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Introduction to Survival Analysis

1. Survival Function, hazard Function

2. Censoring

3. Life Table

4. Kaplan-Meier Method

5. Log Rank Test
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Introduction to Survival Analysis

Conversion of the student, the teacher, and the statistician.

1. Student: Tell me about Life and Death.

2. Teacher: The answer depends on what you want to know about it.

3. Student: How do I choose the right question?

4. Teacher: It depends . . .

5. Statistician: I can tell you if you just tell me how you collected

your data.
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A Simple Question

1. 100 patients were admitted to hospital on Sep 7, 2000,

2. 99 patients were discharged on Sep 11, 2000,

3. 1 patient died on Sep 12, 2000,

4. What’s the death rate on Sep 12, 2000?

5. 1
100 = 1%?

6. 1
1=100%?

The answer really depend on how you collect your data!
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Example: Follow-up 7 Subjects with Lung Cancer

from 1980 to 1990

T

1. he following Figure 1 are long-term follow-up ersults of 7 subjects

with lung cancer from January 1, 1980 to December 31, 1990.

2. × denote death and © dennote alive at the last visit.

3. What is t he 5-eayr survival rate?
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Follow-up 7 Subjects from 1980 to 1990
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Figure 1: Follow-up 7 Subjects with Lung Cancer from 1980 to 1990
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Example: Survival Time
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Figure 2: Follow-up Time: Pearson-Year
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Example: Period Prevalence and Incidence Rate

Period Prevalence =
3
7

= 0.428 (1)

Incidence Rate =
3

∑(7 + 6 + · · · + 7)
=

3
51

= 0.058 (2)
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Example: Survival Time

● ●

●

● ●

●

●

● ●

● ●

| | | | | | | | | | | | |

0 1 2 3 4 5 6 7 8 9 10 11 12

G

F

E

D

C

B

A

Years

Subject *: Initial FU, X: Death, O: Alive Survial
Time

7+

6

11+

9

5+

6

7+

Figure 3: Survival Time from Time Zero
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Background

1. Survival analysis are used to analyze the length of time between a

starting event (entry into follow-up) and an outcome event

(such as death).

2. Such data are often censored; that is, not all subjects who enter

the study are followed long enough to observe the time of the

outcome event.

3. In addition, such data often have highly skewed distributions.

4. Special statistical methods are required in order to analyze such

data.
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Background

5. More precisely, survival analysis is the study of the distribution of

life times, and is a loosely defined statistical term that

encompasses variety of statistical technique for analyzing

positive-valued random variables.

6. Typically, the value of the random variable is the times from an

initiating event time point to some terminal event time point,

i.e. from time of birth (start of treatment) to death(relapse).
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Background

7. Examples of this time-to-event data arise in diverse field

(a) survival rate in medicine

(b) Mortality in public health

(c) Life table in epidemiology

(d) Vital statistics in actuarial science and demography

(e) Reliability in engineering

(f) Event history analysis in social science

(g) Queue process in business, unemployment in economics.
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Complete Observations: One Year Study

1. In a 1 year study of 50 animals, all survived for 1 year and 20

developed skin cancer.

2. Estimate the 1 year skin cancer incidence proportion.

3. The proportion developing skin cancer during the first year is

estimated to be p̂ × 100 = 40 percent with

s.e.( p̂) =
√

p̂q̂/n × 100 = ±6.9%.
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Complete Observations: One Year Study

4. An approximate confidence interval can be computed based on the

normal distribution.

5. An exact confidence interval can be computed using the binomial

distribution.

6. Note that the estimation methods would be different if half the

animals died cancer-free during the year.
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Complete Observations: Life Time Study

1. In a life-time study of 50 animals, 20 developed skin cancer.

Estimate the life-time cancer incidence proportion.

2. This is almost the same as the example above, for a 1 year study.

3. Simple proportions, as used here, are only appropriate if all

subjects are followed for an equal interval of time.

4. In this case the interval of time is defined as a lifetime.
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Complete Observations: Life Time Study

5. An “equal follow-up interval” is usually defined by a fixed time

interval, such as 1 year, but can be measured in any units of time,

such as lifetimes or generations.

6. Note that the average time to cancer and the median time to

cancer are not meaningful for the entire population, since not all

animals developed cancer during follow-up.
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Complete Observations: Life Time Study

7. When all subjects are followed for an equal time, as in this lifetime

example, it is sometimes useful to summarize the average and

median times to event among those observed to have an event

during follow-up.

8. The average time to cancer among those developing cancer during

a lifetime is an interpretable statistic.
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Complete Observations: Life Time Study

9. The average time to cancer among those developing cancer during

a one year follow-up is less interpretable.

10. The average time to cancer among those developing cancer during

a follow-up that varied between 1 and 5 years is very difficult to

interpret.
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Complete Observations

1. Let us consider the complete observations (all deaths observed) of

an 20-animal study in the following Table 1:

Table 1: Time (months) to death data: complete observations

3.1 5.6 7.1 9.6 6.4 34.3 18.5 51.2 14.1 17.3

5.2 7.8 46.3 25.0 8.8 29.1 23.7 33.9 4.7 43.9
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Complete Observations: R

> time.comp<-c(3.1, 5.6, 7.1, 9.6, 6.4, 34.3, 18.5,

51.2, 14.1, 17.3, 5.2, 7.8, 46.3, 25.0,

8.8, 29.1, 23.7, 33.9, 4.7, 43.9)

> summary(time.comp)

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.100 6.925 15.700 19.780 30.300 51.200

> sd(time.comp)

[1] 15.35344
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Complete Observations: R

> stem(time.comp)

The decimal point is 1 digit(s) to the right of the

0 | 35566789

1 | 0479

2 | 459

3 | 44

4 | 46

5 | 1

> plot.density(density(time.comp))
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Figure 4: Density Plot: Complete Observations of Survival Time
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Complete Observations

2. The average time from entry to death is 19.7 months (S.D.= 15.3).

3. The time range from 3.1 to 51.2 months.

4. Half of the subjects were dead below 15 months. The distribution

of time is not normal distributed and is highly skew.
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Censored Data
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Censored Data

1. Censored data arise from losses to follow-up and from varying

follow-up intervals.

2. Censored data make it more difficult to compute interpretable

summaries.

3. How would you compute the 5 year death fraction based on the

following outcomes from a 5 year study of 50 subjects in the

following Table 2 ?
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Censored Data

Table 2: Time (months) to death data

with censored observations

Number Observed outcome

10 Drop-out alive before 5 years

5 die during study

35 alive at 5 years
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Censored Data

4. What do we know about the 10 subjects who were lost to follow-up

would have died within 5 years, had they didn’t dropped out.

5. If all study subjects are followed for a fixed equal period of time,

then an event proportion (risk) can be estimated for that interval

with no ambiguity.

6. When subjects are followed for differing lengths of follow-up, it is

often more appropriate to estimate an event rate.
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Constant Event Rate: Person-Year

1. Suppose 100 subjects (initially cancer-free) were followed until lung

cancer or loss to follow-up, whichever came first.

2. Suppose that the average follow-up interval was 4.675 years and 3

incident primary cancers were observed.

3. The total person-years of follow-up was 467.5 person-years.

4. The incidence rate is estimated to be 3/467.5, or 6.417 per 1000

person-years.
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Constant Event Rate: Person-Year

5. A confidence interval for the rate can be computed using the

Poisson distribution.

6. In this example, we have assumed that the incidence rate is

constant throughout the study period (and is estimated to be

6.417 per 1000 person-years).

7. The assumption of a constant event rate may not be plausible or

may be inconsistent with the data in many studies.
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Survival Functions and Hazard Function
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Basic Survival Functions

1. It is often useful to summarize the survival experience of a study

group.

2. The summary is especially useful if the study group is

representative of a larger population.

3. The survival experience of the study group is an estimate of the

survival experience of the wider population.

4. If the study group is a random sample from the target population,

then probabilistic measures of the accuracy of the estimate can be

computed.
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Basic Survival Functions

Survival analysis methods are tailored to work well with the specific

characteristics of the data and the specific objectives that arise in

survival studies.
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Basic Survival Functions

1. Often, survival data are distinguished from other types of data

because they are censored.

• Censored data (those observations whose times to event we do

not get to observe completely) prevent the use of standard

methods of statistical summarization and inference.

• In particular, right censored data are reported as lower bounds

for the actual unobserved event times.
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Basic Survival Functions

2. We are often interested in the whole distribution of survival times.

• Survival times often have a distribution in the population that is

very different from a Gaussian (Normal) distribution.

• Many standard approximate statistical methods are not accurate

for such data.

• Many standard statistical methods are instead oriented towards

inference for the mean survival time, µ and standard deviation σ.
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Basic Survival Functions

3. Considerations for survival distribution

• The extremes of the distribution of times to event (extreme

quantiles) are often of interest in survival analysis.

• For example, many people hope that they will live to the 95th

percentile, rather than the 50th percentile.

4. The rate of occurrence of events per unit time is often of interest

in survival analysis.
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Survival Functions

1. Let X be the time from a well-defined time point zero to a

well-defined time point when some specified event occurs.

2. We deal with a single nonnegative random variable, X.

3. Let X ≥ 0 and f (X) be the probability density (mass) function.

4. Probability Density Function (p.d.f) of X is

f (X = x) = lim
∆x→0

Pr(x ≤ X < x + ∆x)
∆x

=
dF(x)

dx
(3)

with
∫ ∞

0 f (x)dx = 1.
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Survival Functions

5. The range of X is [0, ∞], and this should be understood as the

domain of definition for function of x.

6. Survival Function is the probability of an individual surviving

beyond time x (experiencing the event after time x).

S(x) = Pr(X > x) =
∫ ∞

x
f (t) dt (4)

c©Jeff Lin, MD., PhD. Introduction to Survival Analysis, 39

Survival Functions

7. In the context of equipment item failures, S(x) is referred to as

the reliability function.

8. S(x1) − S(x2) is the fraction of the population that dies between

ages x1 and x2 for x1 < x2.

9. Survival functions are monotone, decreasing (nonincreasing)

functions equal to one at zero and zero at the time approaches

infinity.

10. S(0) = 1, if the every member of the population eventually has an

event, then S(∞) = 0.
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Survival Functions

11. If some member of the population never have the event, then it is

possible that the survival curve does not approach 0 as time

increase.

12. The notation dealing with this is not standardized, but one

practical implication is that a survival curve estimate need not

reach 0 by the end of follow-up.

13. When X is a continuous random variable, the survival function is

the complement of the cumulative distribution function.
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Failure Functions

1. Failure Function is the cumulative distribution.

F(x) = Pr(X ≤ x) = 1 − S(x) (5)

f (x) = lim
∆x→0

Pr(x ≤ X < x + ∆x)
∆x

=
dF(x)

dx
(6)

= −dS(x)
dx

= lim
∆x→0

S(x) − S(x + ∆x)
∆x

(7)
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Failure Functions

2. f (x)dx ≈ fraction who die between age x and x + ∆x when ∆x is

a short interval of time.

3. The density is positive.

4.
∫ ∞

0 f (t)dt = 1.
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Discrete Survival Functions

1. When X is a discrete random variable, different techniques are

required.

2. Suppose that X take on values xj, j = 1, 2, . . . , n, with probability

mass function (p.m.f) p(xj) = Pr(X = xj), where

x1 < x2 < . . . < xn.

3. Survival Function 2 for a discrete random variable X is

S(x) = Pr(X > x) = ∑
xj>x

p(xj) (8)

where S(0) = 1 and p(xj) = S(xj−1) − S(xj).
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Hazard Function

A fundamental in survival analysis is the hazard function.
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Hazard Function

This function is also known as

1. The hazard rate in survival analysis

2. The conditional failure rate in reliability

3. The force mortality in demography

4. The intensity function in stochastic processes

5. The age-specific failure rate in epidemiology

6. The inverse of Mill’s ratio in economics
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Hazard Function (Hazard Rate)

1. Let X is a continuous random variable.

2. Hazard Function, (Hazard Rate) is conditional probability that

specifies the instantaneous rate of failure at X = x conditional

upon survival to time x, and is defined as

h(x) = lim
∆x→0

Pr(x ≤ X < x + ∆x|X ≥ x)
∆x

(9)

=
f (x)
S(x)

(10)

= − d
dx

ln[S(x)] (11)

f (x) = h(x)S(x) (12)
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Hazard Function (Hazard Rate)

3. Note that death rates are generally reported among those still

surviving, and are the same as the hazard function.

4. The concept of the hazard function has been discovered in many

field has many names.

5. This function is known as conditional failure rate in reliability, the

force of mortality in demography, the intensity function in

stochastic process, the age-specific failure rate in epidemiology.

The inverse of the Mill’s ratio in economics, or simply as the

hazard rate.
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Cumulative Hazard Function

1. Cumulative Hazard Function is defined

H(x) =
∫ x

0
h(u) du = − ln[S(x)] (13)

2. Thus, for continuous survival time,

S(x) = exp[−H(x)] = exp
[
−

∫ x

0
h(u) du

]
(14)
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Hazard Function

1. Hazard function is particularly useful in determining the

appropriate failure distribution utilizing qualitative information

about the mechanism of failure and for describing the way in which

the chance of experiencing the event changes with time.

2. There are many general shapes for the hazard rate.
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Hazard Function

3. The only restriction on h(x) is that it be nonnegative, i.e.,

h(x) ≥ 0. (15)

4. One may believe that the hazard rate for the occurrence of a

particular event is increasing, decreasing, constant,

bathtub-shaped, hump-shaped or possessing some other

characteristic which describes the failure mechanism.
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Hazard Function

5. H(x) is the expect number of events when following a single

person to time x, with replacement at death.

6. It is easy to estimate S(x).

7. This makes it easy to examine the shape of H(x) graphically,

which tells us about the hazard function as the slope of H(x).
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Discrete Hazard Function

When X is a discrete random variable, Hazard Function 2, for

discrete hazard function is defined as

h(x) = Pr(X = xj|X ≥ xj) =
p(xj)

S(xj−1)
j = 1, 2, . . . (16)

h(xj) =
S(xj−1) − S(xj)

S(xj−1)
= 1 − S(xj)

S(xj−1)
(17)

S(xj−1) × h(xj) = S(xj−1) − S(xj) (18)

S(xj) = S(xj−1)[1 − h(xj)] (19)
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Discrete Hazard Function

1. Thus, for discrete survival time, the survival function is the

product of conditional survival probability as

S(x) = ∑
xj>x

p(xj) = ∏
xj≤x

[
1 − h(xj)

]
= ∏

xj≤x

S(xj)
S(xj−1)

(20)
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Discrete Hazard Function

2. And the cumulative hazard function for discrete random variable is

H(x) = ∑
xj≤x

ln[1 − h(xj)] (21)

∼= ∑
xj≤x

h(xj); if h(xj) is small for j = 1, 2, . . . (22)
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Discrete Hazard Function

3. The equation (21) is based on the relationship for continuous

lifetimes S(x) = exp[−H(x)] will be preserved for discrete

lifetimes.

4. The equation (22) is directly estimable from a sample of censored

or truncated lifetimes and the estimator has a very desirable

statistical properties, however, the relationship

S(x) = exp[−H(x)] for the equation (22) no longer holds true.
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Continuous Hazard Function

1. For a continuous lifetimes, the failure distribution is said to have

an increasing failure rate (IFR) property, if the hazard function

h(x) is nondecreasing for x ≥ 0, and an increasing failure rate on

the average (IFRA), if the ratio of the cumulative hazard function

to time H(x)/x is nondecreasing for x > 0.

2. For a continuous lifetimes, the failure distribution is said to have a

decreasing failure rate (DFR) property, if the hazard function h(x)
is nonincreasing for x ≥ 0.
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Hazard Function

• We will work with both continuous and discrete survival functions.

• In practice the distinction between continuous and discrete survival

function is not very important.

• The distinctions require very different notations.
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Censoring

1. The three basic requirements for measuring failure time are time

origin, scale for measuring the passage of time and meaning of the

point event.

2. The time origin should be precisely defined.

3. The time origin need not be and usually is not at the same

calendar time.
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Censoring

4. Most randomized clinical trials have staggered entry, so time origin

is usually his own date of entry.

5. The scale of measuring time is often clock time (real time),

although other possibility certainly arise, such as operating time of

a system, mileage of a car.

6. The meaning of point event of failure must be defined precisely

such as death.
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Censoring

7. The tools of survival analysis are designed to yield inferences about

the distribution of the times to event, X, (lifetime) in a population.

8. A special source of difficulty in survival analysis is that some

individuals may not be observed for the full time to failure.
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Censoring

9. Some lifetimes are known to have occurred only within certain

interval,.

10. Such incomplete observation of the failure time is called

censoring.

11. Censoring is a point event and that the period of observation for

censored individuals must be recorded.

12. In practice, we often do not observe X for a random sample, but

only known that X lies in an observed interval (L, R) (interval

censoring) or might only observe a subject conditional on certain

conditions (truncation).
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Censoring

13. Formally, an observation is said to be right censored at time R if

the exact value of the observation is not known but only that it is

greater than or equal R.

14. Similarly, an observation is said to be left censored at time L if it

is known only that the observation is less than or equal to L.

15. Right censoring is very common.

16. We use different notation for the observed data to clarify that it is

different from the measure, X, that we are interested in.
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Life Table Method (Actuarial Method)

Kaplan-Meier Method (product-Limit Method
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Life Table Method (Actuarial Method)

1. The classical method of estimating S(t) in epidemiology and

actuarial science is the actuarial method or life table method.

2. Early methods for estimating survival functions were developed by

• Berkson, J. and Gage, R.P.: Calculation of survival rates for

cancer. Proc. Staff Meet. Mayo Clin. 25: 270-286 (1950).

• Cutler, S.J. and Ederer, F.: Maximum utilization of the life table

method in analyzing survival. J. Chronic Dis. 8: 699-712 (1958).

c©Jeff Lin, MD., PhD. Introduction to Survival Analysis, 65



Life Table Method (Actuarial Method)

3. The same concepts are used in modern calculation methods.

4. The resulting survival curves are often referred to as actuarial

curves because they are analogous to those used by actuaries.
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Life Table Method (Actuarial Method)

5. However, there is an important difference between survival curves

and actuarial curves.

6. Survival curves are based on data from a longitudinal study of

subjects through time and are used to summarize what happened

to the study group through their lifetimes.

7. Actuarial curves are more typically based on age-specific death

rates observed during a short calendar interval.

8. Actuarial methods combine current age-specific death rates from

several age-cohorts of subjects to forecast lifetime experience for

new cohorts.
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Life Table Method (Actuarial Method)

9. The early methods of Berkson and Gage were developed to be

used when the time axis is grouped into intervals and the numbers

of subjects dying or lost to follow-up in each interval are recorded.

10. Time intervals of length 1 to 5 years were commonly used.

11. The methods based on grouping were useful for hand calculation

and for illustration, but are less widely used now that computers

can calculate estimates based on the recorded survival times.
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Life Table Method (Actuarial Method)

12. Now, survival times are commonly computed based on dates of

entry and death.

13. Sometimes, only the month is available in the original data source

and the day of an event is not recorded for some subjects.

14. If the time to event typically takes months, rather than days, then

dates can be imputed for these missing values with little effect on

the resulting estimates.
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Life Table Method (Actuarial Method)

15. The basic construction of life table introduces notation of hazard

function, density function, and survival function.

16. A cohort is a group of individual who have some common origin

from which the event time will be calculated.

17. They are followed over time and their event time or censoring time

is recorded to fall in one of s + 1 adjacent, nonoverlapping

intervals.

18. A traditional cohort life table presents the actual mortality

experience of the cohort from the birth of each individual to the

death of the last surviving member of the cohort.
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Life Table Method (Actuarial Method)

19. Let time be partitioned into a fixed sequence of s + 1 intervals,

I1, I2, . . . , Is, Is+1. These intervals are adjacent, nonoverlapping.

20. These intervals are almost always, but not necessarily, of equal

lengths, and for human populations the length of each interval is

usually one year. Deaths, losses, and withdraws are counted for

each time interval.

21. We use the notation introduced by the notation introduced by

Gehan, E.A. Estimating survival functions from the life table,

Journal of Chronic Disease, 21: 629-644 (1969).
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Life Table Method (Actuarial Method)

The basic construction of the cohort life table is described below:

1. Ii = [ti−1, ti) denotes the i′th interval of follow-up time that

includes all time t satisfying Ti−1 < t ≤ ti. Define T0 = 0 and

Ts+1 = ∞.

2. There are s + 1 intervals including the last one of infinity length.

3. tmi = (ti + ti−1)/2 is the midpoint of i’th interval Ii = [ti−1, ti).
These times are used for plotting hazard and density functions.

4. zi = (ti − ti−1) is the length (width) of the i’th interval.
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5. n
′
i is the number of individuals being followed at the beginning of

the i’th interval, that is the effective sample size.

6. di is the number of individuals dying during the i’th interval.

7. li is the number of individuals loss to follow-up during the i’th
interval.

8. For example,individuals who move away during the interval and

whose mortality status cannot subsequently be ascertained are lost

to follow-up.
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9. wi is the number of individuals who are withdrawn alive during the

i’th interval because of the close of the study.

10. These counts enter into the computations exactly like li counts.

11. ni = n
′
i − [(li + wi)/2] is the number of individuals expected to be

at risk for death, on average, during the i’th interval (at its

midpoint).

12. Note: most of the time, li + wi are censored, assuming that

censoring times are uniformly distributed over the interval.

13. n
′
i = n

′
i−1 − (di−1 + li−1 + wi−1).
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We can break up the survival probability S(ti) into a product of

probabilities as

S(ti) = Pr[T > ti] (23)

= Pr[T > t1] Pr[T > t2 | T > t1] · · · Pr[T > ii | T > ti−1]

= p1 · p2 · · · pi (24)

where pi = Pr[T > ti | T > ti−1] (25)
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The basic notations in construction of life table are described as

below:

1. conditional death function is estimated as

q̂i =
di
ni

= Pr[ dying during Ii | surviving beyond Ii−1] (26)

2. That is the estimated condition probability of dying during the i’th
interval, given survival beyond (i − 1)’th interval.
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3. Conditional survival function is estimated as

p̂i = 1 − q̂i = Pr[ surviving beyond Ii | surviving beyond Ii−1](27)

4. That is the estimated condition probability of surviving through

the i’th interval, given survival beyond (i − 1)’th interval.

5. P̂i is the cumulative proportion surviving to the beginning of the

i’th interval, ti−1, the estimated survival function for the

individuals who survive beyond time ti−1.
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6. P̂i is often denoted as the survival function at time ti−1 as

Ŝi−1 = P̂i = p̂i−1 × P̂i−1 (28)

Ŝi = Ŝi−1 × pi (29)
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7. Density function is estimated as

f̂i = f̂ (tmi) =
P̂i − P̂i+1
ti − ti−1

=
P̂i q̂i

zi
=

Ŝi−1 − Ŝi
zi

(30)

8. The density is the probability of dying during an interval per unit

time.
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9. Hazard function is estimated as

ĥi = ĥ(tmi) =
f̂ (tmi)
P̂(tmi)

(31)

where P̂(tmi) =
P̂i+1 + P̂i

2
=

P̂i(1 + p̂i)
2

(32)

so ĥ(tmi) =
2 f̂ (tmi)
P̂i+1 + P̂i

=
2 q̂i

(ti − ti−1)(1 + p̂i)
(33)
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1. The actuarial method gives an estimate for each pi separately and

then multiplies the estimates together to estimate S(tk).

2. The actuarial estimate is

Ŝ(tk) =
i=k
∏
i=1

p̂i (34)

c©Jeff Lin, MD., PhD. Introduction to Survival Analysis, 81

Table 3: Survival Analysis: Life Table

Num Num Num Num Num Cond Cond Cum

Mid Enter Lost With- Exp Num Prop Prop Prop

Interval Point Width Int Follow Drawn Risk Die Die Surv Surv f (tmi) λ̂(tmi)

[t0, t1) tm1 h1 n
′
1 l1 w1 n1 d1 q̂1 p̂1 P̂1 = 1.0 f (tm1) λ̂(tm1)

[t0, t2) tm2 h2 n
′
2 l2 w2 n2 d2 q̂2 p̂2 P̂2 f (tm2) λ̂(tm2)

. . . . . . . . . . . . .

. . . . . . . . . . . . .

. . . . . . . . . . . . .

[t0, ts) tms hs n
′
s ls ws ns ds q̂s p̂s P̂s f (tms) λ̂(tms)

[ts, t∞)
Example Data

[0, 1) 0.5 1 913 19 77 865.0 312 0.639 1.000 0.361 0.441

[1, 2) 1.5 1 505 3 71 468.0 96 0.795 0.639 0.131 0.228

[2, 3) 2.5 1 335 4 58 304.0 45 0.852 0.508 0.075 0.160

[3, 4) 3.5 1 228 3 27 213.0 29 0.864 0.433 0.059 0.146

[4, 5) 4.5 1 169 5 35 149.0 7 0.953 0.374 0.018 0.048

[5, 6) 5.5 1 122 1 36 103.5 9 0.913 0.356 0.031 0.091

[6, 7) 6.5 1 76 0 17 67.5 3 0.956 0.325 0.014 0.045

[7, 8) 7.5 1 56 2 10 50.0 1 0.980 0.311 0.006 0.020

[8, 9) 8.5 1 43 0 8 39.0 3 0.923 0.305 0.024 0.080

[9, ∞) - - 32 - - 32.0 32 0.000 0.281 - -
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3. To estimate variance of S(ti), we use Greenwood’s Formula.

Var[Ŝ(tk)] = Ŝ2(tk)
i=k
∑
i=1

di
ni (ni − di)

(35)

(1 − α)100% C.I. Ŝ(tk) ± z1−α/2 s.e {S(tk)} (36)

4. One difficulty with this procedure arises from the fact that the

confidence intervals are symmetric.

5. When the estimated survival function is close to zero or unity.

6. The survival function that lie outside the interval (0, 1).
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7. Another better transformation is

Var[log(− log Ŝ(tk))] ∼=
1

[log Ŝ(tk)]2
i=k
∑
i=1

di
ni (ni − di)

(37)

8. (1 − α)100% C.I. of is

Ŝ(tk) [Ŝ(tk)]
exp[±z1−α/2s.e. (log(− log Ŝ(tk)))] (38)
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9. The standard error of f̂i = f̂ (tmi) is

s.e. ( fi) ≈
Ŝi−1q̂i

(ti − ti−1)

√√√√[ i−1

∑
j=1

q̂i
ni p̂i

]
+

[ p̂i
niq̂i

]
(39)
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10. Broadly speaking, the behavior of the life table estimates is

acceptable under random independent censorship provided that

censoring is fairly evenly distributed across individuals and not too

heavy, intervals are not too wide, and sample sizes are not too

small.

11. It is nevertheless wise to remember that properties depend on the

censoring and lifetime distributions at hand, that estimates of

survival probabilities will be slightly biased, and that the adequacy

of the variance estimate is not fully known unless censoring is very

light.
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1. A cohort life table is a group of people who are followed

through-out the course of the study. Clinical life table follows the

same population time.

2. The people at risk at the beginning of the interval Ii are those

people who survived (not dead, lost, or withdraw) the previous

interval Ii−1.
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3. Another type of life table is the current life table.

4. Current life table starts with large number people, time is age,

follows up short period, for example one year.

5. In a current life table a group of people with age ti−1 are

considered to be at risk at the beginning of the interval

Ii = (ti−1, ti], and this group of people is completely different from

those at risk in the previous interval Ii−1.
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6. Typically, different age groups in the population are followed at

time same time.

7. Inference bases on current population at short calendar time.

8. For example, Ŝ(age = 40), estimated survival rate at age 40 years

old based current life table is quite different for individuals who is

age zero (just birth) in current life table. Those age zero

individuals are expected surviving longer.
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1. Consider the following example with 10 subjects, we have survival

time (censoring time) of

1+, 3, 4+, 5, 5, 6+, 7, 7, 7+, 8+

(40)

2. The “+” sign represent censored time of the observations.
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1. With right censored data, we know which observations are still

being followed and we can observe which of them have an event.

2. Now, we are concerned with how many have an event (for

estimating the survival curve) rather than which ones have an

event.

3. What we know is the number of subjects being followed and the

number with an event at each moment in the follow-up.
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4. Denote a data set with n of observations including right censored

observation with follow-up times and status indicators by (xi, δi),
for i = 1, 2, . . . , n.

5. This information can be organized several ways.

6. For example in life table method, the information could be grouped

according to a division of time axis into disjoint subintervals.
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7. In life table method, the grouping of data into time intervals does

not retain all of the information in the origin data set.

8. All the information is kept by recording the information at each

time point (as function of time, rather than in a table).
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9. The product-limit (PL) estimator, proposed by Kaplan and Meier

(1958), is similar to the actuarial estimator except the lengths of

the intervals Ii, be the i’th ordered censored or uncensored

observation.

10. The product-limit estimator has intervals determined by the data.

11. Intervals can be though of as very short, or as each containing just

one type of data observation.
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1. Let X1, X2, X3, . . . , Xn be independently identical distributed

(i.i.d.) each with density function F, and survival function S.

2. However, censoring time are often effectively random.

3. Sometimes, individuals will experience some other competing event

of interest which causes them to be removed from the study.

4. Some events which cause the individual to be randomly censored,

with respect to event of interest, are accident death, migration of

human population.
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5. Let C1, C2, . . . , Cn be i.i.d. each with distribution function G.

6. Ci is the censoring time associated with Ti. We can only observe

(T1, δ1), (T2, δi), . . . , (Tn, δn) where

Ti = min(Xi, Ci) = Xi ∧ Ci (41)

δi = I(Xi ≤ Ci)

⎧⎨
⎩1 if Xi ≤ Ci, that is, Ti is not censored,

0 if Xi > Ci, that is, Ti is censored.
(42)
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(a) Consider the following example with 10 subjects, we have survival

time (censoring time) of

1+, 3, 4+, 5, 5, 6+, 7, 7, 7+, 8+

(43)

(b) The “+” sign represent censored time of the observations.

Ti = 1 3 4 5 5 6 7 7 7 8

Ci = 0 1 0 1 1 0 1 1 0 0
(44)
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7. We observe the pairs of data as (t1, δ1), (t2, δ2), (ti, δi), . . . ,

(tn, δn), for i = 1, 2, . . . , n.

8. Let t(1) < t(2), . . . , t(n) be the order statistics of t1, t2, . . . , tn.

9. Define δ(i) to be the value of δ associated with t(i).
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(a) Consider the following example with 10 subjects, we have survival

time (censoring time) of

1+, 3, 4+, 5, 5, 6+, 7, 7, 7+, 8+

(45)

(b) The “+” sign represent censored time of the observations.

Ti = 1 3 4 5 5 6 7 7 7 8

Ci = 0 1 0 1 1 0 1 1 0 0
(46)
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10. We can consider the interval t(i) − t(i−1) → 0.

11. If there are ties in the observed ti values, then order the

observations with respect to δi as well.

12. That is (t, 0) > (t, 1).

13. If there are no tied values of ti, then for short enough intervals,

there will be at most one ti in any interval in the limit.
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14. The traditional approach of Kaplan-Meier estimator (product-limit

estimator) is based on order statistics.

15. We first define risk set at time t, R(t), which is the set of subjects

still alive at time t− (just before time t).

16. That is, the indices of the subjects still alive and uncensored (still

in the study) at time t.
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The Kaplan-Meier estimate for the survival curve

ni = in R(t) = alive at time t− (47)

di = died at time t(i) (48)

pi = Pr[ surviving through Ii | alive at the beginning of Ii

= Pr[T > t(i)|T > t(i−1)] (49)

qi = 1 − pi (50)

q̂i =
di
ni

(51)

Ŝ(t) = ∏
t(i)≤t

p̂i = ∏
t(i)≤t

(1 − q̂i). (52)
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17. It is also called the product-limit estimator.

18. Note that it is the same as the life table estimator when the

intervals of time are taken to be arbitrarily (thus the term limit

above).

19. The product-limit estimator is a step function with jumps at the

observed event times.

20. The size of these jumps depends not only on the number of events

observed at each event time t(i), but also on the pattern of the

censored observations prior to time t(i).
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21. The variance of the product-limit estimator is commonly estimated

by Greenwood’s formula.

22. The Greenwood’s variance estimator of Ŝ(t) is (originally based on

V̂ar[log(Ŝ(t))]) as

V̂ar[log(Ŝ(t))] ≈ ∑
t′(i)≤t

di
ni(ni − di)

(53)

V̂ar[Ŝ(t)] ≈ Ŝ2(t) ∑
t′(i)≤t

di
ni(ni − di)

(54)
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23. An approximate (1 − α)100% confidence interval for Ŝ(t) is

(1 − α)100% C.I. of S(t) : Ŝ(t) ± z1−α/2 s.e. [Ŝ(t)] (55)

where the s.e. is the square root of the Greenwood variance

formula.
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24. A better confidence interval is based on approximate variance

[v(t)] of log(− log Ŝ(t))

[v(t)] = Var(log(− log(Ŝ(t)))

≈ 1

[∑t′(i)≤t log(ni−di
ni

)]2
∑

t′(i)≤t

di
ni(ni − di)

(56)

25. (1 − α) × 100% C.I.

[Ŝ(t)]exp(+∆) < S(t) < [Ŝ(t)]exp(−∆)] (57)

where ∆ = z1−α/2
√

(v̂(t)).
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26. The justification for these formulas is not as clear as in the case of

life tables because the number of terms in the product is random

and there is more dependence between terms.

27. However, they can be justified as approximations to the asymptotic

variance of Ŝ(t).
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1. Consider the following example with 10 subjects, we have survival

time (censoring time) of

1+, 3, 4+, 5, 5, 6+, 7, 7, 7+, 8+

(58)

2. The “+” sign represent censored time of the observations.

Ti = 1 3 4 5 5 6 7 7 7 8

Ci = 0 1 0 1 1 0 1 1 0 0
(59)

c©Jeff Lin, MD., PhD. Introduction to Survival Analysis, 109

Kaplan-Meier (Product-Limit) Method

ti observed survival time

di the number of events observed at time ti
ni the number of individuals still under observation

just before time ti
qi the fraction of the n individuals who do have an event

at time ti, i.e. di/ni
pi the fraction of the n individuals who do not have an event

at time ti, i.e. (ni − di)/ni
S(ti) the KM estimate of the survival function at time ti
s.e. the approximate standard error of S(ti)
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Table 4: Survival Analysis: Kaplan-Meier Method

ti d n qi pi S(t) = Pr(T > t) s.e.

0 0 10 0 1.0 1.0 -

3 1 9 1/9 8/9 ≈ 0.89 0.889 0.104

5 2 7 2/7 5/7 ≈ 0.71 0.634 0.169

7 2 4 2/4 2/4 = 0.5 0.317 0.179
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Figure 5: Kaplan-Meier Survival Curve
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> exkm.time <- c(1,3,4,5,5,6,7,7,7,8)

> exkm.censor<-c(0,1,0,1,1,0,1,1,0,0)

> data.frame(exkm.time,exkm.censor)

exkm.time exkm.censor

1 1 0

2 3 1

3 4 0

4 5 1

5 5 1

6 6 0

7 7 1

8 7 1

9 7 0

10 8 0
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> survfit(Surv(exkm.time,exkm.censor))

Call: survfit(formula = Surv(exkm.time, exkm.censor))

n events median 0.95LCL 0.95UCL

10 5 7 5 Inf

> summary(survfit(Surv(exkm.time,exkm.censor),

type=c("kaplan-meier"),error=c("greenwood"),

conf.type=c("plain")))

Call: survfit(formula = Surv(exkm.time, exkm.censor),

type = c("kaplan-meier"),

error = c("greenwood"), conf.type = c("plain"))

time n.risk n.event survival std.err lower 95% CI upper 95% CI

3 9 1 0.889 0.105 0.684 1.000

5 7 2 0.635 0.169 0.303 0.967

7 4 2 0.317 0.180 0.000 0.670
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plot(survfit(Surv(exkm.time,exkm.censor), conf.type="none"),

bty="l", xlab="Time", ylab="Survival Rate")
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data ex;

input time censor @@;

cards;

1 0 3 1 4 0 5 1

5 1 6 0 7 1 7 1

7 0 8 0

run;

proc lifetest method=km;

time time*censor(0);

run;
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We now consider another example of the remission duration for acute

leukemia that 21 children were acute leukemia and were treated with

6-MP, the data are as following

10, 7, 32+, 23, 22, 6, 16, 34+, 32+, 25+, 11+, 20+,

19+, 6, 17+, 35+, 6+, 13, 9+, 6+, 10+ (60)
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> AML01.time<- c(10,7,32,23,22,6,16,34,32,25,11,20,

19,6,17,35,6,13,9,6,10)

> AML01.censor<-c(1,1, 0, 1, 1,1, 1, 0, 0, 0, 0, 0,

0,1, 0, 0,0, 1,0,0, 0)

> data.frame(AML01.time,AML01.censor)

> survfit(Surv(AML01.time,AML01.censor))

Call: survfit(formula = Surv(AML01.time, AML01.censor))

n events median 0.95LCL 0.95UCL

21 8 23 16 Inf
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> summary(survfit(Surv(AML01.time,AML01.censor),

type=c("kaplan-meier"),

error=c("greenwood"),conf.type=c("plain")))

Call: survfit(formula = Surv(AML01.time, AML01.censor),

type = c("kaplan-meier"),

error = c("greenwood"), conf.type = c("plain"))

time n.risk n.event survival std.err lower 95% CI upper 95% CI

6 21 2 0.905 0.0641 0.779 1.000

7 17 1 0.852 0.0794 0.696 1.000

10 15 1 0.795 0.0922 0.614 0.975

13 12 1 0.729 0.1056 0.521 0.936

16 11 1 0.662 0.1149 0.437 0.888

22 7 1 0.568 0.1318 0.309 0.826

23 6 1 0.473 0.1397 0.199 0.747
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> plot(survfit(Surv(AML01.time,AML01.censor),

conf.type="none"), bty="l",

xlab="Time", ylab="Survival Rate")
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Figure 6: Acute Leukemia: Kaplan-Meier Survival Curve

c©Jeff Lin, MD., PhD. Introduction to Survival Analysis, 121
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> plot(survfit(Surv(AML01.time,AML01.censor)))
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Figure 7: Acute Leukemia: KM Survival Curve with C.I.
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1. Note that the survival curve is plotted as a series of horizontal lines

based on the computed values of the KM estimate.

2. The Kaplan-Meier survival curve, which is just the graphical

representation of the survival function, is easily interpreted.

3. The vertical axis represents the estimated fraction (or percent) of

the population that has not died.

4. The horizontal axis represents the time since entry into the study.
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5. For example, based on the survival curve in above example, we

estimate that over 75% of similar children survived for at 12

months while less than 50

6. Note that survival curves never increase.
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7. The percent surviving shown in the survival curve is relative to the

total number entering the study.

8. Thus, the relevant population consists of those who satisfy the

entry criteria.

9. As in this example, if all subjects enter the study at the same time

and all subjects are followed to the end of the study then simple

proportions can be used to estimate the fraction alive at any time

during the study.
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10. However, note that the mean survival time cannot be calculated,

because the time to death for the surviving subjects is not known.

11. In this example, the median survival time can be estimated, but

the 25 percentile cannot be estimated.

12. Note that if the subject with the longest follow-up has an event,

then the Kaplan-Meier survival curve drops to 0 at the time of that

event.

13. If the subject with the longest follow-up is censored, then the

Kaplan-Meier estimate is undefined after that time.
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14. The horizontal time axis measures time relative to entry into the

study.

15. The time origin could be, and often is, a different calendar date for

each subject in the study.

16. The time axis usually measures time from a well-defined event

which defines the beginning of follow-up for each subject, such as

birth.

17. The time axis can also start on a particular date, such as 1/1/89.
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18. The event, or outcome, of interest is often an event other than

death.

19. For example, time to relapse, time to progression, and time to

diagnosis are all appropriately analyzed with survival analysis

methods.
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20. Generally, the vertical axis measures the fraction of the population

that is event-free.

21. The variability of the survival curve is usually larger for longer

times because there are fewer subjects with longer follow-up, due

to censoring.
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22. In particular, a long at segment often appears at the right end of

the KM estimate and should not, generally, be interpreted as

representing a fraction of the population that is unlikely to die

because they are “cured”.

23. Instead, it may be due to imprecision of the estimate (based on a

few long-term survivors).
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24. The survival function (or curve) can be used to compute an

estimate for the median survival time, t0.5.

25. The time at which the survival function jumps from above to

below 0.5 is the most commonly used estimate of t0.5.

26. If there is an interval of times (tL, tU) for which

S(t) = Pr(T > t) = 0.5 for tL ≤ t < tU, then any time in the

interval can be used to estimate the median, but the average of

the endpoints, t̂0.5 = (tL + tU)/2 is commonly used.
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27. The KM estimate is only appropriate when the causes of censoring

are independent of (unrelated to) subsequent mortality.

28. For example, if subjects are likely to be censored just before they

die then the KM estimate can be severely biased.
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29. We consider the enrollment and follow-up experience for subjects

in a study.

30. Subjects were enrolled when they were diagnosed with a particular

disease at the study center.

31. There are more subjects under observation (at risk) at the

beginning of the study than there are at the end of the study

because of deaths and losses.

32. The methods of survival analysis allow the data from subjects lost

to follow-up to be used until the time at which they are lost.
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33. For the purposes of survival analysis, we often assume that death

rates vary with the time since entry into the study, but not with

respect to calendar time of entry during the study period. With

this assumption of homogeneity of death rates, it is appropriate to

measure survival from the time of enrollment.

34. The assumption of homogeneity of death rates can be avoided

with the use of regression methods,

35. which allow analysis to be adjusted for patient characteristics such

as age and date of enrollment.
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Summary of Basic Survival Analysis

1. Analysis of time from one event to another event. Some examples

and counter-examples are:

(a) Example: Time from admission to discharge among burn

patients.

(b) Examples with cancer:

• Time from remission to relapse.

• Time from diagnosis to remission.

• Time from diagnosis to death.
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(c) Examples:

• Time from first treatment to death in ESRD patients.

• Time from first treatment to transplant in ESRD patients.
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(d) counter-examples

• NOT: time to cancer among those getting cancer.

• NOT: dichotomous death outcome for hospital discharge (use

dichotomous response methods: logistic regression, chi-square,

discriminant).

• NOT: insurance actuarial tables, based on cross-section
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2. Clinical or personal versus statistical experience.

3. We remember exceptional events rather than the norm.

4. Out of 500 patients treated, one might remember the exceptional

cases.

5. In contrast, many statistical summaries are oriented towards

summarizing the norm. Statistical tools help summarize the norm

as well as to identify distinguished cases.
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Summary of Basic Survival Analysis

6. Statistical summaries and non-Gaussian distributions:

(a) means, probability density function, and histograms (for complete

Gaussian data).

(b) medians, hazard function, and survival curve (for censored or

non-Gaussian data).

7. Statistical significance versus importance.
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(a) Statistical significance is hard to achieve with small sample sizes.

Consider two groups, A and B, with n = 2 in group A and n = 3 in

group B.

(b) No matter how big the difference is between the two sets of

numbers, the random chances (probability) that the difference

between the two groups is as large or larger than is observed is at

least 0.1 = 1/(5
2) since there are (5

3) = (5
2) ways to distribute 5

numbers between these two groups.

(c) Thus, by chance, the 2 largest values would end up in group A and

the smallest in the other with probability 0.1.

(d) So, the p-value is at least 0.1.
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(e) If there is any difference at all between the two populations,

statistical significance will occur if the sample size is large enough,

even if the difference is unimportant.

(f) Consider two large samples from populations that differ slightly.

(g) The difference is often significant (small p-value) because

t ≈ lim
n→∞

µ1 − µ2
σ
√

2/n
→ ∞ (61)
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8. When to use survival analysis versus the fraction with event.

(a) Use survival analysis when the events are spread out over a long

period of time.

(b) e.g. Survival analysis curve for time to death for diabetes would be

useful.

(c) Use a fraction when the events are clustered near the entry time.

(d) e.g. Hospital death rate = fraction of burn admissions discharged

dead.

(e) Time to death is of secondary importance to fraction dead.
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9. How to describe a single sample of survival data:

10. Survival curve, median or other percentiles (s.e. of estimates).

11. Crude death rates=Total number of events divided by total

follow-up. e.g. 156 patients followed for total of 2431 months with

15 deaths while on transplant yields death rate of

6.17 = 1000 × 15/2431 per 1,000 person months or

7.4 = 6.17 × 12/10 deaths per 100 person years.
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Comaprison Survival Rates for Two Samples

Freich et al. (1963) and Gehan (1965) report the results of a clinical

trial of 6-mercaptopurine (6-MP) versus placebo in 42 children, 21

children in eah group. Treatment allocation was randomized.

Patients were followed until their leukemia return (relapse).

• Is there any difference between two survival rates?
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Table 5: A clinical trial of 6-mercaptopurine (6-MP) versus

placebo.

Placebo 6-MP

Time Censor Time Censor Time Censor Time Censor

1 1 5 1 10 1 20 0

22 1 4 1 7 1 19 0

3 1 15 1 32 0 6 1

12 1 8 1 23 1 17 0

8 1 23 1 22 1 35 0

17 1 5 1 6 1 6 1

2 1 11 1 16 1 13 1

11 1 4 1 34 0 9 0

8 1 1 1 32 0 6 0

12 1 8 1 25 0 10 0

2 1 11 0
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Log-Rank Test
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Log-Rank Test

1. Often, one of the main objectives of statistical analysis is to

compare two or more samples to each other.

2. In survival applications, the comparison can be directed towards a

variety of parameters.

3. The comparison can be directed towards contrasting the death

rates, the survival curves, the mean lifetimes, or the median

lifetimes.
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Log-Rank Test

4. The methods for comparison and the results of the comparison do

not usually differ with the parameterization chosen because lower

death rates, a higher survival curve, and longer lifetimes all tend to

correspond to each other.

5. The objective is to determine whether the survival times in one

group tend to be longer than the times in the other group.

6. If one survival curve is higher than the other (on the vertical axis)

at a particular time, then a larger proportion of that sample has

survived to that time.
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Log-Rank Test

7. If one survival curve is higher than the other at all times, then the

survival in that group tends to be longer than the survival in the

other group, for example, evaluating mortality after exposure to a

risk factor.

8. Compare the survival curves of the exposed and unexposed groups

analyzing the time from entry to death as the time of the outcome

event and the time of loss to follow-up as a censored observation.
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Log-Rank Test

9. Several analysis can be useful in making such comparisons.

(a) Plot the estimated survival curves on the same axes for comparison.

(b) Interpret the two curves, if possible.
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(c) If one curve is consistently above the other, then the comparison of

the two survival patterns is clear.

(d) If the curves cross once, then the comparison is harder to

summarize; one group has lower event rates at the beginning while

the other group has lower event rates at later times.

(e) If the curves overlap or cross many times, then a reasonable

summary may be that the survival distributions are similar to each

other.
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(f) Compute relevant summary proportions with or without the event

(e.g., at 1 year and 5 years).

(g) The survival curve estimates the fraction that are event-free at

each time.

(h) Each “curve” is usually plotted as a “staircase” function of time.

(i) Test for differences with the log rank test. (alternatively, the

Peto-Wilcoxon or Prentice-Wilcoxon, but not the Breslow-Wilcoxon

or Gehan test).
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(j) Compute and report the crude event rates (total number of events

divided by the total time of follow-up) in each group for descriptive

purposes (this assumes a constant event rate).

(k) Estimate the event rates during a series of time intervals and plot

them as a function of time.

(l) More generally, compare several curves. Caution: ordinal groups

(dose) are handled differently.
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Log-Rank Test

10. The resulting plot can be quite informative.

11. We could compare survival at specific time points, or we are more

interested in comparing two survival curves.

12. However, real differences can only be revealed by application of

statistical tests of significance.
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13. When there are no censored observations, standard nonparametric

tests can be used to compare survival distributions; for example,

the Wilcoxon or

14. Mann-Whitney for the comparison of two samples, and the

Kruskal-Wallis test for the comparison of several groups.

15. A family of nonparametric tests for samples with censoring will be

considered in this chapter.
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Log-Rank Test

1. Considering first sample of two samples, let (X11, X12, · · · , X1n1
)

be i.i.d. each with survival time cumulative density function F1,

(survival function S1), and C11, C12, · · · , C1n1
be i.i.d. each with

censoring time cumulative density function G1,

C1i, i = 1, 2, · · · , n1 is the censoring time associated with T1i.

2. We can observe (T1i, δ1i), i = 1, 2, · · · , n1, where

T1i = T1i ∧ C1i, δ1i = I(T1i ≤ C1i).
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3. For the second sample, let X21, X22, · · · , X2n2 be i.i.d. each with

survival time cumulative density function F2 (survival function S2),

and C21, C22, · · · , C2n2 be i.i.d. each with censoring time density

function G2, C2i is the censoring time associated with T2i.

4. We can observe (T2i, δ2i), i = 1, 2, · · · , n2, where

T2i = T2i ∧ C2i, δ2i = I(T2i ≤ C2i).
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1. The usual two-sample problem is to test

H0 : F1 = F2 (62)

2. In terms of medical research, we are interested in

H�
0 : S1(t) = S2(t) (63)

v.s. H�
A : S1(t) ≤ S2(t) (64)

3. HA is an one-side alternative hypothesis with strict inequality at

any time t.
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4. Let another testing hypothesis be

H†
0 : λ1(t) = λ2(t) (65)

v.s. H†
A : λ1(t) ≤ λ2(t) (66)

5. These two hypotheses in not exact the same such that

H†
0 ⇔ H�

0 (67)

H†
A ⇒ H�

A (68)

H†
A � H�

A (69)
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Log-Rank Test

(1) H�
0 : S1(t) = S2(t) (70)

v.s. H�
A : S1(t) ≤ S2(t) (71)

(2) H†
0 : λ1(t) = λ2(t) (72)

v.s. H†
A : λ1(t) ≤ λ2(t) (73)

(3) H†
0 ⇔ H�

0 (74)

H†
A ⇒ H�

A (75)

H†
A � H�

A (76)

c©Jeff Lin, MD., PhD. Introduction to Survival Analysis, 161
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1. Consider two hazard function and two survival functions as

λ1 > λ2 (77)∫ t

0
λ1(u) du >

∫ t

0
λ2(u) du (78)

exp[−
∫ t

0
λ1(u) du] < exp[−

∫ t

0
λ2(u) du] (79)

S1(t) < S2(t) (80)

2. We should plot two or more survival curves and (cumulative)

hazard curves to see any cross over survival curves before we test

any hypothesis.
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1. Formally, we test the hypothesis that the population survival

distributions are equal.

2. The null and alternative hypotheses are

H0 : S1(t) = S2(t), for all T.0. (81)

HA : S1(t) �= S2(t), for some t > 0. (82)

3. The log rank test is most useful for detecting consistent differences

between survival curves. Difference methods should be used to

document crossing survival curves.
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Log Rank Test: Single 2 × 2 Table

1. Suppose we have two populations, for example, one population

receive new treatment and another population receive standard

treatment.

2. Suppose we have data include two groups from two population,

the patients in either group may either die within a year or survival

beyond a year.

3. The data may be summarized in a 2 × 2 Table as Table 6.
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Table 6: Log Rank Test: Single 2 × 2 Table

Dead Alive Total

Group (Population) 1 d1 n1 − d1 n1

Group (Population) 2 d2 n2 − d2 n2

Total d1 + d2 = d. n − d. n

c©Jeff Lin, MD., PhD. Introduction to Survival Analysis, 165

Log Rank Test: Single 2 × 2 Table

1. Denote

p1 = Pr[ Dead | population 1 ] (83)

p2 = Pr[ Dead | population 1 ] (84)

2. To test

H0 : p1 = p2, (85)

is the same to test Risk Difference

H0 : p1 − p2 = 0. (86)
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p̂1 =
d1
n1

(87)

p̂2 =
d2
n2

(88)

p̂ =
n1 p̂1 + n2 p̂2

n1 + n2
=

d.
n

(89)

q̂ = 1 − p̂ (90)

Risk Difference = p̂1 − p̂2 (91)

Var( p̂1 − p̂2) =
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)
n2

(92)
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Log Rank Test: Single 2 × 2 Table

3. Test statistic

z =
| p̂1 − p̂2 |√

p̂(1 − q̂)( 1
n1

+ 1
n2

)
(93)

4. Include the continuity correction

zc =
| p̂1 − p̂2 | − n

2√
p̂(1 − q̂)( 1

n1
+ 1

n2
)

(94)

5. To test H0 : p1 = p2;

p − value = 2 [1 − Φ(z)] (95)
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6. Actually, test Risk Difference is the same as using Pearson’s

chi-square test as

X2 =
[ | p̂1 − p̂2 |√

p̂(1 − p̂)( 1
n1

+ 1
n2

)

]2
(96)

=
n
(
|d1(n2 − d2) − (n1 − d1)d2|

)2

[
n1 n2 (d.) (n − d.)

] (97)

= ∑
i,j

(Oij − Eij)2

Eij
(98)
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7. Include the continuity correction,

X2
c =

n
(
|d1(n2 − d2) − (n1 − d1)d2| − n

2

)2

[
n1 n2 (d.) (n − d.)

] (99)

p-value = Pr[χ2
1 > X2] (100)

8. Note: Pearson’s chi-square test, as the equations: 97 and 98, is an

approximation to the exact discrete conditional distribution under

H0.
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9. Given that four margins n1, n2, d., n − d. are fixed, the random

variable D1, which is the entry in the (1, 1) cell of the 2 × 2 table,

has a hypergeometric distribution

Pr[D1 = d1] =
(n1

d1
)(n2

d2
)

(n
d.
)

(101)

E(D1) =
n1 d.

n
(102)

Var(D1) =
n1 n2 d. (n − d.)

n2 (n − 1)
(103)
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10. Consequently,

n1 (n2 − d2) − (n1 − d1) d2 = n( d1 − E(D1) ) (104)

n1 n2 (d.) (n − d.) = n2 (n − 1) Var(D1) (105)

X2 =
n
(
|d1(n2 − d2) − (n1 − d1)d2|

)2

[
n1 n2 (d.) (n − d.)

] (106)

=
n

n − 1

[
d1 − E(D1)√

Var(D1)

]2
(107)
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Log Rank Test: Sequence of 2 × 2 Table

1. Now suppose we have a k-sequence of 2 × 2 tables.

2. For example, we might have k strata of 2 groups that receive 2

different treatments.

3. Because there may be differences among k strata, we do not want

to combined all k tables into a single 2 × 2 table.
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4. We want to test

H0 : p11 = p21 , · · · , p1k = p2k, simultaneous statement(108)

Ha : p1i > p2i, in any one stratum (109)

5. Where

p1i = Pr[ Dead | Treatment 1, strata i ]

p2i = Pr[ Dead | Treatment 2, strata i ]
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Log Rank Test: Sequence of 2 × 2 Table

6. Consider stratum 1 as

Table 7: Log Rank Test with Sequence 2 × 2 Table: Stratum

1

Dead Alive Total

Group (Population) 1 d11 n11 − d11 n11

Group (Population) 2 d21 n21 − d21 n21

Total d11 + d21 = d.1 n.1 − d.1 n.1
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Log Rank Test: Sequence of 2 × 2 Table

7. till stratum k as

Table 8: Log Rank Test with Sequence 2 × 2 Table: Stratum

k

Dead Alive Total

Group (Population) 1 d1k n1k − d1k n1k
Group (Population) 2 d2k n2k − d2k n2k

Total d1k + d2k = d.k n.k − d.k n.k
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8. We can use Mantel-Haenszel statistic to test association of a

sequence 2 × 2 table

θMH =
∑k

1

(
d1i − E(D1i)

)
∑k

1
√

Var(D1i)
(110)

E(D1i) =
n1i d.i

n.i
(111)

Var(D1i) =
n1i n2i d.i (n.i − d.i)

n2
.i (n.i − 1)

(112)

where, for i = 1, 2, · · · , k.
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9. Including the continuity correction, the Mantel-Haenszel statistic is

θMHc =

∣∣∣∣∑k
1

(
d1i − E(D1i)

)∣∣∣∣ − 1
2

∑k
1
√

Var(D1i)
(113)
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10. When the tables are independent, then under H0,

θMH ∼ asym N(0, 1) (114)

either when k is fixed and ni → ∞ or k → ∞ and the tables are

also identically distributed.

11. Note: θ2
MH ∼ asym χ2

1 distribution.
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Log Rank Test (Nonparametric Methods):

Comparison of Two Samples Hazard Rate

Comparison of Two Samples Hazard Rate

⇒ Comparison of Two Samples Survival Rate
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Log Rank Test:

Comparison of Two Samples Hazard Rate

1. When there are no censored observation, standard nonparametric

tests can be used to compare survival distributions; for example,

• the Wilcoxon or Mann-Whitney for the comparison of two

samples, and

• the Kruskal-Wallis test for the comparison for two samples.
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Comparison of Two Samples Hazard Rate

2. After construction a 2 × 2 table for each uncensored time, the

evidence against the null hypothesis can be summarized in the

following statistic:

U =
i=k
∑
i=1

wi [d1i − E(D1i)] (115)

Var(U) =
i=k
∑
i=1

w2
i Var(D1i) (116)

Z =
∑i=k

i=1 wi [d1i − E(D1i)]√
∑i=k

i=1 w2
i Var(D1i)

(117)
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Comparison of Two Samples Hazard Rate

3. Under H0,

E(U) = 0 (118)

Z ∼ asym N(0, 1), under H0 (119)

p − value = Φ(|Z| ≥ z) (120)
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Log Rank Test:

Comparison of Two Samples Hazard Rate

4. Under H0:

Z2
LR = X2

LR =
U2

Var(U)
(121)

X2
LR ∼ asym χ2

1, under H0 (122)

5. X2
LR = Z2 is chi-square distribution at 1 degree of freedom.
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6. Log Rank Test:

Comparison of Two Samples Hazard Rate

7. wi is weight associated with the 2 × 2 table at time ti, and

8. wi can be any function of previous history

n1m, n2m, d1m, d2m, m ≤ i except d1i, d2i.
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Log Rank Test:

Comparison of Two Samples Hazard Rate

9. Note: these sequence of tables are not independent, however, we

still sum over the variance because of conditionally uncorrelated.
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Log Rank Test:

Comparison of Two Samples Hazard Rate

10. The choice

wi = 1 (123)

gives the log-rank test (also called Cox-Mantel Test,

Mantel-Cox Test, Mantel-Haenszel Test,

Peto-Mantel-Haenszel Test, Generalized Mantel-Haenszel

Test).

11. Log-rank test put equal weight on each observation and therefore,

by default, is more sensitive to exposures with a constant relative

risk, i.e., proportional hazard effect.
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Comparison of Two Samples Hazard Rate

12. The choice

wi = ni (124)

gives the (Generalized Gehan) Wilcoxon Test,

(Gehan-Breslow Test, Gehan Test, Generalized

Mann-Whitney Test, Generalized Breslow Test).

13. It reduced to the Wilcoxon test in the absence of censoring.

c©Jeff Lin, MD., PhD. Introduction to Survival Analysis, 188

Log Rank Test:

Comparison of Two Samples Hazard Rate

14. The generalized Wilcoxon test put more weight on the beginning

observations and because of that its use is more powerful in

detecting the effects of short term risks.

15. The generalized Wilcoxon test is less sensitive than the log-rank

test to differences between groups that occur at later points in

time.

16. To put in another way, although both statistics test the same null

hypothesis, they differ in their sensitivity to various kinds of

departures from that hypothesis.
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17. Log-rank test is more suitable when the alternative to the null

hypothesis of no difference between two groups of survival times is

that the hazard of death at any given time for an individual in one

group is proportional to the hazard at that time for a similar

individual the other group.

18. This is the assumption of proportional hazards, which underlines a

number of methods for analyzing survival data.
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19. Some statistician suggest that the Wilcoxon test is more

appropriate than the log-rank test for comparing the two survival

functions for other types of departure from the null hypothesis.

20. Wilcoxon test is more powerful in situations where event times

have log-normal distributions with a common variance but with

different means in the two groups.

21. Neither test is particularly good at detecting differences when

survival curves cross.
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22. Other statisticians suggest that Gehan-Wilcoxon test uses weight

n.i which carries the information of mortality and censoring.

23. Actually, Generalized Wilcoxon test tries to test two hypothesis

(1) HT0
: λT1

(t) = λT2
(t) (125)

(2) HC0
: λC1

(t) = λC2
(t) (126)

24. Unfortunately, this statistic can reject the null hypothesis when (1)

is true and (2) is false because we are only interested (1)

hypothesis.
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25. Peto-Wilcoxon test uses Wi = Ŝcombined(Ti) that really have to do

with mortality.

26. So Peto-Wilcoxon statistic only tests (1)HT0
: λT1

(t) = λT2
(t)

hypothesis.
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27. Note: In SAS, Wilcoxon test has two situation:

(a) Wilcoxon Test uses weight ni in testing “STRATA” variable(s).

(b) Wilcoxon Test is really similar to Peto-Wilcoxon test in “TEST”

covariate(s).

28. Compare several groups simultaneously can be generalized from

previous section. We will not discuss in details, most survival

analysis software handles Comparison of several groups

simultaneously.
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Freich et al. (1963) and Gehan (1965) report the results of a clinical

trial of 6-mercaptopurine (6-MP) versus placebo in 42 children, 21

children in eah group. Treatment allocation was randomized.

Patients were followed until their leukemia return (relapse).

• Is there any difference between two survival rates?

c©Jeff Lin, MD., PhD. Introduction to Survival Analysis, 195

Table 9: A clinical trial of 6-mercaptopurine (6-MP) versus

placebo.

Placebo 6-MP

Time Censor Time Censor Time Censor Time Censor

1 1 5 1 10 1 20 0

22 1 4 1 7 1 19 0

3 1 15 1 32 0 6 1

12 1 8 1 23 1 17 0

8 1 23 1 22 1 35 0

17 1 5 1 6 1 6 1

2 1 11 1 16 1 13 1

11 1 4 1 34 0 9 0

8 1 1 1 32 0 6 0

12 1 8 1 25 0 10 0

2 1 11 0
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> setwd("C://temp//Rdata")

> AML<-read.csv("GehanAML.csv",header = TRUE,sep = ",",dec=".")

> attach(AML)

> Surv(time,censor)

[1] 1 22 3 12 8 17 2 11 8 12 2 5 4 15

[15] 8 23 5 11 4 1 8 10 7 32+ 23 22 6 16

[29] 34+ 32+ 25+ 11+ 20+ 19+ 6 17+ 35+ 6 13 9+ 6+ 10+
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> gehan.surv<-survfit(Surv(time, censor)~group,

type=c("kaplan-meier"),

error=c("greenwood"), conf.type=c("log"))

> summary(gehan.surv)

Call: survfit(formula = Surv(time, censor) ~ group,

type = c("kaplan-meier"),

error = c("greenwood"), conf.type = c("log"))
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group=1

time n.risk n.event survival std.err lower 95% CI upper 95% CI

1 21 2 0.9048 0.0641 0.78754 1.000

2 19 2 0.8095 0.0857 0.65785 0.996

3 17 1 0.7619 0.0929 0.59988 0.968

4 16 2 0.6667 0.1029 0.49268 0.902

5 14 2 0.5714 0.1080 0.39455 0.828

8 12 4 0.3810 0.1060 0.22085 0.657

11 8 2 0.2857 0.0986 0.14529 0.562

12 6 2 0.1905 0.0857 0.07887 0.460

15 4 1 0.1429 0.0764 0.05011 0.407

17 3 1 0.0952 0.0641 0.02549 0.356

22 2 1 0.0476 0.0465 0.00703 0.322

23 1 1 0.0000 NA NA NA
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group=2

time n.risk n.event survival std.err lower 95% CI upper 95% CI

6 21 3 0.857 0.0764 0.720 1.000

7 17 1 0.807 0.0869 0.653 0.996

10 15 1 0.753 0.0963 0.586 0.968

13 12 1 0.690 0.1068 0.510 0.935

16 11 1 0.627 0.1141 0.439 0.896

22 7 1 0.538 0.1282 0.337 0.858

23 6 1 0.448 0.1346 0.249 0.807
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> plot(gehan.surv,bty="l", conf.int=F, lty=1:2, lwd=2,

xlab="time to remission (weeks)", ylab="survival")

> lines(gehan.surv, conf.int=T, lty=1:2, lwd=1.0,cex=2)

> legend(25,0.9,c("Control","6-MP"), lty=1:2,lwd=2)
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> survdiff(Surv(time, censor)~group)

Call:

survdiff(formula = Surv(time, censor) ~ group)

N Observed Expected (O-E)^2/E (O-E)^2/V

group=1 21 21 10.7 9.77 16.8

group=2 21 9 19.3 5.46 16.8

Chisq= 16.8 on 1 degrees of freedom, p= 4.17e-05
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Figure 8: Comparison for Two Survival Curves
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