One-Sample Poisson Distribution

Exact Method

(d) Denote this confidence interval (µ1, µ2), we

reject H0, if µ0 < µ1 or µ0 > µ2; (1

accept H0, if µ2 ≤ µ0 ≤ µ2. (1
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Inference for One-Sample Poisson Distribution

Exact Method

(e) Thus, the exact two-sided p-value is given by

min
[

2 ×
x
∑
k=0

e−µ0µk
0

k!
, 1

]
, if x ≤ µ0 (1

min
[

2 ×
(

1 −
x−1

∑
k=0

e−µ0µk
0

k!

)
, 1

]
, if x ≤ µ0. (1

where x is the observed event for a particular data.

c©Jeff Lin, MD., PhD. Person-Time Data, 42

Approximate Method

1. If the expected number of events is large, then the following

approximate method can be used.

2. Let µ be expected value of a Poisson random variable.

3. To test the hypothesis

H0 : µ = µ0 versus µ �= µ0, (17)
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Approximate Method

1. We compute

X = observed number of deaths in the study population (18)

2. Compute the test statistic

X2 =
(X − µ0)2

µ0
∼ χχχ2

1, under H0 (19)
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Approximate Method

3. For a two-sided test at level α, we

reject H0, if X2 > χχχ2
1,1−α; (20)

accept H0, if X2 ≤ χχχ2
1,1−α. (21)

4. The approximate p-value is given by P(χχχ2
1 > X2) .

5. This test should only be used if µ0 ≥ 10.
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Person-Time Data
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Cumulative Incidence Rates and Incidence Rate

(Density)

1. For the purpose of allowing for varying follow-up time for each

individual, we define the concept of incidence density (ID = λ) that

a group is defined by the number of events in that group divided by

the total person-year accumulated during the study group.

2. The denominator used in computing incidence density is the

person-year.

3. Suppose that X events are observed over T person-years of follow-up,

the incidence rate is

ÎD = λ̂ =
Y
T

. (22)
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Cumulative Incidence Rates and Incidence Rate

(Density)

4. Unlike cumulative incidence, incidence density may range from 0 to

infinity (∞). In following a subject, the incidence density may remain

the same or may vary over time (i.e., as a subject’s ages over time,

the incidence density generally in creases).

5. How can we relate cumulative incidence over time T to incidence

density?

6. Suppose for simplicity that incidence density remains the same over

some time period T.

7. If CI(T) is the cumulative incidence over time T and λ is the
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incidence density, then it can be shown using calculus methods that

CI(T) = 1 − eλT (23)
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Cumulative Incidence Rates and Incidence Rate

(Density)

8. If the cumulative incidence is lower (less than 0.1), then we can

approximate e−λT by 1 − λT and CI(T) by

CI(T) = 1 − eλT ≈ 1 − (1 − λT) = λT (24)
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Cumulative Incidence Rates and Incidence Rate

(Density)

9. Note: Incidence density has a more commonly used term incidence

rate (λ) and distinguished it from the cumulative incidence (CI) over

some time period T.

10. The former can range from 0 to infinity, while the latter is a

proportion and must vary between 0 and 1.

11. As was the case in obtaining exact confidence limits for the binomial

parameter p, it is difficult to compute µ1, µ2 exactly.
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Cumulative Incidence Rates and Incidence Rate

(Density)

12. In some instances, a random variable representing a rare event over

time is assumed to follow a Poisson distribution corresponding but

the actual amount of person-time is either unknown or is not reported

in an article from the literature.

13. In this instance, it is still possible to obtain a confidence interval for

µ, although it is impossible to obtain a confidence variance of λ.
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One-Sample Inference for Incidence-Rate Data

1. Exact Method

2. Approximate Method
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One-Sample Inference for Incidence-Rate Data

Approximated Method

1. Suppose that X events are observed over T person-years of follow-up

and that ID is the unknown underlying incidence (rate) and is be

estimated from the data.

2. We wish to test the hypothesis

H0 : ID = ID0 versusHA : ID �= ID0 (25)

where ID is the unknown incidence density (rate) in the sample. and

ID0 is the known incidence density (rate) in the specific population.
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One-Sample Inference for Incidence-Rate Data

Approximated Method

3. We will base out test on the observed number of which we denote Y
events. we will assume that X approximately follow Poisson

distribution

4. Under H0, X has mean as µ = T(ID0) and variance as µ0 = T(ID0),

where T is the total number of person-years.
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One-Sample Inference for Incidence-Rate Data

Approximated Method

5. If we assume that the normal approximation to the Poisson

distribution is valid, then this suggests:

(a) Compute the test statistic

X2 =
(X − µ0)2

µ0
∼ χχχ2

1, under H0 (26)

where

µ0 = T(ID) (27)
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One-Sample Inference for Incidence-Rate Data

Approximated Method

(b) For two-sided test at level α, we

reject H0, if X2 > χχχ2
1,1−α ; (2

accept H0, if X2 ≤ χχχ2
1,1−α . (2

(c) The exact p-value is P(χχχ2
1 > X2).

(d) This test should only be used if µ0 = T(ID0) ≥ 10.
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One-Sample Inference for Incidence-Rate Data

Exact Method

1. Suppose that X events are observed over T person-years of follow-up.

2. Suppose that the number of events is too small to apply the

large-sample test.

3. In this case, an exact test based on the Poisson distribution must be

used.

4. If µ = T(ID), the we can restate the hypothesis in the form

H0 : µ = µ0 versusHA : µ �= µ0 (30)

and apply the one-sample Poisson test.
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One-Sample Inference for Incidence-Rate Data

Exact Method

5. Under H0, the observed number of events (Y) will follow Poisson

distribution with parameter µ0 = T(ID0).

6. Thus, the exact two-sided p-value is given by

min
[

2 ×
Y
∑
k=0

e−µ0µk
0

k!
, 1

]
, if Y < µ0; (31)

min
[

2×
(

1 −
Y−1

∑
k=0

e−µ0µk
0

k!

)
, 1

]
, if Y > µ0 (32)
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Confidence Limits for Incidence Rates

1. Suppose that X events are observed over T person-years of follow-up.

2. To obtain confidence limits for ID, we obtain confidence limits for the

expected number of events (µ) based on the Poisson distribution and

then divide each confidence limit by T, the number of person-years of

follow-up.
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Confidence Limits for Incidence Rates

3. Specifically, we have µ̂ = X, V̂ar(µ̂) = X.

4. Thus, if the normal approximation to the Poisson distribution holds

(i.e., X ≥ 10), then a approximate (1 − α) × 100% confidence interval

for µ is given by X ± Z1−α/2
√

X.

5. The corresponding approximate (1 − α) × 100% confidence interval

for ID is given by (X ± Z1−α/2
√

X)/T.

6. Otherwise, if X < 10, we obtained exact confidence limits for µ c1, c2)

and divide each confidence limit by T to obtain the corresponding

confidence interval for ID.
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Confidence Limits for Incidence Rates

(a) A point estimate of the incidence density rate is

ÎD = λ̂ = X/T. (33)

(b) To obtain a two-side (1 − α) × 100% confidence interval for µ,

i. if X ≥ 10, then compute X ± Z1−α/2
√

X = (c1, c2),

ii. if X < 10, the obtained (c1, c2) exact confidence interval for X.

(c) The corresponding two-sided (1 − α) × 100% confidence interval for

ID is given by (c1/T, c2/T).
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Two-Sample Inference for Incidence-Rate Data

1. Exact Method

2. Approximate Method
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Two-Sample Inference for Incidence-Rate Data

1. How can we compare the underlying incidence rates between two

different groups ?

2. One approach is to use a conditional test.

3. Specifically, suppose we consider he case of two groups and have the

general table in Table 2
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Two-Sample Inference for Incidence-Rate Data

Table 2: Two-Sample Inference for

Incidence-Rate Data

Number of

Group Events Person-Time

Exposed A YA TA

Unexposed B YA TB

Total YA + YA TA + TB
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Two-Sample Inference for Incidence-Rate Data:

Approximate Method

4. We wish to test the hypothesis

H0 : IDA = IDB versus IDA �= IDB (34)

where IDA and IDB are the incidence densities (rates) for group A
and B respectively.

5. Under the null hypothesis, the fraction TA/(TA + TA) of the total of

events (YA + YB) would be expected to occur in group A, and the

fraction TB/(TA + TB) of the total number of events (YA + YB)

would be expected to occur in group B.
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Two-Sample Inference for Incidence-Rate Data:

Approximate Method

6. Furthermore, under H0 conditional on the observed total number

events (YA + YB), the expected number of events in each group is

given by

Expected number of events in group A = EA = (YA + YB)TA/(TA +

Expected number of events in group B = EB = (YA + YB)TB/(TA +
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Two-Sample Inference for Incidence-Rate Data:

Approximate Method

7. To assess statistical significance, the number of events in group A
under H0 is treated as a binomial random variable with parameters

n = (YA + YB) and p0 = TA/(TA + TB).

8. Under this assumption, the hypotheses can be stated as

H0 : p = p0 versus HA : p �= p0, (35)

where p is the true proportion of events that are expected to occur in

group A.

9. We will also assume that the normal approximation to the binomial
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distribution is valid.
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Two-Sample Inference for Incidence-Rate Data:

Approximate Method

10. Using the normal approximation to he binomial distribution, the

observed number of events in group A is YA is normally distributed

with mean np0 = (YA + YB)TA/(TA + TB) = EA, and variance is

np0q0 = (YA + YB)TATB/(TA + TB)2 = VA.

11. H0 will be rejected if YA is much smaller or larger than EA.

12. This is an application of the large-sample one-sample binomial test.
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Two-Sample Inference for Incidence-Rate Data:

Approximate Method

13. So, to test the hypothesis

H0 : IDA = IDB versus IDA �= IDB. (36)

14. We use the following procedures:
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Two-Sample Inference for Incidence-Rate Data:

Approximate Method

(a) Compute the test statistic

z =

⎧⎪⎨⎪⎩
YA−EA−0.5√

VA
, if YA > EA;

YA−EA+0.5√
VA

, if YA ≤ EA
(37)

where

EA = (YA + YB)TA/(TA + TB) (38)

VA = (YA + YB)TATB/(TA + TB)2 (39)

(b) For a two-sided test with level α

reject H0, if z > Zα/2 or z < Zα/2; (40)

accept H0, if Zα/2 ≤ z ≤< Z1−α/2. (41)

(42)
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Two-Sample Inference for Incidence-Rate Data:

Approximate Method

(c) The p-value for this test is given by

2 × [1 − Φ(z)], if z ≥ 0; (4

2 × Φ(z), if z ≤ 0; (4

or 2 × [1 − Φ(|z|)]. (4

(d) Use this test only if VA ≥ 5.
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Two-Sample Inference for Incidence-Rate Data:

Exact Method

1. Suppose that the number of events is too small to apply th

normal-theory test (i.e. VA < 5). In this case, an exact test based on

the binomial distribution must be used.

2. Under H0, the number of events in group A (YA) will follow a

binomial distribution with parameters n = (YA + YB) and

p = p0 = TA/(TA + TB), q0 = 1 − p0.
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Two-Sample Inference for Incidence-Rate Data:

Exact Method

3. We wish to test the hypothesis

H0 : IDA = IDB versus IDA �= IDB (46)

or equivalently, to test

H0 : p = p0 versus HA : p �= p0, (47)

where p is the underlying proportion of events that occur in group A,

and p0 = TA/(TA + TB).
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Two-Sample Inference for Incidence-Rate Data:

Exact Method

4. This is an application to the exact one-sample binomial test. H0 will

be reject if the observed number of events YA is much smaller or

much larger than the expected number of events EA = np0.
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Two-Sample Inference for Incidence-Rate Data:

Exact Method

(a) If YA < (YA + YB)p0, then

p-value = 2 ×
YA

∑
k=0

(
YA + YB

k

)
pk

0qYA+YB−k
0 (48)

(b) if YA > (YA + YB)p0, then

p-value = 2 ×
YA+YB

∑
k=YA

(
YA + YB

k

)
pk

0qYA+YB−k
0 (49)

(c) This test is valid in general for comparing two incidence densities but

is particularly useful when VA < 5, in which case the normal-theory

estimation should not be used.
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Incidence Rate Ratio (Risk Ratio)

1. Risk ratio (RR) is a measure of effect for the comparison of two

proportions.

2. We applied this measure to compare cumulative incidences between

two exposure groups in a prospective study, where the person was the

unit of analysis.

3. A similar concept can be employed to compare two incidence rates

based on the person-year data.
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Incidence Rate Ratio (Risk Ratio)

4. Let λA, λB be incidence rates for an exposed and unexposed group,

respectively.

5. The rate ratio is defined as λA/λB.

6. What is the relationship between the rate ratio based on the incidence

rates and the risk ratio based on cumulative incidence ?
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Incidence Rate Ratio (Risk Ratio)

7. Suppose each person in a cohort is followed for T years, with incidence

rate λA in the exposed group A and λB in the unexposed group B.

8. If the cumulative incidence is low, then the cumulative incidence will

be approximately λAT and in the exposed group A, and λBT in the

unexposed group B.

9. Thus, the risk ratio will be approximately (λAT)/(λBT) = λA/λB,

ratio.
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Incidence Rate Ratio (Risk Ratio)

10. How can we estimate the rate ratio from observed data ?

11. Suppose we have the number of events in the exposed group A, and

person-years shown in Table 2.

12. The estimated incidence rate in the exposed group A as YA/TA and

in the unexposed group B as YB/TB.

13. A point estimate of the rate ratio is given by

RR =
YA/TA
YB/TB

. (50)
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Incidence Rate Ratio (Risk Ratio)

14. To obtain an interval estimate, we assume approximate normality of

log(ÔR).

15. The variance of log(ÔR) is approximated

Var(log(ÔR)] ≈ 1
YA

+
1

YB
. (51)

16. Therefore, a two-sided (1 − α) × 100% C.I. for log(ÔR) is given by

(c1, c2) = log(ÔR) ± Z1−α/2

√
1

YA
+

1
YB

. (52)
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Incidence Rate Ratio (Risk Ratio)

17. If we take the anti-log of c2, c2, we obtain a two-sided (1 − α) × 100%

as

(r1, r2) = (ec1, ec2). (53)

18. This interval should only be used if

VA = [(YA + YB)TATB]/[(TA + TB)2] ≥ 5.
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Inference for Stratified Person-Time Data
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Inference for Stratified Person-Time Data

1. It is very common in the analysis of person-time data to control for

confounding variables before assessing the relationship between the

main exposure of interest and disease.

2. Confounding variables may include age and sex as well as other

covariates that are related to exposure, disease, or both.

3. We can use methods similar to the Mantel-Haenszel test used for

cumulative incidence data (or generally for count data).

4. Suppose we have k strata, where the number of events and the

amount of person-time in the ith stratum are as shown in Table 3
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Table 3: Stratified Two-Sample Inference for Incidence-Rate Data

Number of

Group events Person-Time

Exposed A YiA TiA
Unexposed B YiA TiB
Total YiA + YiA TiA + TiB

5. Let us denote the incidence rate of disease among the exposed by piA
and among the unexposed be piB.

6. Therefore, the expected number of events among the exposed is

piATiA and among the unexposed is piBTiB.

c©Jeff Lin, MD., PhD. Person-Time Data, 86

7. Let pi be the expected proportion of the total number of events over

both groups that are among the exposed for stratum i.

8. We can relate pi to piA and piB by

pi =
piATiA

piATiA + piBTiB
(54)

9. We assume that the rate ratio relating disease to expose is the

same for each stratum and denote it by RR.

10. Therefore, RR = piA/piB and RR is the same for each i = 1, . . . , k.

11. If we divide numerator and denominator by piB, and substitute RR for
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piA/piB, we obtain

pi =
(piA/piB)TiA

(piA/piB)TiA + TiB
=

RRTiA
RRTiA + TiB

(55)

which denote by pi(1).

12. If RR = 0 then

pi =
RRTiA

RRTiA + TiB
=

TiA
TiA + TiB

= pi0, (under RR = 1 assumption.)

(56)

13. We wish to test the hypothesis

H0 : RR = 1 versus RR �= 1 (57)

c©Jeff Lin, MD., PhD. Person-Time Data, 88

or equivalently,

H0 : pi = pi0 versus pi = pi(1), i = 1, 2, . . . k. (58)

14. We will base our test on S = ∑k
i=1 Yi1, the total observed number of

events for the exposed.

15. Under H0, we will assume that the total observed number of events

for the ith stratum (YiA + YiB) is fixed.

16. Therefore, under H0:

E(YiA) = (YiA + YiB)pi0 = (YiA + YiB)TiA/(TiA + TiB) (

Var(YiA) = (YiA + YiB)pi0(1 − pi0) = (YiA + YiB)TiATiB/(TiA + Ti

(

c©Jeff Lin, MD., PhD. Person-Time Data, 89



and

E(S) =
k
∑
i=1

E(YiA) (61)

Var(S) =
k
∑
i=1

Var(YiA) (62)

17. Under HA, S will be larger than E(S) if RR > 1 and will be smaller

than E(S) if RR < 1.

(a) We compute the test statistic

X2 =

(|S − E(S)| − 0.5
)2

Var(S)
(63)

(b) which follow a chi-squared distribution with 1 df under H0.
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(c) We

reject H0, if X2 > χχχ2
1,1−α; (64)

accept H0, if X2 ≤ χχχ2
1,1−α. (65)

(d) The p-value is P(χχχ2
1 > X2).

(e) The test should only be used if Var(S) ≥ 5.
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Estimation of the Rate Ratio
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Estimation of the Rate Ratio

1. We obtain estimates of the log(RRi) in each stratum i and then

compute a weighted average of the stratum-specific estimates to

obtain an overall of the ln(RR).

2. Specifically, let

ÔRi = (YiA/TiA)/(YiB/TiB) (66)

be the estimate of the rate ratio in the ith stratum.

3. We have

Var[log(ÔRi)] ≈
1

YiA
+

1
YiB

(67)
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Estimation of the Rate Ratio

4. To obtained an overall estimate of log(ÔR) we now compute a

weighted average of ln(ÔRi) and then take anti-log of the weighted

average

log[ÔR] =
∑k

i=1 wi log(ÔRi)

∑k
i=1 wi

(68)

where wi = 1/Var[log(ÔRi)].

c©Jeff Lin, MD., PhD. Person-Time Data, 94

Estimation of the Rate Ratio
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5. We then obtain the variance of log(ÔR) as

Var[log(ÔR)] =
1

(∑k
i=1 wi)2

Var
[ k
∑
i=1

wi log(ÔRi)
]

(69)

=
[
(

k
∑
i=1

wi)
2
]−1 k

∑
i=1

w2
i Var[log(ÔRi)] (70)

=
[
(

k
∑
i=1

wi)
2
]−1 k

∑
i=1

w2
i (1/wi) (71)

=
[
(

k
∑
i=1

wi)
2
]−1 k

∑
i=1

wi (72)

=
( k

∑
i=1

wi

)−1
(73)
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Estimation of the Rate Ratio

6. Thus, a two-sided (1 − α) × 100% C.I. for log(RR), (c1, c2) is given

by log(ÔR) ± Z1−α/2 × (∑k
i=1 wi)

−1/2.

7. We then take the anti-log of each of the confidence limits for log(RR)

to obtain confidence interval (ec1, ec2).
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Testing the Assumption of Homogeneity of the Rate

Ratio Across Strata

1. An important assumption made in the estimation methods is

that the underlying rate ratio is the same in all strata.

2. If the rate ratios in different strata are all in the same direction

relative to the null hypothesis (i.e., all rate ratio > 1 or all rate ratio

< 1). the hypothesis-testing procedures will still be valid with only a

slightly loss of power.

3. However, if the rate ratio are in different directions in different strata,

or are null in some strata, then the power of the hypothesis-testing

procedures will be greatly diminished.
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Testing the Assumption of Homogeneity of the Rate

Ratio Across Strata

4. To test this assumption, we use similar methods to those for testing

the assumption of homogeneity of the odds ratio in different strata for

count data.

5. Specifically, we wish to test the hypothesis

H0 : RR1 = RR2 = · · · = RRk

versus HA : at least two of the RRi are different (74)

with significance level α.
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Testing the Assumption of Homogeneity of the Rate

Ratio Across Strata

We use the following procedures:

(a) We compute the test statistic

X2
HOM =

k
∑
i=1

wi[log(ÔRi) − log(ÔR)]2 ∼ χχχ2
k−1 under H0. (75)
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Testing the Assumption of Homogeneity of the Rate

Ratio Across Strata

(b) We

reject H0, if xxHOM > χχχ2
k−1,1−α; (7

accept H0, if xxHOM ≤ χχχ2
k−1,1−α. (7

(c) The p-value is given by P(χχχ2
k−1 > X2

HOM).
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