Person-Time Data CF Jeff Lin, MD., PhD. December 14, 2005	Incidence 1. Cumulative incidence (incidence proportion) 2. Incidence density (incidence rate)
©Jeff Lin, MD., PhD.	© Jeff Lin, MD., PhD. Person-Time Data, 1
Cumulative Incidence Cumulative Incidence is the proportion of the population will develop illness during the specified time period. Cumulative Incidence (C.I.) = number of NEW cases of disease during a period population exposed during this period (1)	Cumulative Incidence: ExampleLung cancer in a community, Jan 1 – Dec 31, 1980:Population3,500,000Cases96,250(1250 new cases)Cumulative incidence0.36/1000per yearPrevalence2.71%
©Jeff Lin, MD., PhD. Person-Time Data, 2	©Jeff Lin, MD., PhD. Person-Time Data, 3
 Person-Time Data In a cohort study, we identify groups of exposed and unexposed individuals at baseline, and compared the proportion of subjects who developed disease over time between two groups. We referred to these proportions as cumulative incidence (C1) rates (i.e., the probability that a person no prior disease will develop a new case of the disease over some pre-specified time period). 	 Cumulative incidence (<i>CI</i>) rates are proportions where the person is the unit of analysis and must range between 0 and 1. When we discuss the analysis of categorical data, where the person was the unit of analysis. In an actual prospective study design, each subject contributes the study with different follow-up time (i.e., person-time).
©Jeff Lin, MD., PhD. Person-Time Data, 4	©Jeff Lin, MD., PhD. Person-Time Data, 5

Incidence Rate	Example: Prevalence and Incidence Rate
©Jeff Lin, MD., PhD. Person-Time Data, 6	Figure 1: Incidence Rate and Follow-Up with Pearson-Time @Jeff Lin, MD., PhD. @Jeff Lin, MD., PhD. Person-Time Data, 7
 Incidence Rate: Pearson-Time Pearson-Years Person-time is the sum of the amount of time each individual is observed while free of disease. pearson-years is the sum of the amount of years each individual is observed while free of disease. Each subject may contribute a different amount of person-years. 	Incidence Rate: Pearson-Years Person-time at risk is the denominator for incidence rates of disease 1000 person-years at risk = 100,000 people for 1/100 years (2) = 10,000 people for 1/10 years = 1000 people for 1 years = 100 people for 10 years = 20 people for 50 years
 @Jeff Lin, MD, PhD. Penormal State S	(3) (BIFLIN, MD., PhD. Pesor-Time Of observation) (BIFLIN, MD., PhD. Pesor-Time Data, 9) Incidence Rate (incidence density) is defined as the number of new cases of disease during a defined period of time, divided by the total person-time of observation. Incidence Rate (I.R.) $= \frac{number of NEW cases of disease during a period}{total person-time of observation} $ (3)
©Jeff Lin, MD., PhD. Person-Time Data, 10	©Jeff Lin, MD., PhD. Person-Time Data, 11

Breast Cancer and Oral Contrapcetive Use	Breast Cancer and Oral Contrapcetive Use
5. The data are presented in Table 1 for current and never users of OC's between women 40-44 years of age.6. How should these data be used to assess any differences in the	Table 1: Relationship between breast-cancer incidence and OC use between 40-44 year-old women in the Nurse's Health Study
incidence rate of breast cancer by OC-use group?	OC-useNumber of casesNumber ofGroupCasesPearson-yearsCurrent users134,761Past Users164121,091Never Users11398,091
©Jeff Lin, MD., PhD. Person-Time Data, 18	©Jeff Lin, MD., PhD. Person-Time Data, 19
Person-Time Data: Rare Event Rate	Person-Time Data: Rare Event Rate Assumptions
 What is the distribution of the number of event from time 0 to T (where T is some long period of time, 1 year or 20 years) ? Three assumption must be made about the incidence. Consider an general small subinterval of the time period T, denoted by ΔT. 	 Rare Event Occurring Probability, Rare Event Rate: (a) The probability of one event occurring in a very short time period is very small. (b) The probability of observation 1 event is directly proportional to the length of the time interval ΔT.
© Jeff Lin, MD., PhD. Person-Time Data, 20	©Jeff Lin, MD., PhD. Person-Time Data, 21
Person-Time Data: Rare Event Rate Assumptions 2. Stationary:	a new event occurs, then subsequent event are likely to build up over a short period of time until after the epidemic subsides. (f) However, in clinical situations, these assumptions are not usually valid
 (a) Assume that the number of events per unit time is the same throughout the entire time interval <i>T</i>. (b) Thus, and increase in the incidence of the event as time goes one within the time period <i>T</i> would violate this assumption. (c) Note that <i>T</i> should not be overly long, because this assumption is less likely to hold as <i>T</i> increases. (d) Independence: In a event occurs within time subinterval, it has no bearing on the probability of event in the next time subinterval. (e) This assumption would be violated in some situations, (i.e., an epidemic situation or number of insurance claims in a period), because 	
© Jeff Lin, MD., PhD. Person-Time Data, 22	©Jeff Lin, MD., PhD. Person-Time Data, 23

 Person-Time Data: Rare Event Rate (a) Given the assumptions, the Poisson probability corresponding can be derived. (b) The probability of k events occurring in a time period T for a Poisson random variable with parameter λ is P(X = k) = e^{-μμk}/k!, k = 1, 2, (5) where μ = λT and e is approximately 2.171828. (c) In many instances we can not predict whether the assumptions for the Poisson distribution are satisfied. (d) Fortunately, the relationship between the expected value and variance of the Poisson distribution provides an important guideline that helps identify random variables that follow this distribution. (e) For a Poisson corresponding with parameter μ, the mean and variance 	 are both equal to µ. (f) This fact is useful, because if we have a data set from a discrete corresponding where the sample mean and sample variance are about the same, then we can preliminarily identify it as a Poisson corresponding and use various tests to confirm this hypothesis. (g) Note: Calculating Poisson Probabilities can be easily achieved by current computing environment. 	
© Jeff Lin, MD., PhD. Person-Time Data, 24	© Jeff Lin, MD., PhD. Person-Time Data, 25	
 Point Estimation for the Poisson Distribution 1. Suppose we assume that the number of events X over T person-years is Poisson distributed with parameter μ = λT. 2. An unbiased estimator of λ is given by λ̂ = X/T, where X is the observed number of events over T person-years. 3. If λ is the incidence rate per person-year, T is the number of person-years of follow-up, and we assume Poisson corresponding for the number of events X over T person-years, then the expected value of X is given by E(X) = λT. 4. Therefore, 	Thus, $\hat{\lambda}$ is the unbiased estimator of λ .	
$\mathcal{E}(\hat{\lambda}) = \mathcal{E}(X)/T = \lambda T/T = \lambda $ (6)		
©Jeff Lin, MD., PhD. Person-Time Data, 26	(5) Jeff Lin, MD., PhD. Person-Time Data, 27	
 Confidence Interval for the Poisson Distribution Suppose we assume that the number of events X over T person-years is Poisson distributed with parameter μ = λT. An unbiased estimator of λ is given by λ̂ = X/T, where X is the observed number of events over T person-years. If λ is the incidence rate per person-year, T is the number of person-years of follow-up, and we assume Poisson corresponding for the number of events X over T person-years, then the expected value of X is given by E(X) = λT. 	Confidence Interval for the Poisson Distribution 4. Therefore, $\mathcal{E}(\hat{\lambda}) = \mathcal{E}(X)/T = \lambda T/T = \lambda$ (7) 5. Thus, $\hat{\lambda}$ is the unbiased estimator of λ .	
© Jeff Lin, MD., PhD. Person-Time Data, 28	© Jeff Lin, MD., PhD. Person-Time Data, 29	

9. An exact $(1 - \alpha) \times 100\%$ confidence interval for the Poisson 6. The question remains as to how to obtain an interval estimate for λ . parameter λ is given $(\mu_1/T, \mu_2/T)$, where μ_1 and μ_2 satisfy the 7. We use a similar approach as was used to obtain exact confidence equations limits for the binomial proportion p. $P(X \ge x | \mu = \mu_1) = \frac{\alpha}{2} = \sum_{k=x}^{\infty} \frac{e^{-\mu_1} \mu_1^k}{k!} = 1 - \sum_{k=0}^{x-1} \frac{e^{-\mu_1} \mu_1^k}{k!}$ (8) 8. For this purpose, it will be easier to fist obtain a confidence interval for μ , the expected number of events over time T of the form (μ_1,μ_2) $P(X \le x | \mu = \mu_2) = \frac{\alpha}{2} = \sum_{k=0}^{x} \frac{e^{-\mu_1} \mu_1^k}{k!}$ (9)and then obtain the corresponding confidence variance for λ form $(\mu_1/T, \mu_2/T).$ and x is the observed number of events, T is the number of person-years of follow-up. © Jeff Lin, MD., PhD Person-Time Data, 30 © Jeff Lin, MD., PhD. Person-Time Data, 31 5. So the binomial corresponding with large n and small π can be Poisson Approximate to the Binomial Distribution accurately approximated by a Poisson distribution with parameter 1. The Poisson distribution appears to fit well in some applications. $\mu = n\pi$. 2. Another important use for the Poisson distribution is as an approximation to the binomial distribution. Consider the binomial distribution for large n and small π . 3. The mean of this distribution is given by $n\pi$ and the variance by $n\pi(1-\pi)$. note that $1-\pi$ is approximate equal to 1 for small π , thus, $n\pi(1-\pi) \approx n\pi$. 4. Therefore, the mean and variance of the binomial distribution are almost equal in this case. Cleff Lin MD PhD son-Time Data, 32 C Jeff Lin, MD., PhD. Person-Time Data, 33 Poisson Approximate to the Binomial Distribution Inference for One-Sample Poisson Distribution 6. The rationale for using this approximation is that the Poisson 1. Exact Method corresponding is easier to work with than the binomial distribution. 2. Approximate Method 7. The binomial distribution involve expression such as $\binom{n}{k}$, π^k and $(1-\pi)^{n-k}$, which are cumbersome for large n. 8. How large should n be or how small should p be before approximation is adequate? 9. A conservative rule is to use the approximation with $n \ge 100$ and $\pi \leq 0.01.$ © Jeff Lin, MD., PhD Person-Time Data, 34 © Jeff Lin, MD., PhD. Person-Time Data, 35

Confidence Interval for the Poisson Distribution

Confidence Interval for the Poisson Distribution

Inference for One-Sample Poisson Distribution Exact Method I. Let	popul	
p_i = probability of event for the <i>i</i> th individual	Exact Method 1. Let X = total observed number of events for members of the study popul p_i = probability of event for the <i>i</i> th individual 2. The most common event in medical studies is death for a particular	
© Jeff Lin, MD., PhD. Person-Time Data, 36 © Jeff Lin, MD., PhD. Person-Time Data, 36	lata, 37	
Inference for One-Sample Poisson Distribution Exact Method Exact Method Exact Method		
3. Under the null hypothesis that the event rates for the study population are the same as those for the known population, the expected number of events μ_0 is given by4. If the disease under study is rare, then the observed number of event may be considered approximately Poisson distributed with unknow expected value μ .		
$\mu_0 = \sum_{i=1}^n p_i$ (10) 5. Let X be a Poisson random variable with expected value μ .		
i=1 6. We wish to test the hypothesis		
$H_0: \mu=\mu_0 { m versus} \mu eq \mu_0$	(11)	
© Jeff Lin, MD., PhD. Person-Time Data, 38 © Jeff Lin, MD., PhD. Person-Time D	lata, 39	
Inference for One-Sample Poisson Distribution Inference for One-Sample Poisson Distribution Exact Method Exact Method	n	
 7. Using a two-sided test with significance level α, the procedures can be followed as: (a) We first compute X = observed number of events in the study population (b) Under H₀, the random variable X will follow a Poisson corresponding with parameter μ₀. (c) Obtain the two-sided (1 - α) × 100% confidence interval for μ based the observed x of X. 	(1 (1	
© Jeff Lin, MD., PhD. Person-Time Data, 40 © Jeff Lin, MD., PhD. Person-Time D	ata, 41	

Inference for One-Sample Poisson Distribution Exact Method (e) Thus, the exact two-sided <i>p</i> -value is given by $\min \left[2 \times \sum_{k=0}^{x} \frac{e^{-\mu_0} \mu_0^k}{k!}, 1 \right], \text{if } x \le \mu_0 \qquad (1)$ $\min \left[2 \times \left(1 - \sum_{k=0}^{x-1} \frac{e^{-\mu_0} \mu_0^k}{k!} \right), 1 \right], \text{if } x \le \mu_0.$ (1) where <i>x</i> is the observed event for a particular data.	 Approximate Method 1. If the expected number of events is large, then the follow approximate method can be used. 2. Let μ be expected value of a Poisson random variable. 3. To test the hypothesis H₀: μ = μ₀ versus μ ≠ μ₀, 	ring (17)
©.Jeff Lin, MD., PhD. Person-Time Data, 42	©Jeff Lin, MD., PhD.	Person-Time Data, 43
Approximate Method	Approximate Method	
1. We compute X = observed number of deaths in the study population (18) 2. Compute the test statistic $X^2 = \frac{(X - \mu_0)^2}{\mu_0} \sim \chi_1^2, \text{under } H_0 $ (19)	3. For a two-sided test at level α , we reject H_0 , if $X^2 > \chi^2_{1,1-\alpha}$; accept H_0 , if $X^2 \le \chi^2_{1,1-\alpha}$. 4. The approximate <i>p</i> -value is given by $P(\chi^2_1 > X^2)$. 5. This test should only be used if $\mu_0 \ge 10$.	(20) (21)
©Jeff Lin, MD., PhD. Person-Time Data, 44	©Jeff Lin, MD., PhD.	Person-Time Data, 45
<section-header>Outune Data</section-header>	 Cumulative Incidence Rates and Incidence (Density) 1. For the purpose of allowing for varying follow-up time for individual, we define the concept of incidence density (<i>i</i> a group is defined by the number of events in that group the total person-year accumulated during the study group 2. The denominator used in computing incidence density is person-year. 3. Suppose that X events are observed over T person-years the incidence rate is <i>îD</i> = <i>î</i> = <i>Y</i>/<i>T</i>. 	T each $ID=\lambda$) that divided by p. the
	1	

Cumulative Incidence Rates and Incidence Rate (Density)	incidence density, then it can be shown using calculus methods that $CI(T) = 1 - e^{\lambda T} \tag{23}$
 Unlike cumulative incidence, incidence density may range from 0 to infinity (∞). In following a subject, the incidence density may remain the same or may vary over time (i.e., as a subject's ages over time, the incidence density generally in creases). 	CI(I) = I - t (23)
5. How can we relate cumulative incidence over time T to incidence density?	
6. Suppose for simplicity that incidence density remains the same over some time period T .	
7. If $CI(T)$ is the cumulative incidence over time T and λ is the	
©Jeff Lin, MD., PhD. Person-Time Data, 48	© Jeff Lin, MD., PhD. Person-Time Data, 49
Cumulative Incidence Rates and Incidence Rate (Density)	Cumulative Incidence Rates and Incidence Rate (Density)
8. If the cumulative incidence is lower (less than 0.1), then we can approximate $e^{-\lambda T}$ by $1 - \lambda T$ and $CI(T)$ by $CI(T) = 1 - e^{\lambda T} \approx 1 - (1 - \lambda T) = \lambda T$ (24)	 9. Note: Incidence density has a more commonly used term incidence rate (λ) and distinguished it from the cumulative incidence (CI) over some time period T. 10. The former can range from 0 to infinity, while the latter is a proportion and must vary between 0 and 1. 11. As was the case in obtaining exact confidence limits for the binomial parameter p, it is difficult to compute μ₁, μ₂ exactly.
©Jeff Lin, MD., PhD. Person-Time Data, 50	© Jeff Lin, MD., PhD. Person-Time Data, 51
Cumulative Incidence Rates and Incidence Rate (Density)	One-Sample Inference for Incidence-Rate Data
12. In some instances, a random variable representing a rare event over time is assumed to follow a Poisson distribution corresponding but the actual amount of person-time is either unknown or is not reported in an article from the literature.	2. Approximate Method
13. In this instance, it is still possible to obtain a confidence interval for μ , although it is impossible to obtain a confidence variance of λ .	
©Jeff Lin, MD., PhD. Person-Time Data, 52	© Jeff Lin, MD., PhD. Person-Time Data, 53

One-Sample Inference for Incidence-R Approximated Method	ate Data	One-Sample Inference for Incidence Approximated Method	-Rate Data
1. Suppose that X events are observed over T person-years of follow-up and that ID is the unknown underlying incidence (rate) and is be estimated from the data.		 We will base out test on the observed number of which we denote Y events. we will assume that X approximately follow Poisson distribution 	
2. We wish to test the hypothesis		4. Under H_0 , X has mean as $\mu = T(ID_0)$ and variance	e as $\mu_0=T(ID_0)$,
$H_0: ID = ID_0 \text{versus} H_A: ID \neq ID_0$	(25)	where T is the total number of person-years.	
where ID is the unknown incidence density (rate) in ID_0 is the known incidence density (rate) in the spec			
©Jeff Lin, MD., PhD.	Person-Time Data, 54	©Jeff Lin, MD., PhD.	Person-Time Data, 55
One-Sample Inference for Incidence-	Rate Data	One-Sample Inference for Incidence	
Approximated Method		Approximated Method	i
		(b) For two-sided test at level α , we	
 If we assume that the normal approximation to the F distribution is valid, then this suggests: 	Poisson	reject $H_0,$ if $X^2 > oldsymbol{\chi}_{1,1-lpha}^2$;	(2
		accept H_0 , if $X^2 \leq oldsymbol{\chi}^2_{1,1-lpha}$.	(2
(a) Compute the test statistic $(X - u_0)^2$		(c) The exact <i>p</i> -value is $P(\boldsymbol{\chi}_1^2 > X^2)$.	
$X^2 = rac{(X-\mu_0)^2}{\mu_0} \sim \chi_1^2$, under H_0	(26)	(d) This test should only be used if $\mu_0=T(ID_0)\geq 1$	10.
where	()		
$\mu_0 = T(ID)$	(27)		
©Jeff Lin, MD., PhD.	Person-Time Data, 56	©Jeff Lin, MD., PhD.	Person-Time Data, 57
One-Sample Inference for Incidence-R Exact Method	ate Data	One-Sample Inference for Incidence Exact Method	-Rate Data
1. Suppose that X events are observed over T person-y	ears of follow-up.		
		5. Under H_0 , the observed number of events (Y) will distribution with parameter $\mu_0 = T(D_0)$	follow Poisson
2. Suppose that the number of events is too small to a large-sample test.	pply the	distribution with parameter $\mu_0 = T(ID_0)$. 6. Thus, the exact two-sided <i>p</i> -value is given by	
3. In this case, an exact test based on the Poisson distr	ibution must be		
used.		$\minigg[2 imes \sum\limits_{k=0}^Y rac{e^{-\mu_0}\mu_0^k}{k!},1igg], \qquad ext{if } Y<\mu_0;$	(31)
4. If $\mu = T(ID)$, the we can restate the hypothesis in t	he form	$\min\left[2 \times \left(1 - \sum_{k=0}^{Y-1} \frac{e^{-\mu_0} \mu_0^k}{k!}\right), 1\right], \text{if } Y > \mu_0$	(20)
$H_0: \mu = \mu_0 versus H_A: \mu \neq \mu_0$	(30)	$\min\left[2\times\left(1-\sum_{k=0}^{\infty}\frac{1}{k!}\right),1\right], \text{if } Y > \mu_0$	(32)
and apply the one-sample Poisson test.			
©Jeff Lin, MD., PhD.	Person-Time Data, 58	©Jeff Lin, MD., PhD.	Person-Time Data, 59

Confidence Limits for Incidence Rates	Confidence Limits for Incidence Rates	
1. Suppose that X events are observed over T person-years of follow-up.	3. Specifically, we have $\hat{\mu} = X$, $\widehat{\mathbf{Var}}(\hat{\mu}) = X$.	
2. To obtain confidence limits for <i>ID</i> , we obtain confidence limits for the expected number of events (μ) based on the Poisson distribution and then divide each confidence limit by <i>T</i> , the number of person-years of follow-up.	 4. Thus, if the normal approximation to the Poisson distribution holds (i.e., X ≥ 10), then a approximate (1 - α) × 100% confidence interval for μ is given by X ± Z_{1-α/2}√X. 5. The corresponding approximate (1 - α) × 100% confidence interval for <i>ID</i> is given by (X ± Z_{1-α/2}√X)/T. 	
	6. Otherwise, if $X < 10$, we obtained exact confidence limits for $\mu c_1, c_2$) and divide each confidence limit by T to obtain the corresponding confidence interval for ID .	
© Jeff Lin, MD., PhD. Person-Time Data, 60	© Jeff Lin, MD., PhD. Person-Time Data, 61	
Confidence Limits for Incidence Rates (a) A point estimate of the incidence density rate is	Two-Sample Inference for Incidence-Rate Data	
 ÎD = λ̂ = X/T. (33) (b) To obtain a two-side (1 − α) × 100% confidence interval for μ, i. if X ≥ 10, then compute X ± Z_{1-α/2}√X = (c₁, c₂), ii. if X < 10, the obtained (c₁, c₂) exact confidence interval for X. (c) The corresponding two-sided (1 − α) × 100% confidence interval for <i>ID</i> is given by (c₁/T, c₂/T). 	2. Approximate Method	
©Jeff Lin, MD., PhD. Person-Time Data, 62	© Jeff Lin, MD., PhD. Person-Time Data, 63	
Two-Sample Inference for Incidence-Rate Data	Two-Sample Inference for Incidence-Rate Data	
1. How can we compare the underlying incidence rates between two different groups ?	Table 2: Two-Sample Inference for Incidence-Rate Data	
2. One approach is to use a conditional test.	Number of	
3. Specifically, suppose we consider he case of two groups and have the general table in Table 2	GroupEventsPerson-TimeExposed A Y_A T_A Unexposed B Y_A T_B Total $Y_A + Y_A$ $T_A + T_B$	
©Jeff Lin, MD., PhD. Person-Time Data, 64	© Jeff Lin, MD., PhD. Person-Time Data, 65	

Two-Sample Inference for Incidence-Rate Data: Approximate Method4. We wish to test the hypothesis $H_0: ID_A = ID_B$ versus $ID_A \neq ID_B$ (34)where ID_A and ID_B are the incidence densities (rates) for group A and B respectively.	 Two-Sample Inference for Incidence-Rate Data: Approximate Method 6. Furthermore, under H₀ conditional on the observed total number events (Y_A + Y_B), the expected number of events in each group is given by Expected number of events in group A = E_A = (Y_A + Y_B)T_A/(T_A +
5. Under the null hypothesis, the fraction $T_A/(T_A + T_A)$ of the total of events $(Y_A + Y_B)$ would be expected to occur in group A , and the fraction $T_B/(T_A + T_B)$ of the total number of events $(Y_A + Y_B)$ would be expected to occur in group B .	Expected number of events in group $B = E_B = (Y_A + Y_B)T_B/(T_A +$ ©Jeff Lin, MD., PhD. Person-Time Data, 67
 Two-Sample Inference for Incidence-Rate Data: Approximate Method 7. To assess statistical significance, the number of events in group A under H₀ is treated as a binomial random variable with parameters 	distribution is valid.
 n = (Y_A + Y_B) and p₀ = T_A/(T_A + T_B). 8. Under this assumption, the hypotheses can be stated as H₀: p = p₀ versus H_A: p ≠ p₀, (35), where p is the true proportion of events that are expected to occur in group A. 9. We will also assume that the normal approximation to the binomial 	
©Jeff Lin, MD., PhD. Person-Time Data, 68	©Jeff Lin, MD., PhD. Person-Time Data, 69
Two-Sample Inference for Incidence-Rate Data: Approximate Method	Two-Sample Inference for Incidence-Rate Data: Approximate Method
 Using the normal approximation to he binomial distribution, the observed number of events in group A is Y_A is normally distributed with mean np₀ = (Y_A + Y_B)T_A/(T_A + T_B) = E_A, and variance is np₀q₀ = (Y_A + Y_B)T_AT_B/(T_A + T_B)² = V_A. H₀ will be rejected if Y_A is much smaller or larger than E_A. This is an application of the large-sample one-sample binomial test. 	13. So, to test the hypothesis $H_0: ID_A = ID_B$ versus $ID_A \neq ID_B$. (36) 14. We use the following procedures:
©Jeff Lin, MD., PhD. Person-Time Data, 70	©Jeff Lin, MD., PhD. Person-Time Data, 71

Two-Sample Inference for Incidence-Rate Data:		Two-Sample Inference for Incidence-Rate Data:	
Approximate Method		Approximate Method	
(a) Compute the test statistic $z = \begin{cases} \frac{Y_A - E_A - 0.5}{\sqrt{V_A}}, & \text{if } Y_A > E_A; \\ \frac{Y_A - E_A + 0.5}{\sqrt{V_A}}, & \text{if } Y_A \le E_A \end{cases}$ where $E_A = (Y_A + Y_B)T_A/(T_A + T_B)$ $V_A = (Y_A + Y_B)T_AT_B/(T_A + T_B)^2$ (b) For a two-sided test with level α reject H_0 , if $z > Z_{\alpha/2}$ or $z < Z_{\alpha/2}$;	(37) (38) (39) (40)	(c) The <i>p</i> -value for this test is given by $2 \times [1 - \Phi(z)],$ if $z \ge 0;$ $2 \times \Phi(z),$ if $z \le 0;$ or $2 \times [1 - \Phi(z)].$ (d) Use this test only if $V_A \ge 5.$	(4 (4 (4
accept H_0 , if $Z_{\alpha/2} \leq z \leq < Z_{1-\alpha/2}$.	(41)		
	(42)		
⊙Jeff Lin, MD., PhD.	Person-Time Data, 72	©Jeff Lin, MD., PhD.	Person-Time Data, 73
Two-Sample Inference for Incidence-Rate Data: Exact Method		Two-Sample Inference for Incidence-Rate Data: Exact Method	
 Suppose that the number of events is too small to apply th normal-theory test (i.e. V_A < 5). In this case, an exact test based on the binomial distribution must be used. Under H₀, the number of events in group A (Y_A) will follow a binomial distribution with parameters n = (Y_A + Y_B) and p = p₀ = T_A/(T_A + T_B), q₀ = 1 - p₀. 		3. We wish to test the hypothesis $H_0: ID_A = ID_B \text{versus} ID_A \neq ID_B$ or equivalently, to test $H_0: p = p_0 \text{versus} H_A: p \neq p_0,$ where p is the underlying proportion of events that and $p_0 = T_A / (T_A + T_B).$	(46) (47) occur in group <i>A</i> ,
©Jeff Lin, MD., PhD.	Person-Time Data, 74	©Jeff Lin, MD., PhD.	Person-Time Data, 75
 Two-Sample Inference for Incidence-F Exact Method 4. This is an application to the exact one-sample binom be reject if the observed number of events Y_A is much larger than the expected number of events E_A 	ial test. <i>H</i> ₀ will :h smaller or	Two-Sample Inference for Incidence-Exact Method (a) If $Y_A < (Y_A + Y_B)p_0$, then p -value $= 2 \times \sum_{k=0}^{Y_A} {Y_A + Y_B \choose k} p_0^k q_0^{Y_A + Y_B - k}$ (b) if $Y_A > (Y_A + Y_B)p_0$, then p -value $= 2 \times \sum_{k=Y_A}^{Y_A + Y_B} {Y_A + Y_B \choose k} p_0^k q_0^{Y_A + Y_B - k}$ (c) This test is valid in general for comparing two increase is particularly useful when $V_A < 5$, in which case estimation should not be used.	(48) (49) idence densities but
©Jeff Lin, MD., PhD.	Person-Time Data, 76	©Jeff Lin, MD., PhD.	Person-Time Data, 77

Incidence Rate Ratio (Risk Ra	itio)	Incidence Rate R	Ratio (Risk Ratio)
1. Risk ratio (RR) is a measure of effect for the comp proportions.	arison of two	4. Let λ_A, λ_B be incidence rates for an exposed and unexposed group, respectively.	
 We applied this measure to compare cumulative ind two exposure groups in a prospective study, where unit of analysis. A similar concept can be employed to compare two based on the person-year data. 	the person was the	 5. The rate ratio is defined as λ_A/λ_B. 6. What is the relationship between the rate ratio based on the incidence rates and the risk ratio based on cumulative incidence ? 	
©Jeff Lin, MD., PhD.	Person-Time Data, 78	⊚Jeff Lin, MD., PhD.	Person-Time Data, 79
Incidence Rate Ratio (Risk R	atio)	Incidence Rate Ratio (Risk Ratio)	
 Suppose each person in a cohort is followed for T yer rate λ_A in the exposed group A and λ_B in the une If the cumulative incidence is low, then the cumula be approximately λ_AT and in the exposed group A unexposed group B. Thus, the risk ratio will be approximately (λ_AT)/(ratio. 	xposed group $B.$ tive incidence will ., and $\lambda_B T$ in the	 10. How can we estimate the rate ratio from observed data ? 11. Suppose we have the number of events in the exposed group <i>A</i>, and person-years shown in Table 2. 12. The estimated incidence rate in the exposed group <i>A</i> as Y_A/T_A and in the unexposed group <i>B</i> as Y_B/T_B. 13. A point estimate of the rate ratio is given by RR = \frac{Y_A/T_A}{Y_B/T_B}. (50)	
©Jeff Lin, MD., PhD.	Person-Time Data, 80	⑤Jeff Lin, MD., PhD.	Person-Time Data, 81
Incidence Rate Ratio (Risk R	atio)	Incidence Rate Ratio (Risk Ratio)	
14. To obtain an interval estimate, we assume approxir $\log(\widehat{OR})$.	nate normality of	17. If we take the anti-log of c_2, c_2 , we as	obtain a two-sided $(1-\alpha)\times 100\%$
15. The variance of $log(\widehat{OR})$ is approximated		$(r_1, r_2) = (e^{c_1}, e^{c_2}).$	(53)
$\mathbf{Var}(\log(\widehat{OR})] \approx \frac{1}{Y_A} + \frac{1}{Y_B}.$ 16. Therefore, a two-sided $(1 - \alpha) \times 100\%$ C.I. for log $(c_1, c_2) = \log(\widehat{OR}) \pm Z_{1-\alpha/2} \sqrt{\frac{1}{Y_A} + \frac{1}{Y_B}}.$	(\widehat{OR}) is given by (52)	18. This interval should only be used if $V_A = [(Y_A + Y_B)T_AT_B] / [(T_A + T_B)T_B] / [(T_B + T_B)T_B] /$	
©Jeff Lin, MD., PhD.	Person-Time Data, 82	⊚Jeff Lin, MD., PhD.	Person-Time Data, 83

Inference for Stratified Person-Time Data	Inference for Stratified Person-Time Data
	 It is very common in the analysis of person-time data to control for confounding variables before assessing the relationship between the main exposure of interest and disease.
	Confounding variables may include age and sex as well as other covariates that are related to exposure, disease, or both.
	3. We can use methods similar to the Mantel-Haenszel test used for cumulative incidence data (or generally for count data).
	4. Suppose we have k strata, where the number of events and the amount of person-time in the <i>i</i> th stratum are as shown in Table 3
©Jeff Lin, MD., PhD. Person-Time Data, 84	© Jeff Lin, MD., PhD. Person-Time Data, 85
Table 3: Stratified Two-Sample Inference for Incidence-Rate DataNumber ofGroup events Person-TimeExposed A Y_{iA} T_{iA} Unexposed B Y_{iA} T_{iB} Total $Y_{iA} + Y_{iA}$ $T_{iA} + T_{iB}$	 7. Let p_i be the expected proportion of the total number of events over both groups that are among the exposed for stratum <i>i</i>. 8. We can relate p_i to p_{iA} and p_{iB} by p_i = p_{iA}T_{iA} / p_{iB}T_{iB} (54)
5. Let us denote the incidence rate of disease among the exposed by p_{iA} and among the unexposed be p_{iB} .	 9. We assume that the rate ratio relating disease to expose is the same for each stratum and denote it by <i>RR</i>. 10. Therefore, <i>RR</i> = <i>p_{iA}</i>/<i>p_{iB}</i> and <i>RR</i> is the same for each <i>i</i> = 1,,<i>k</i>.
6. Therefore, the expected number of events among the exposed is	
$p_{iA}T_{iA}$ and among the unexposed is $p_{iB}T_{iB}$.	11. If we divide numerator and denominator by p_{iB} , and substitute RR for
©Jeff Lin, MD., PhD. Person-Time Data, 86	©Jeff Lin, MD., PhD. Person-Time Data, 87
p_{iA}/p_{iB} , we obtain	or equivalently,
$p_{i} = \frac{(p_{iA}/p_{iB})T_{iA}}{(p_{iA}/p_{iB})T_{iA} + T_{iB}} = \frac{RRT_{iA}}{RRT_{iA} + T_{iB}} $ (55)	$H_0: p_i = p_{i0} \text{versus} p_i = p_{i(1)}, i = 1, 2, \dots k. $ (58)
which denote by $p_{i(1)}.$	14. We will base our test on $S = \sum_{i=1}^{k} Y_{i1}$, the total observed number of events for the exposed.
12. If $RR = 0$ then	15. Under H_0 , we will assume that the total observed number of events for the <i>i</i> th stratum $(Y_{iA} + Y_{iB})$ is fixed.
$p_i = \frac{KKI_{iA}}{RRT_{iA} + T_{iR}} = \frac{I_{iA}}{T_{iA} + T_{iR}} = p_{i0}$, (under $RR = 1$ assumption.)	
$p_i = \frac{RRT_{iA}}{RRT_{iA} + T_{iB}} = \frac{T_{iA}}{T_{iA} + T_{iB}} = p_{i0}, \text{(under } RR = 1 \text{ assumption.)}$ (56)	16. Therefore, under H_0 :
	16. Therefore, under H_0 : $\mathcal{E}(Y_{iA}) = (Y_{iA} + Y_{iB})p_{i0} = (Y_{iA} + Y_{iB})T_{iA}/(T_{iA} + T_{iB}) $ ($\mathbf{Var}(Y_{iA}) = (Y_{iA} + Y_{iB})p_{i0}(1 - p_{i0}) = (Y_{iA} + Y_{iB})T_{iA}T_{iB}/(T_{iA} + T_{iB})$
(56)	$\mathcal{E}(Y_{iA}) = (Y_{iA} + Y_{iB})p_{i0} = (Y_{iA} + Y_{iB})T_{iA}/(T_{iA} + T_{iB}) $ (

and $\begin{split} \mathcal{E}(S) &= \sum_{i=1}^{k} \mathcal{E}(Y_{iA}) \\ \mathbf{Var}(S) &= \sum_{i=1}^{k} \mathbf{Var}(Y_{iA}) \end{split}$	(61) (62)	(c) We reject H_0 , if $X^2 > \chi^2_{1,1-\alpha}$; accept H_0 , if $X^2 \le \chi^2_{1,1-\alpha}$. (d) The <i>p</i> -value is $P(\chi^2_1 > X^2)$. (e) The test should only be used if $\operatorname{Var}(S) \ge 5$.	(64) (65)
17. Under H_A , S will be larger than $\mathcal{E}(S)$ if $RR > 1$ and than $\mathcal{E}(S)$ if $RR < 1$. (a) We compute the test statistic $X^2 = \frac{(S - \mathcal{E}(S) - 0.5)^2}{\mathbf{Var}(S)}$ (b) which follow a chi-squared distribution with 1 df un @Jeff Lin, MD., PhD.	(63)	⊚Jeff Lin, MD., PhD.	Person-Time Data, 91
Estimation of the Rate Ratio		 Estimation of the Rate Ration We obtain estimates of the log(RR_i) in each stratum compute a weighted average of the stratum-specific obtain an overall of the ln(RR). Specifically, let 	m i and then
		$\widehat{OR}_{i} = (Y_{iA}/T_{iA})/(Y_{iB}/T_{iB})$ be the estimate of the rate ratio in the <i>i</i> th stratum. 3. We have $\mathbf{Var}[\log(\widehat{OR}_{i})] \approx \frac{1}{Y_{iA}} + \frac{1}{Y_{iB}}$	(66) (67)
©Jeff Lin, MD., PhD.	Person-Time Data, 92	©Jeff Lin, MD., PhD.	Person-Time Data, 93
Estimation of the Rate Ration 4. To obtained an overall estimate of $log(\widehat{OR})$ we now weighted average of $ln(\widehat{OR}_i)$ and then take anti-log average $log[\widehat{OR}] = \frac{\sum_{i=1}^{k} w_i log(\widehat{OR}_i)}{\sum_{i=1}^{k} w_i}$ where $w_i = 1/Var[log(\widehat{OR}_i)]$.	compute a	Estimation of the Rate Rati	ō
©Jeff Lin, MD., PhD.	Person-Time Data, 94	⊚Jeff Lin, MD., PhD.	Person-Time Data, 95

5. We then obtain the variance of $\log(\widehat{OR})$ as $\mathbf{Var}[\log(\widehat{OR})] = \frac{1}{(\sum_{i=1}^{k} w_i)^2} \mathbf{Var} \left[\sum_{i=1}^{k} w_i \log(\widehat{OR}_i) \right] $ (69) $= \left[(\sum_{i=1}^{k} w_i)^2 \right]^{-1} \sum_{i=1}^{k} w_i^2 \mathbf{Var}[\log(\widehat{OR}_i)] $ (70) $= \left[(\sum_{i=1}^{k} w_i)^2 \right]^{-1} \sum_{i=1}^{k} w_i^2 (1/w_i) $ (71) $= \left[(\sum_{i=1}^{k} w_i)^2 \right]^{-1} \sum_{i=1}^{k} w_i $ (72) $= \left(\left(\sum_{i=1}^{k} w_i \right)^{-1} $ (73)	 Estimation of the Rate Ratio Thus, a two-sided (1 − α) × 100% C.I. for log(RR), (c₁, c₂) is given by log(OR) ± Z_{1−α/2} × (∑^k_{i=1} w_i)^{-1/2}. We then take the anti-log of each of the confidence limits for log(RR) to obtain confidence interval (e^{c₁}, e^{c₂}). 	
$(\sum_{i=1}^{n} i)$ ©Jeff Lin, MD., PhD. Person-Time Data, 96	©Jeff Lin, MD., PhD. Person-Time Data, 97	
Testing the Assumption of Homogeneity of the Rate Ratio Across Strata	Testing the Assumption of Homogeneity of the Rate Ratio Across Strata	
 An important assumption made in the estimation methods is that the underlying rate ratio is the same in all strata. If the rate ratios in different strata are all in the same direction relative to the null hypothesis (i.e., all rate ratio > 1 or all rate ratio < 1). the hypothesis-testing procedures will still be valid with only a slightly loss of power. However, if the rate ratio are in different directions in different strata, or are null in some strata, then the power of the hypothesis-testing procedures will be greatly diminished. 	 4. To test this assumption, we use similar methods to those for testing the assumption of homogeneity of the odds ratio in different strata for count data. 5. Specifically, we wish to test the hypothesis H₀: RR₁ = RR₂ = ··· = RR_k versus H_A: at least two of the RR_i are different (74) with significance level α. 	
Testing the Assumption of Homogeneity of the Rate Ratio Across Strata We use the following procedures: (a) We compute the test statistic $X_{HOM}^2 = \sum_{i=1}^k w_i [\log(\widehat{OR}_i) - \log(\widehat{OR})]^2 \sim \chi_{k-1}^2$ under H_0 . (75)	Testing the Assumption of Homogeneity of the Rate Ratio Across Strata(b) We reject H_0 , if $xx_{HOM} > \chi^2_{k-1,1-\alpha}$; (7 accept H_0 , if $xx_{HOM} \le \chi^2_{k-1,1-\alpha}$. (7 (c) The <i>p</i> -value is given by $P(\chi^2_{k-1} > X^2_{HOM})$.	
©Jeff Lin, MD., PhD. Person-Time Data, 100	©Jeff Lin, MD., PhD. Person-Time Data, 101	

©Jeff Lin, MD., PhD.	Person-Time Data, 102	©Jeff Lin, MD., PhD.	Person-Time Data, 103