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Normal Range and Reference Level

An investigator has n healthy male subjects enrolled in a study and

wants to set up the “normal range” of BMI. BMI is computed as the

ratio of weight in kilograms to the square of the height in meters.

Suppose BMI = Di = Xi
Y2

i
. Please derive the normal range for BMI.
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Normal Range and Reference Level

Table 1: Body mass

index (BMI) data of n
healthy male subjects.

Patient Weight Height

Number (kg) (m)

ID WTKG HTM

1 x1 y1

2 x2 y2
... ... ...

i xi yi
... ... ...

n xn yn
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Normal Range or Reference Interval

1. What’s is normal range or reference interval?
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Normal Range or Reference Interval

1. What’s is normal range or reference interval?

2. Why do we need normal range in clinical medicine?
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Normal Range or Reference Interval

1. What’s is normal range or reference interval?

2. Why do we need normal range in clinical medicine?

3. What’s the difference between point estimation (prediction) for

population mean value and individual value?
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Normal Range or Reference Interval

1. What’s is normal range or reference interval?

2. Why do we need normal range in clinical medicine?

3. What’s the difference between point estimation (prediction) for

population mean value and individual value?

4. What’s the difference between interval estimation (prediction) for

population mean value and individual value?
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Normal Range or Reference Interval

1. What’s is normal range or reference interval?

a) Who is “normal” anyway?

b) In the Taiwan population almost everyone has hard fatty deposits

in their coronary arteries, which result in death for many of them.

Very few Africans have this; they die from other causes.

c) So it is “normal” in the Taiwan to have an abnormality.

d) We usually say that normal people are the apparently healthy

members of the local population.

e) We can draw a sample of these and make the measurement on

them.
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Normal Range or Reference Interval

2. Why do we need normal range in clinical medicine?

We use normal range or reference interval to compare characteristics

of a marker of disease progression between affected populations.
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Normal Range or Reference Interval

3. What’s the difference between point estimation (prediction) for

mean value and individual value?

We often use sample mean to estimate or predict population mean

value or individual value or new observation value.
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Normal Range or Reference Interval

4. What’s the difference between interval estimation (prediction) for

population mean value and individual value?

We use confidence interval as interval estimation (prediction) for

population mean value. We use prediction interval as interval

estimation (prediction) for individual value or new observation value.

The true difference is the estimation of variances between two

situations.
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Normal Range or Reference Interval

1. We usually say that normal people are the apparently healthy

members of the local population.

2. We can draw a sample of these and make the measurement on

them.

3. If we use the range of the observations, the difference between the

two most extreme values, we can be fairly confident that if we

carry on sampling we will eventually find observations outside it,

and the range will get bigger and bigger.
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Normal Range or Reference Interval

1. To avoid this we use a range between two quantiles, usually the

2.5 centile and the 97.5 centile, which is called the normal range,

95% reference range, or 95% reference interval.

2. This leaves 5% of normals outside the “normal range”, which is

the set of values within which 95% of measurements from

apparently healthy individuals will lie.
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Normal Range or Reference Interval

1. A difficulty comes from confusion between “normal” as used in

medicine and “Normal distribution” as used in statistics.

2. This has led some people to develop approaches which say that all

data which do not fit under a Normal curve are abnormal!

3. Such methods are simply absurd, there is no reason to suppose

that all variables follow a Normal distribution.

4. The term “reference interval”, which is becoming widely used, has

the advantage of avoiding this confusion.
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Normal Range or Reference Interval

1. However, the most commonly used method of calculation rests on

the assumption that the variable follows a Normal distribution.

2. We have already seen that in general most observations fall within

two standard deviations of the mean, and that for a Normal

distribution 95% are within these limits with 2.5% below and

2.5% above. If we estimate the mean, µ̂, and standard deviation,

s = σ̂, of data from a “Normal population” we can estimate the

reference interval approximately as µ̂− 2s to µ̂ + 2s.
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Normal Range or Reference Interval

1. Suppose the individual observation is Di ∼ N(µD, σ2
D) and we

have total n subjects in reference sample to estimate normal

range. Since

E(Di) = µD, (1)

E(D̄) = µD. (2)

So we use observed sample mean d̄ to estimate Di.
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Normal Range or Reference Interval

2. Now, suppose the individual observation is Di = µD + εi, we use

D̂i = D̄ + εi to estimate Di, then

Var(D̄ + εi) = Var(D̄) + Var(εi) (3)

= Var(D̄) + Var(εi). (4)
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Normal Range or Reference Interval

3. Now, we use
s2

D
n to estimate Var(d̄) and use sD = σ̂D, then

V̂ar(D̄ + εi) = V̂ar(D̄) + V̂ar(εi) (5)

=
s2

D
n

+ sD (6)

= s2
D

(
1 +

1
n

)
. (7)
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Normal Range or Reference Interval

4. So the one possible method to estimate normal range is(
d̄D − 1.96×

√
V̂ar(d̄ + ε i), d̄D + 1.96×

√
V̂ar(d̄ + ε i)

)
(8)

=

(
d̄D − 1.96× sD

(
1 +

1√
n

)
, d̄D + 1.96× sD

(
1 +

1√
n

))
. (9)

When n → ∞, the reference interval becomes as(
d̄D − 1.96× sD, d̄D + 1.96× sD

)
. (10)
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Two-Sample t Test and Paired t Test
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Two-Sample t Test and Paired t Test

A new compound ABC-123, is being developed for long-term

treatment of patients with chronic asthma. Total 2× n asthmatic

patients were enrolled in a double-blind study and randomized to

receive daily oral doses of ABC-123 or a placebo for 6 weeks. The

primary measurement of interests is the resting FEV1 (forced

expiratory volume during the first second of expiration), which is

measured at the end of the 6-week treatment period. Data (in liters)

are shown in the Table 2. Does administration of ABC-123 appear

to have any effect on FEV1?
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Two-Sample t Test and Paired t Test

Suppose that X is FEV1 for the ABC-123, and Xi, i = 1, . . . , n, is

normally distributed as N(µX, σ2
X). And suppose that Yi is FEV1 for

the placebo group and Yi, i = 1, . . . , n is normally distributed as

N(µY, σ2
Y). Xi and Yi are assumed independent for all i and

i = 1, . . . , n.

1. Calculate the sample standard error of (x̄− ȳ), in terms of

xi, yi, µX, µY, σ2
X and σ2

Y.

2. Derive the test statistic, and call it as TU.
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Two-Sample t Test

Table 2: The results of a trial

of a new chemical compound for

chronic asthma: Part I

ABC-123 Group Placebo Group

Subject 6 Week Subject 6 Week

ID fev6 ID fev6

1 x1 1 y1

2 x2 2 y2
... ... ... ...

i xi i yi
... ... ... ...

n xn n yn
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Two Samples Inference

1. Comparison of means from two sub-population can be useful for

many purpose.

2. A difference in means indicates that something caused the

difference.

3. Identification of differences is a first step toward understanding

the cause of the difference.
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Two-Sample t Test

1. The possibility of a difference between two population mean values

is usually investigated by taking a sample for each population.

2. In a two-sample hypothesis-testing problem, the underlying of

two different populations, neither or whose values is assumed

known, are compared.

3. The two sub-populations consist of different members.

4. Two separate and independent samples are drawn for such

comparisons; one from each sub-population.
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Two-Sample t Test

The two different sub-populations could be sampled as strata from
the overall population as shown in Table 3.

Table 3: Notation for Two populations and two Samples

Quantity (sub)Population 1 (sub)Population 2

Sample size n1 n2

population mean µ1 µ2

Population standard deviation σ1 σ2

jth possible observation X1j X2j
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Two-Sample t Test: Sample Statistic
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Two-Sample t Test: Sample Statistic

sample mean Xi =
1
ni

ni

∑
j=1

Xij, i = 1, 2

sample variance S2
i =

1
ni − 1

ni

∑
j=1

(Xij − Xi)
2, i = 1, 2

1. Are the population mean values (represented by µ1 and µ2

different (µ1 6= µ2) or are they the same (µ1 = µ2)?

2. The comparison of two population means is change from an

inference about two population parameter µ1 and µ2 into an

inference about the difference between the two means,

δ = µ1 − µ2.
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Two-Sample t Test

The two different sub-populations are shown in Table 4.

Table 4: Notation for Two populations and two Samples

Quantity (sub)Population 1 (sub)Population 2

Sample size n1 n2

Population mean µ1 µ2

Population variance σ2
1 σ2

2

Population standard deviation σ1 σ2

jth possible observation X1j X2j

Sample mean X1 X2

Sample variance S2
1 S2

2

Sample stand deviation S1 S2

Standard error SX1
= S2

1
n1

SX2
= S2

2
n2
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Two-Sample t Test: Testing Hypothesis
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Two-Sample t Test: Testing Hypothesis

We consider three different tests in Table 5 in terms of δ = µ1− µ2.

Table 5: Two-sample Hypothesis Testing

H0 : Null Hypothesis HA : Different Means HA : Difference between Means

H0 : µ1 = µ2 HA : µ1 > µ2 HA : µ1 − µ2 = δ > 0
H0 : µ1 = µ2 HA : µ1 < µ2 HA : µ1 − µ2 = δ < 0
H0 : µ1 = µ2 HA : µ1 6= µ2 HA : µ1 − µ2 = δ 6= 0
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Two-Sample t Test: Test Statistic
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Two-Sample t Test: Test Statistic

X1 − X2 ∼ N(µ1 − µ2, σ2
X1−X2

) or equivalently N(δ, σ2
D) (11)

TU = T =
(X1 − X2)− (µ1 − µ2)

σ̂X1−X2

=
(D− δ)

σ̂D
, (12)

When the null hypothesis H0 : µ1 = µ2 or µ1 − µ2 = δ0 = 0 is true,

then

TU = T ∼ tn1+n2−2. (13)

T follows Student’s t distribution with mean zero and

(n1 − 1) + (n2 − 1) = n1 + n2 − 2 degrees of freedom
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Two-Sample t Test: Assumptions

1. What are the basic assumptions of two-sample t test?
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Two-Sample t Test: Assumptions

1. Population 1 to be independent of population 2 and the two

samples to consist of independently sampled observations.

2. The observations to be sampled from normally distributed parent

populations.

3. The variance to be the same for both populations sampled

(σ2
1 = σ2

2), occasionally called homoscedasticity.
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Two-Sample t Test: Test Statistic Variance

If two populations are independent, then the variance of the mean

difference (X1 − X2) is

Var(X1 − X2) = Var(D) = σ2
X1

+ σ2
X2

= σ2
D.
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Two-Sample t Test: Test Statistic Variance

In general, σ2
D is unknown, so we need to estimate it. A natural

estimate of the variance of the difference between two estimated

mean values is

σ̂2
D = S2

un = S2
X1−X2

= S2
D = S2

X1
+ S2

X2
=

S2
1

n1 − 1
+

S2
2

n2 − 1
. (14)
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Two-Sample t Test: Test Statistic Variance

1. Take advantage of the equal variance assumption.

2. A weighted average of the two estimated variance produces a

single estimate of the common variance.

3. A pooled estimator of the common variance (σ2
1 = σ2

2 = σ2 —

assumption 3)

σ̂2
D = S2

pooled =
(n1 − 1)S2

1 + (n2 − 1)S2
2

(n1 − 1) + (n2 − 1)
. (15)
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Two-Sample t Test: Test Statistic Variance

1. Under the null hypothesis and assumptions, σ2
1 = σ2

2 = σ2, we let

the pooled variance estimator be σ̂2 = Spooled, then

σ̂2
D = S2

D =
S2

pooled

n1
+

S2
pooled

n2
= S2

pooled

( 1
n1

+
1
n2

)
(16)

2. S2
pooled estimates the variability associated with the observed

difference between two sample mean values.

3. When σ2
1 = σ2

2 = σ2, then E(S2
pooled) = σ2.
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Two-Sample t Test

1. Assume two population variances are equal as σ2
1 = σ2

2 = σ2.

2. The point estimator of difference between the two sample mean

values µ1 − µ2 is (X1 − X2).
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Two-Sample t Test

3. Use the pooled estimator of the variance to test

H0 : µ1 − µ2 = δ0, the test statistic is

T =
(X1 − X2)− (µ1 − µ2)

σ̂D
=

(X1 − X2)− δ0√
S2

pooled

(
1
n1

+ 1
n2

). (17)

where S2
pooled =

(n1 − 1)S2
1 + (n2 − 1)S2

2
(n1 − 1) + (n2 − 1)

.

4. The T-statistic has a Student’s t distribution with degrees of

freedom n1 + n2 − 2 when the null hypothesis µ1 − µ2 = δ0 = 0

is true.
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Two-Sample t Test

To test H0 : µ1 − µ2 = 0, , suppose we assume σ2
1 and σ2

2 are

known, the test statistic

TU =
(X1 − X2)√

Var(X1 − X2)
(18)

Var(X1 − X2) =
σ2

1
n

+
σ2

2
n

(independent samples) (19)

When σ2
1 = σ2

2 = σ2, σ2 is known, and n → ∞,

TU =
(X1 − X2)√

σ2
1+σ2

2
n

=
(X1 − X2)√

2σ2

n

(20)
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Paired t Test
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Paired t Test

A new compound ABC-123, is being developed for long-term

treatment of patients with chronic asthma. Total n asthmatic

patients were enrolled in a study and received daily oral doses of

ABC-123 for 6 weeks. The primary measurement of interests is the

resting FEV1 (forced expiratory volume during the first second of

expiration), which is measured before and at the end of the 6-week

treatment period. Data (in liters) are shown in the Table 6. Does

administration of ABC-123 appear to have any effect on FEV1?
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Paired t Test

Suppose that X is FEV1 before the treatment of ABC-123, and Xi,

i = 1, . . . , n, is normally distributed as N(µX, σ2
X). And suppose

that Yi is FEV1 6 weeks after the treatment of ABC-123 and Yi,

i = 1, . . . , n is normally distributed as N(µY, σ2
Y). The covariance of

X and Y is σxy.

1. Calculate the sample standard error of (x̄− ȳ), in terms of

xi, yi, µX, µY, σ2
X, σ2

Y and σxy.

2. Derive the test statistic, and call it as TP.
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Paired t Test

Table 6: The results of a trial of a new chemical

compound for chronic asthma: Part II

Before Treatment After 6-Week Treatment

Subject Placebo ABC-123
ID fev fev

1 x1 y1

2 x2 y2
... ... ...

i xi yi
... ... ...

n xn yn
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Paired t Test: Design

1. Two non-independent populations arise, for example, from a

“before-after” experiment (research).

2. A series of experimental units (“baseline”) then treated in a

special way and measured again some time later.

3. The same individual is measured both at the beginning and the

end of the experiment.

4. Since the same individual is measured twice, the two

measurements are not independent.
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Paired t Test: Design

The major different in this design is that each subject is used as his

own control to compare before and after treatment.

Paired Sample Design

1. Two samples are said to be paired when each data point of the

first sample is matched and is related to a unique data point of

the second sample.

2. Two samples are said to be independent when the data point in

one sample are unrelated to the data points in the second sample.
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Paired t Test: Design

3. paired or matched study design is probably more definitive,

because most other factors that influence response variable before

treatment will also be present after treatment, and may influence

the comparison.

4. Paired study design may be useful to control or eliminate those

influential factors.
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Paired t Test: Data Structure

Table 7: Data Structure of Two Nonindependent Samples for Paired

t Test

Paired (matched) design Data Entry Style

Subject Before Treatment After treatment Difference between Pairs

i Xi1 Xi2 Di = Xi1 − Xi2

1 X11 X12 D1 = X11 − X12

2 X21 X22 D2 = X21 − X22

· · · · · · · · · · · ·
i Xi1 Xi2 Di = Xi1 − Xi2

· · · · · · · · · · · ·
n = n1 = n2 Xn1 Xn2 Dn = Xn1 − Xn2
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Paired t Test

1. If Xi1, . . . , Xn1 and Xi2, . . . , Xn2 are normally distributed samples,

then the differences Di = Xi1 − Xi2 are also normally distributed.

2. For large samples (n > 30 or so) from non-normal distributions,

the mean difference D = 1
n ∑n

i=1 Di typically has an approximate

normal distribution (central limit theorem).

3. What’s the variance?
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Paired t Test

1. We assume that a random sample of size n.

2. The response variable before treatment, Xi1 for each ith subject is

normal distributed with N(µi, σ2)

3. The response variable after treatment, Xi2 is normal distributed

with N(µi + δ, σ2).

4. If δ = 0, then there is no difference of response variables between

before and after treatment.
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Paired t Test: Testing Hypothesis

H0 : δ = 0 or equivalently, H0 : µbefore = µafter.

Possible alternative hypotheses are:

HA : δ < 0 or equivalently, HA : µbefore < µafter

HA : δ > 0 or equivalently, HA : µbefore > µafter

HA : δ 6= 0 or equivalently, HA : µbefore 6= µafter.
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Paired t Test: Test Statistic

1. The hypothesis-testing problem can thus be considered a

one-sample t test when the variance is known.

2. The sample statistic D and sample variance of D are

sample mean of difference: D =
1
n

n
∑
i=1

Di =
1
n

n
∑
i=1

(Xi2 − Xi1)

sample variance: S2
D =

∑n
i=1(Di − D)2

(n− 1)

sample standard error: SD =

√
∑n

i=1(Di − D)2/(n− 1)
n

.
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Paired t Test: Test Statistic

3. When the n sampled differences (Di-values) are normally

distributed, a one-sample t test (X versus µ0) directly applies. So

the sample test statistic comparing X to δ = 0 becomes

sample test statistic: T =
D
SD

∼ tn−1. (21)
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Paired t Test: Test Statistic

Var(D) = Var
(1

n

(
∑
i
(Xi1 − Xi2)

))
(22)

=
1
n2Var

(
∑
i
(Xi1 − Xi2)

)
(23)

=
1
n2

(
∑
i

Var(Xi1 − Xi2)
)

(24)

=
1
n2

(
∑
i
(Var(Xi1) + Var(Xi2)− 2Cov(Xi1, Xi2))

)
(25)

=
1
n

(
Var(Xi1) + Var(Xi2)− 2Cov(Xi1, Xi2)

)
(26)
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Paired t Test: Test Statistic

1. Assume Xi1 ∼ N(µ1, σ2
1) and Xi2 ∼ N(µ2, σ2

2), and

Cov(Xi1, Xi2) = σ12, for i = 1, . . . , n,

Var(D) =
1
n

(
Var(Xi1) + Var(Xi2)− 2Cov(Xi1, Xi2)

)
(27)

=
1
n

(
σ2

1 + σ2
2 − 2σ12

)
(28)

2. When we assume σ2
1 = σ2

2 = σ2, then

Var(D) =
1
n

(
2σ2 − 2σ12

)
(29)
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Paired t Test: Test Statistic

1. Plug in sample variance,

V̂ar(D) =
1
n

(
S2

1 + S2
2 − 2σ̂12

)
(30)

2. The test statistic becomes

T =
D
SD

=
1
n ∑i(Xi1 − Xi2)√
1
n

(
S2

1 + S2
2 − 2σ̂12

) (31)
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Paired t Test: Test Statistic

When we assume σ2
1 = σ2

2 = σ2 and σ12 are known, and n → ∞

Var(D) =
1
n

(
σ2

1 + σ2
2 − 2σ12

)
(32)

The sample test statistic becomes

TP =
D
SD

=
1
n ∑i(Xi1 − Xi2)√
1
n

(
σ2

1 + σ2
2 − 2σ12

) (33)

=
X1 − X2√

1
n

(
2σ2 − 2σ12

). (34)
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Two-Sample t Test and Paired t Test

1. When σ2
1 = σ2

2 = σ2, and we assume σ2 is known, let n → ∞.

2. The two sample t test statistic is

TU =
X1 − X2√

1
n

(
2σ2
); (35)

3. The paired t test statistic is

TP =
X1 − X2√

1
n

(
2σ2 − 2σ12

). (36)
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Two-Sample t Test and Paired t Test

1. When we have positive correlation, (or covariance) between Xi1
and Xi2, the paired t test statistic (from paired design) has

smaller variance, therefore, the paired t test has larger power.

2. Before we conduct, we need to consider whether there exists a

positive correlation.

3. However, the paired design has “regression to the mean” problem,

the significant difference between before and after treatment may

arise from “regression to the mean”, and the significant difference

may not be true.
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Screening Test and Diagnostic Test
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Screening Test and Diagnostic Test

Breast cancer is considered largely a hormonal disease. An important

hormone in breast-cancer resection is estradiol. The data in Table 11

on serum estradiol were obtained from 213 breast-cancer cases and

432 age-matched controls. All women were age 50-59 years.
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Screening Test and Diagnostic Test

Table 8: Serum-Estradiol Data

Serum estradiol (pg/ml) Case (N = 213) Controls (N = 432)
01–04 28 72
05–09 96 233
10–14 53 86
15–19 17 26
20–24 10 6
25–29 3 5
30+ 6 4
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Screening Test and Diagnostic Test
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Screening Test and Diagnostic Test

1. Evaluate the accuracy of the estradiol level as a diagnostic test.

(What is the optimal cut-off point?)

2. The preceding sample was selected to oversample cases. In the

general population, the prevalence of breast cancer is about 2%

among women 50 to 59 years old. Evaluate the usefulness of the

estradiol level as a diagnostic test. (What is the optimal cut-off

point when you consider the prevalence?)
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Screening Test and Diagnostic Test

1. What is the accuracy of a diagnostic test?
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Screening Test and Diagnostic Test

1. What is the accuracy of a diagnostic test?

2. What are the sensitivity and specificity?
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Screening Test and Diagnostic Test

1. What is the accuracy of a diagnostic test?

2. What are the sensitivity and specificity?

3. What are the predictive positive value and predictive negative

value?
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Screening Test and Diagnostic Test

1. What is the accuracy of a diagnostic test?

2. What are the sensitivity and specificity?

3. What are the predictive positive value and predictive negative

value?

4. What is the ROC curve?
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Screening Test and Diagnostic Test

1. What is the accuracy of a diagnostic test?

2. What are the sensitivity and specificity?

3. What are the predictive positive value and predictive negative

value?

4. What is the ROC curve?

5. How to decide the cut-off point?
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Medical Tests:

Diagnostic Tests and Screening Tests
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Medical Tests:

Diagnostic Tests and Screening Tests

1. The purpose of diagnostic testing is to obtain objective evidence

of the presence or absence of a particular condition.

2. This evidence can be obtained to detect disease at its earliest

stages among asymptomatic persons in the general population, a

process referred to as screening.

3. Screening is an application of a test or procedure to

asymptomatic, apparently well individuals, in order to separate

those with a relatively high probability of having a given disease

from those with a relatively low probability of having the disease.
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Medical Tests:

Diagnostic Tests and Screening Tests

1. Investigators often conduct a study to evaluate a simple new

screening test compared to “gold standard test”.

2. The disease status is usually defined by “gold standard” test.

3. In the simplest case the test will simply be classified as having a

positive (disease likely) or negative (disease unlikely) finding.
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Medical Tests:

Diagnostic Tests and Screening Tests

4. Further, suppose that there is a “gold standard” that tells us

whether or not a subject actually has the disease.

5. The definite classification might be based upon data from

follow-up, invasive radiographic or surgical procedures, or autopsy

results.

6. In many cases, the “gold standard” itself will only be relatively

correct, but nevertheless the best classification available.
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Medical Tests:

Diagnostic Tests and Screening Tests

7. Ideally, those with the disease should all be classified as having

disease, and those without disease should be classified as

non-diseased.

8. For this reason, two indices of the performance of a test consider

how often such correct classification occurs.

9. However, classification of disease is not perfect, errors in

measurement lead to misclassification of outcome or exposure.
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Medical Tests:

True Positive Test and True Negative Test

1. A test is true positive test if the test is positive and the subject

has the disease.

2. A test is true negative test if the test is negative and the subject

does not have the disease.
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The Simplest Medical Tests

with a Dependent 2× 2 Table

We can summarize a medical test results as 2× 2 table as shown in

Table .

captionTrue Positive Test and True Negative

Test

Disease

Medical Test Present (D+) Absent (D-)

Positive (T+) true positive false positive

Negative (T-) false negative true negative
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Medical Tests: Sensitivity and Specificity

1. The sensitivity of a screening test of a disease is the probability

that the screening test of an individual is positive and test classify

that individual as having the disease given that person has the

disease.

2. The specificity of a screening test of a disease is the probability

that the screening test of an individual is negative and test classify

that individual as not having the disease given that person does

not have the disease.
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Medical Tests: Sensitivity and Specificity

Sensitivity = P[T + | D+] = P[Test Positive | Disease Present]

Specificity = P[T − | D−] = P[Test Negative | Disease Absent]

1. Sensitivity is sometimes called true positive rate (TPR).

2. Specificity is sometimes called true negative rate (TNR).
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Medical Tests:

False Positive Test and False Negative Test

1. A false positive test if the test is positive and the subject does

not have the disease.

2. A false negative test if the test is negative and the subject has

the disease.
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Medical Tests:

False Positive Test and False Negative Test

1. false-positive rate (FPR) is that 1 minus sensitivity.

2. false-negative rate (FNR) is that 1 minus sensitivity.
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Medical Tests: Positive Predictive Value

and Negative Predictive Value

1. The positive predictive value (PPV), PV+, is the predictive

value of a positive test and is defined as the probability that a

person has a disease given that the test is positive (also known as

predictive value positive).

2. The negative predictive value (NPV), PV−, is the predictive

value of a negative test and is defined as the probability that a

person does not have a disease given that the test is negative

(also known as predictive value negative).
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Medical Tests: Positive Predictive Value

and Negative Predictive Value

The PV+ and PV− are depend on the probability of disease

occurrence (prevalence), P[D+], in population such that

P[D+] + P[D−] = 1.
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Medical Tests: Positive Predictive Value

and Negative Predictive Value

PV+ = P[D + | T+] =
P[D+, T+]

P[T+]
(37)

=
P[T + | D+]P[D+]

P[T + | D+]× P[D+] + P[T + | D−]× P[D−]
(38)

(39)

=
sensitivity× P[D+]

sensitivity× P[D+] + (1− specificity)× P[D−]
(40)
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Medical Tests: Positive Predictive Value

and Negative Predictive Value

PV− = P[D− | T−] =
P[D−, T−]

P[T−]
(41)

=
P[T − | D−]P[D−]

P[T − | D+]× P[D+] + P[T − | D−]× P[D−]
(42)

=
specificity× P[D−]

(1− sensitivity)× P[D+] + specificity× P[D−]
(43)

c©Jeff Lin, MD., PhD. 2005 Biostat Mid-Term Exam 85



Medical Tests: Sample Data as 2× 2 Table

The observed data is constructed as 2× 2 table as in Table 9.

Table 9: Sensitivity and specificity: 2× 2 Table

Disease

Medical Test Present (D+) Absent (D-) Total

Positive (T+) O1,1 = a O1,2 = b a + b = n1. (row 1 margin)

Negative (T-) O2,1 = c O2,2 = d c + d = n2. (row 2 margin)

Total a + c = n.1 b + d = n.2 a + b + c + d = n.. = n
column 1 column 2 (grand total)

margin margin
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Sensitivity and Specificity: Point Estimation

The estimated mean sensitivity and specificity are

̂sensitivity = P[T + | D+] =
a

a + c
(44)

̂specificity = P[T − | D−] =
d

b + d
(45)
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Point Estimation: Positive Predictive Value

and Negative Predictive Value

1. The estimated mean PV+ and PV− actually depend on the

disease prevalence.

2. However, we can seen many clinical literatures calculated the

PV+ and PV− as

P̂V
+
? = P[D + | T+] =

a
a + b

(46)

P̂V
−
? = P[D− | T−] =

d
c + d

(47)

3. The above two calculations are not exact the definition of original

PV+
? and PV−

? .
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Point Estimation: Positive Predictive Value

and Negative Predictive Value

The difficulty in that we usually have no information about the

disease prevalence.
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Medical Tests: Accuracy

1. Vague term

2. Missclassification probability

P(Test result 6= Disease Status)

= Disease Prevalence× (1− Sensitivity)

+(1−Disease Prevalence)× (1− Specificity) (48)

P(Y 6= D )

= P(D = 1)(1− Sen) + (1− P(D = 1))(1− Spe); (49)

Where Y = 1 if test result is postiive, Y = 0 if test result is

negative; and D = 1 for disease and D = 0 for non-disease.
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Example: Breast Cancer and Estradiol Levels

1. Breast cancer is considered largely a hormonal disease.

2. In the population, the prevalence of breast cancer is about 2%.

3. An important hormone in breast-cancer is estradiol.

4. Investigators chose Estradiol ≥ 20pg/ml as an abnormal (having

breast cancer),

5. The data in Table 10. on serum estradiol were obtained from 213

breast-cancer cases and 432 age-matched controls, and all women

were age 50-59 years.
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Example: Estradiol and Breaset Cancer

Table 10: Estradiol and Breast Cancer: Case-Control Study

Breast

Estradiol Test Case (D+) Control (D-) Total

Positive (T+) ≥ 20pg/ml 19 15 34

Negative (T-) < 20pg/ml 194 417 611

Total 213 432 645

Sensitivity =
19

213
= 0.089; Sepecificity =

417
432

= 0.965. (50)
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Example: Estradiol and Breaset Cancer

In the population, the prevalence of breast cancer is about 2%.

PPV(PV+) =
Sen× P(D)

Sen× P(D) + (1− Sep× (1− P(D))

=
0.089(0.02)

0.089(0.02) + (1− 0.965)(1− 0.02)
= 0.050;

NPV(PV−) =
(1− Sep)× (1− P(D))

(1− Sen)× P(D) + (1− Sep)× (1− P(D))

=
(1− 0.965)(1− 0.02)

(1− 0.089)0.02 + (1− 0.965)(1− 0.02)
= 0.651.

(51)
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Example: Estradiol and Breaset Cancer

Thus, there is a 5% probability of breast cancer among

50-59-year-old women with serum Estradiol ≥ 20pg/ml. This is

about 2.5 times the general population rate (2%).
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Screening Test and Diagnostic Test

1. Sometimes, a new screening test is not a simple screening test.

2. The new screening test may provide several categories of response

rather than simply test positive or test negative.

3. In other instances, the results of the test are reported as

continuous variable.

4. In either case, the designation of a cut-off point for distinguishing

test positive versus test negative is arbitrary.
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Medical Tests: ROC Curve

Receiver Operating Characteristic Curve
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Example: Breast Cancer and Estradiol Levels

Breast cancer is considered largely a hormonal disease. An important

hormone in breast-cancer resection is estradiol. The data in Table 11

on serum estradiol were obtained from 213 breast-cancer cases and

432 age-matched controls. All women were age 50-59 years.
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Example: Breast Cancer and Estradiol Levels

Table 11: Serum-Estradiol Level and Breaset Cancer Data

Serum estradiol (pg/ml) Case (N = 213) Controls (N = 432)
01–04 28 72

05–09 96 233

10–14 53 86

15–19 17 26

20–24 10 6

25–29 3 5

30+ 6 4
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Example: Breast Cancer and Estradiol Levels

1. Evaluate the accuracy of the estradiol level as a diagnostic test.

(What is the optimal cut-off point?)

2. The preceding sample was selected to oversample cases. In the

general population, the prevalence of breast cancer is about 2%

among women 50 to 59 years old. Evaluate the usefulness of the

estradiol level as a diagnostic test. (What is the optimal cut-off

point when you consider the prevalence?)
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Medical Tests: ROC Curve

1. Most tests have some quantitative aspect.

2. For Example, biomarkers for Cancer, PSA, CA–125.

3. Tests that invove an element of subjective assessment are often

ordinal in nature.

4. For example, radiologist’s reading images as “definitely”,

“probably”, “possibly”, “definite not”.
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Medical Tests: ROC Curve

1. The same statistical approach can be used only if we can select a

cut off point to distinguish “normal” from “abnormal,” which is

not a trivial problem.

2. The decision rule is based on whether or not the test result (or

some transformation of it) exceed a threshold value.

3. The choice a suitable threshold will vary with circumstances.

4. The choice threshold depends on the trade-off that is acceptable

between failing to detect disease and falsely identifying disease

with the test.
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Medical Tests: ROC Curve

The ROC curve is a device that simply describes the range of

trade-offs that can be ahieved by the test.
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Medical Tests: ROC Curve

1. Firstly, we can investigate to what extent the test results differ

among people who do or do not have the diagnosis of interest.

2. The receiver operating characteristic (ROC) plot is one way to do

this.

3. These plots were developed in the 1950s for evaluating radar

signal detection. Only recently have they become commonly used

in medicine.
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Medical Tests: ROC Curve

A receiver operating characteristic plot is obtained by calculating the

sensitivity and specificity of every observed data value at several

defined cut-off pointsf (5-10 or more) and plotting sensitivity against

1− specificity,
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Medical Tests: ROC Curve

Figure 1: Receiver Operating Characteristic Curve
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Medical Tests: ROC Curve

We just want to calculate sensitivity and specificity for this test, we

have to choose a “cutpoint” which separates “normal” from

“abnormal”.
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Example: Estradiol and Breaset Cancer

Cut-Off Point at Estridal ≥ 30pg/ml

If we chose Estridal ≥ 30pg/ml as an abnormal (having breast

cancer), we can “collapse” some rows and get the following familiar

2× 2 table:
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Example: Estradiol and Breaset Cancer

Cut-Off Point at Estridal ≥ 30pg/ml

Table 12: Estradiol ≥ 30pg/ml as a Cut-Off Point

Breast

Estradiol Test Present (D+) Absent (D-) Total

Positive (T+) ≥ 30pg/ml 6 4 10

Negative (T-) < 30pg/ml 207 428 635

Total 213 432 645

Sensitivity =
6

213
= 0.028; Sepecificity =

428
432

= 0.990. (52)
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Example: Estradiol and Breaset Cancer

Cut-Off Point at Estridal ≥ 20pg/ml

If we chose Estridal ≥ 20pg/ml as an abnormal (having breast

cancer), we can “collapse” some rows and get the following familiar

2× 2 table:

c©Jeff Lin, MD., PhD. 2005 Biostat Mid-Term Exam 109



Example: Estradiol and Breaset Cancer

Cut-Off Point at Estridal ≥ 20pg/ml

Table 13: Estradiol ≥ 20pg/ml as a Cut-Off Point

Breast

Estradiol Test Present (D+) Absent (D-) Total

Positive (T+) ≥ 20pg/ml 19 15 34

Negative (T-) < 20pg/ml 194 417 611

Total 213 432 645

Sensitivity =
19

213
= 0.089; Sepecificity =

417
432

= 0.965. (53)
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Example: Different Estradiol Cut-Off Points

Table 14: Sensitivity and Specificity of Different

Estradiol Cut-Off Points for Breast Cancer

Serum estradiol Cut Point Sensitivity Specivity

≥ 30 pg/ml 0.0281 0.990

≥ 25 pg/ml 0.0422 0.979

≥ 20 pg/ml 0.0892 0.965

≥ 15 pg/ml 0.1690 0.905

≥ 10 pg/ml 0.4178 0.706

≥ 5 pg/ml 0.8685 0.166

≥ 0 pg/ml 1.0000 0.000
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Example: Estradiol and Breaset Cancer
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Figure 2: ROC Curve for Estradiol and Breaset Cancer
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Example: Estradiol and Breaset Cancer

PPV and NPV

1. When choose a different “cutpoint” which separates “normal”

from “abnormal”, we will have different sensitivity and specificity.

2. We will have different positive predictive value and negative

predictive palue
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Example: Estradiol and Breaset Cancer

Cut-Off Point at Estridal ≥ 20pg/ml

In the population, the prevalence of breast cancer is about 2%.

Table 15: Estradiol ≥ 20pg/ml as a Cut-Off Point

Breast

Estradiol Test Present (D+) Absent (D-) Total

Positive (T+) ≥ 20pg/ml 19 15 34

Negative (T-) < 20pg/ml 194 417 611

Total 213 432 645

Sensitivity =
19

213
= 0.089; Sepecificity =

417
432

= 0.965. (54)
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Example: Estradiol and Breaset Cancer

Cut-Off Point at Estridal ≥ 20pg/ml

In the population, the prevalence of breast cancer is about 2%.

PPV(PV+) =
Sen× P(D)

Sen× P(D) + (1− Sep× (1− P(D))

=
0.089(0.02)

0.089(0.02) + (1− 0.965)(1− 0.02)
= 0.050;

NPV(PV−) =
(1− Sep)× (1− P(D))

(1− Sen)× P(D) + (1− Sep)× (1− P(D))

=
(1− 0.965)(1− 0.02)

(1− 0.089)0.02 + (1− 0.965)(1− 0.02)
= 0.651.

(55)
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Example: Estradiol and Breaset Cancer

Cut-Off Point at Estridal ≥ 20pg/ml

Thus, there is a 5% probability of breast cancer among

50-59-year-old women with serum Estradiol ≥ 20pg/ml. This is

about 2.5 times the general population rate (2%).
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Example: Different Estradiol Cut-Off Points

Table 16: PPV and NPV of Different

Estradiol Cut-Off Points for Breast Cancer

Serum estradiol Cut Point PPV NPV

≥ 30 pg/ml 0.058 0.318

≥ 25 pg/ml 0.039 0.515

≥ 20 pg/ml 0.049 0.651

≥ 15 pg/ml 0.035 0.848

≥ 10 pg/ml 0.028 0.961

≥ 5 pg/ml 0.020 0.996

≥ 0 pg/ml 0.020 1.000
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Example: Estradiol and Breaset Cancer
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Figure 3: (1-PPV) versus NPV Curve for Estradiol and Breaset Cancer
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Example: Estradiol and Breaset Cancer
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Example: Estradiol and Breaset Cancer

Est.mat<-matrix(

c(5,28,72,

10,96,233,

15,53,86,

20,17,26,

25,10,6,

30,3,5,

60,6,4)

,nrow=7,ncol=3,byrow=T)

Est.mat<-Est.mat[rev(rank(Est.mat[,1])),]
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Example: Estradiol and Breaset Cancer

Est.row.sum<-matrix(apply(Est.mat,1,sum),7,1) # row sum

Est.col.sum<-matrix(rep(matrix(apply(Est.mat,2,sum),1,3),7)

,7,3,byrow=T) # col sum

Est.col.cum<-apply(Est.mat,2,cumsum) # col culmulative sum

Neg.mat<-Est.col.sum-Est.col.cum

sen.mat<-matrix(Est.col.cum[,2]/Est.col.sum[,2],7,1) # [1:6,]

sep.mat<-matrix(Neg.mat[,3]/Est.col.sum[,3],7,1) # [1:6,]

sen.sep<-cbind(sen.mat,sep.mat)
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Example: Estradiol and Breaset Cancer

Est.mat

Est.row.sum

Est.col.sum

Est.col.cum

Neg.mat

sen.sep
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Example: Estradiol and Breaset Cancer

prevD<-0.02

PPV<-(prevD*sen.mat)/(prevD*sen.mat+(1-sep.mat)*(1-prevD))

NPV<-((1-sep.mat)*(1-prevD))/

((1-sen.mat)*prevD+(1-sep.mat)*(1-prevD))

PPV.NPV<-cbind(PPV,NPV)

PPV.NPV
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Example: Estradiol and Breaset Cancer

plot(1-sep.mat,sen.mat,xlab="1-Specificity", type="n", bty="n",

ylab="Sensitivity", xlim=c(0,1), ylim=c(0,1),

main="ROC Curve for Estradiol and Breast Cancer")

points(1-sep.mat,sen.mat,pch=19,type="b", lwd=1)
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Example: Estradiol and Breaset Cancer

# ROC

plot(1-sep.mat,sen.mat,xlab="1-Specificity", type="b", bty="n",

axes=T, lty=1, lwd=1.5, pch=19,

main="ROC Curve for Estradiol and Breast Cancer",

ylab="Sensitivity", xlim=c(0,1), ylim=c(0,1))

points(1-sep.mat,sen.mat,pch=19,type="b", lwd=1.5, lty=1)

axis(1,outer=FALSE,tick=1,lty=0)

axis(2,outer=FALSE,tick=1,lty=0)
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Example: Estradiol and Breaset Cancer

lines(c(0,1),c(0,0),lty=1) # x=0

lines(c(1,1),c(0,1),lty=1) # x=1

lines(c(0,0),c(0,1),lty=1) # y=0

lines(c(0,1),c(1,1),lty=1) # y=1

lines(c(0,1),c(0,1),lty=1) #
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Example: Estradiol and Breaset Cancer

# PPV, NPV

plot(NPV,1-PPV, type="b", bty="n", cex=0.7,

axes=T, lty=1, lwd=1.5, pch=19,

main="(1-PPV) and NPV Curve for Estradiol and Breast Cancer",

xlab="Negative Predictive Value",

ylab="1-Positive Predictive Value",

xlim=c(0,1), ylim=c(0,1))

points(NPV,(1-PPV),pch=19,type="b", lwd=1.5, lty=1)

axis(1,outer=FALSE,tick=1,lty=0)

axis(2,outer=FALSE,tick=1,lty=0)
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Example: Estradiol and Breaset Cancer

lines(c(0,1),c(0,0),lty=1) # x=0

lines(c(1,1),c(0,1),lty=1) # x=1

lines(c(0,0),c(0,1),lty=1) # y=0

lines(c(0,1),c(1,1),lty=1) # y=1

lines(c(0,1),c(0,1),lty=1) #
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Prevalence and Incidence
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Prevalence and Incidence

1. Prevalence measures frequency of disease in a defined population

at a specified point in time.

2. Incidence measures the frequency at which new disease is

occurring in a defined population at risk over time.
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Prevalence and Incidence

1. Fundamentally, prevalence is a static measure of disease

frequency – a “snapshot” view, with time frozen.

2. Fundamentally, incidence is a dynamic measure of disease

frequency – requires that people be observed over a period of time.
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Prevalence and Incidence

1. Prevalence

(a) (Point) Prevealence

(b) Lifetime prevalence

(c) Period Prevalence

2. Incidence

(a) Cumulative incidence (incidence proportion)

(b) Incidence density (incidence rate)
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Prevalence

The “Point in time” at which prevalence is determined may refer to

any of several time scales.

1. Calendar time – e.g., prevalence of HIV infections in Taiwan on

January 1, 2005.

2. Age – e.g., prevalence of HIV infections among 20-year-old

military recruits (regardless of whether they achieved age 20 in

calendar time).

3. Time since some event – e.g., prevalence of depression among

widows/widowers 6 months after the death of a spouse.
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Point Prevalence

Point prevalence is defined as the proportion of a population

affected by a disease at a given time point and expressed as a

percentage.

point prevalence

=
number of cases of disease at a given time point

population exposed (at risk) at a given time point
(56)
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Point Prevalence: Example

Lung cancer in a community, Jan 1, 1980:

Population 3,500,000

Cases 95,000

Prevalence 2.7%
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Period Prevalence

Period Prevalence is defined as the proportion of a population

affected by a disease during a time period and expressed as a

percentage.

period prevalence

=
number of cases of disease between a specific time period (T0, T1)

population exposed during that time period (T0, T1)
(57)
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Period Prevalence: Example

Lung cancer in a community, Jan 1 – Dec 31, 1980:

Population 3,500,000

Cases 96,250 (1250 new cases)

Prevalence 2.75%
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Cumulative Incidence

Cumulative Incidence is the proportion of the population will develop

illness during the specified time period.

Cumulative Incidence (C.I.)

=
number of NEW cases of disease during a period

population exposed during this period
(58)
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Cumulative Incidence: Example

Lung cancer in a community, Jan 1 – Dec 31, 1980:

Population 3,500,000

Cases 96,250 (1250 new cases)

Cumulative incidence 0.36/1000 per year

Prevalence 2.71%
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Incidence Rate

1. Most subjectss in studies enter the study over a period of time,

often over several years.

2. Others will become lost to contact during the follow-up period so

that their information is not available at the end of the study.

3. The length of time of the study or follow-up will therefore not be

the same for each subject.

4. This can be seen in Figure 4 below.
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Incidence Rate
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Example: Prevalence and Incidence Rate

Figure 4: Incidence Rate and Follow-Up with Pearson-Time
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Incidence Rate: Pearson-Time

Pearson-Years

1. Person-time is the sum of the amount of time each individual is

observed while free of disease.

2. pearson-years is the sum of the amount of years each individual is

observed while free of disease.

3. Each subject may contribute a different amount of person-years.
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Incidence Rate: Pearson-Years

Person-time at risk is the denominator for incidence rates of disease

1000 person-years at risk

= 100,000 people for 1/100 years (59)

= 10,000 people for 1/10 years

= 1000 people for 1 years

= 100 people for 10 years

= 20 people for 50 years
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Incidence Rate: Pack-Years for Smoking

1× 365 pack-year

= 0.5× 365 for 2 years

= 2× 365 for 0.5 years
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Incidence Rate

An incidence rate (incidence density) is defined as the number of

new cases of disease during a defined period of time, divided by the

total person-time of observation.

Incidence Rate (I.R.)

=
number of NEW cases of disease during a period

total person-time of observation
(60)
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Example: Period Prevalence and Incidence Rate

Incidence and Pearson−years
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Figure 5: Incidence and Prevalence
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Example: Period Prevalence and Incidence Rate

Incidence and Pearson−years
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Figure 6: Incidence and Prevalence

c©Jeff Lin, MD., PhD. 2005 Biostat Mid-Term Exam 149



c©Jeff Lin, MD., PhD. 2005 Biostat Mid-Term Exam 150



Example: Period Prevalence and Incidence Rate

Period Prevalence =
3
7

= 0.428 (61)

Incidence Rate =
3

∑(7 + 6 + · · ·+ 7)
=

3
51

= 0.058 (62)
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Risk

1. Risk is the probability of occurrence of an outcome in an outcome

free population during a specified time period.

If d = number of new cases

And N = population initially at risk,

Then, Risk (over a defined period) =
d
N

(63)

2. Risk is usually applied to non-recurrent diseases or to the first

episode of a disease.
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Attack Rate

1. Attack Rate is defined as a cumulative incidence during an

outbreak of a disease.

2. Usually expressed for the entire epidemic period, from the first to

the last case.
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Attack Rate

Outbreak of cholera in country X in March 1999

Number of cases = 490

Population at risk = 18, 600

Attack rate = 2.6%
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Crude Rate and Specific Rate
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Crude Rate

1. Crude Death Rate is the number of deaths in a year divided by

the total population of interest.

2. The total population is estimated at the midpoint of the year.

Crude Death Rate

=
Number of deaths in a calendar year

Population at midpoint of the year
(64)
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Specific Rate

1. Detailed understanding of disease experience in different

population subsets

2. Homogeneous subgroups and detailed rates

3. Age-specific, sex-specific

4. Cumbersome in calculation
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Age-Specific Rate

1. Age-specific rates: a rate used for a specific age group.

2. Numerator and denominator refer to the same age group.

Age-Specific Rate

=
Total number of deaths from all causes in 1 yr per age group

Number of subjects in the population at mid-year per age group

(65)
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Crude Rate and Age-Specific Rate

Table 17: Crude Death Rate and Age-Specific Death

Rate

Age Group (yrs) Population Deaths Age-Specific Rate

00 – 04 97,870 383 3.9
05 – 09 221,452 75 0.3
10 – 24 284,956 440 1.5
25 – 34 265,885 529 2.0
35 – 44 207,564 538 2.6
45 – 54 193,505 1,107 5.7
55 – 64 175,579 2,164 12.3
65 – 74 152,172 3,789 24.9
≥ 75 107,114 7,834 73.1

Total (Crude) 1,706,097 16,859 9.9
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Crude Rate and Age-Specific Rate

Comparing Mortality in Different Populations

1. Crude rate

2. Specific rate

3. Standardization rate

(a) Direct (i.e., Age Adjustment)

(b) Indirect (i.e., Standardized Mortality Ratio)
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Crude Rate and Age-Specific Rate

Comparing Mortality in Different Populations

4. Cohort Analysis

5. Life-table Analysis

6. Median survival

7. Life expectancy
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Comparing Mortality in Different Populations:

Crude Rate and Age-Adjusted Rate

Table 18: Mortality Rate in Sweden and Panama

Sweden Panama

Mortality by Age-Group Mortality by Age-Group

Deaths Population Death Deaths Population Death

Age Number Number Rate Number Number Rate

0-29 3,523 3,145,000 1.1 3,904 741,000 5.3

30-59 10,928 3,057,000 3.6 1,421 275,000 5.2

60+ 59,104 1,294,000 45.7 2,956 59,000 50.1

All ages 73,555 7,496,000 9.8 8,281 1,075,000 7.7

Death Rate: per 103 pearson-years
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Comparing Mortality in Different Populations:

Crude Rate and Age-Adjusted Rate

1. The crude mortality rate in Sweden is large than that of Panama.

2. The age-secific mortality rates in Sweden are all smaller than

those in Panama.

3. Why?
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Comparing Mortality in Different Populations:

Crude Rate and Age-Adjusted Rate

1. Comparisons with crude rate is suitable only when populations

similar in all respects.

2. To account for these differences, adjusted rates are used in the

comparison.
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Comparing Mortality in Different Populations:

Specific Rate

Disease rates in dissimilar populations can be compared by adjusting

for known confounding factors (e.g. age).
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Comapring Mortality by Standardization

Questions: What do we want? Answer: Want to compare rates.

1. Why we standardize?

2. What do we need? Standardized Population and Rate

3. How to standardize? Direct and Indirect
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Comapring Mortality by Standardization

Why we standardize – Fleiss (1981, p. 240)

1. Comparing single (standardized) summaries easier than comparing

tables.

2. If some age groups contain very small numbers, standardization

can help.

3. For some subpopulations of interest, accurate age-specific rates

may not exist.
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Standardization: Age-Adjusted Rate

1. Direct adjustment:

(a) Use data from a “standard population” to adjust rates

2. Indirect adjustment:

(a) Adjust using “standard rates”

(b) Determine expected rates

(c) Compare observed and expected
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Standardization: Age-Adjusted Rate

What Do We Need?

1. A reference (standardized) population with associated age

structure.

2. Use proportion in each age class.

3. Examples: United States 1940, 1970, 2000 populations have all

been used as standard population.
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Standardization: Age-Adjusted Rate

What Do We Do With It?

• A standardized rate is a weighted average of age-specific values.

So, what are the weights?
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Direct Standardization: Age-Adjusted Rate

1. Goal of adjustment

• Reflect similar distributions

2. Reference population

• Numbers used as weights to form weighted averages for both

populations

• Choice of reference population

3. Same set of numbers must be applied to both populations
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Direct Standardization: Age-Adjusted Rate

1. Fictional!

2. Weighted average of age-specific rates

3. Directly comparable provided they refer to the same standard

population

4. need age-specific rates for all observed populations

5. Standard population (“ideal” = world standard population)
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Direct Standardization: Age-Adjusted Rate

Table 19: Direct Standardization Age-Adjusted Rate: Notation

Observed ith Population Standardized Population

Mortality by Age-Group Mortality by Age-Group

Deaths Population Death Deaths Population Death

Age Number Number Rate Number Number Rate

1 di1 ni1 ri1 ds1 n(s)1 r(s)1

2 di2 ni2 ri2 d(s)2 n(s)2 r(s)2
... ... ... ... ... ... ...

j dij nij rij d(s)j n(s)j r(s)j
... ... ... ... ... ... ...

J di J ni J ri J d(s)J n(s)J r(s)J

Total di+ ni+ ri+ d(s)+ n(s)+ r(s)+
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Direct Standardization (Age-Adjusted Rate):

Notation

1. Suppose we the ith observed population and jth age-specific

group, where i = 1, . . . , I and j = 1, . . . , J.

2. Let dij = number of death (cases) in age group j of population i.

3. Let nij = number at risk in age group j of population i.

4. Let

rij =
dij

nij
= observed incidence proportion

in age group j of population i.
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Direct Standardization (Age-Adjusted Rate):

Notation

5. Let d(s)i, n(s)j, and r(s)j be the same values for the standard

population.

6. Let di+, ni+, d(s)+, and n(s)+ be totals summed across all J age

groups.

7. Let

r(s)j =
d(s)j

n(s)j
(66)

be the death rate of standardized population.
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Direct Standardization (Age-Adjusted Rate):

Notation

• Question: How many cases would we observe in the standard

population if the observed age-specific rates applied?

• What do we need?

1. Obseved age-specific rates, rij

2. Number at risk in standardized population, n(s)j

3. Total number observed in standardized population, n(s)+
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Direct Standardization (Age-Adjusted Rate)

1. The expected number of cases (death) for ith observed population

in each age group in the standardized population.

Ei(s)j = rij × n(s)j =
dij

nij
× n(s)j. (67)

2. The overall expected number of cases (death) for ith observed

population in the standardized population

Ei(s)+ = ∑
j

Ei(s)j = ∑
j
(rij × n(s)j) = ∑

j

(dij

nij
× n(s)j

)
. (68)
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Direct Standardization (Age-Adjusted Rate)

3. The overall expected rate for ith observed population in the

standardized population

ri(s)E =
Ei(s)+
n(s)+

=
∑j(rij × n(s)j)

n(s)+
(69)

=
∑j

(dij
nij
× n(s)j

)
n(s)+

(70)

= Weighted Average Rate with Weight n(s)j. (71)
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Direct Standardization (Age-Adjusted Rate):

cumulative Mortality Figure (CMF)

1. cumulative mortality figure (CMF) is the ratio for comparing the

number of cases and the expected death for ith observed

population in the standard population (Ei(s)+ = ∑j Ei(s)j) with

number observed (d(s)).

CMF =
Ei(s)+
d(s)+

=
∑j Ei(s)j

∑j d(s)j
(72)

2. The directly standardized rate for ith observed population is

ri(s)E =
Ei(s)+
n(s)+

= CMF×
d(s)+
n(s)+

(73)
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Standardized (Age-Adjusted) Mortality Rate in

Sweden

Table 20: Standardized (Age-Adjusted) Mortality Rate in Sweden

Sweden Standardized Population

Mortality by Age-Group Mortality by Age-Group

Deaths Population Death Deaths Population Death

Age Number Number Rate Number Number Rate

0-29 3,523 3,145,000 1.1 56,000

30-59 10,928 3,057,000 3.6 33,000

60+ 59,104 1,294,000 45.7 11,000

All ages 73,555 7,496,000 9.8 100,000

Death Rate: per 103 pearson-years
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Standardized (Age-Adjusted) Mortality Rate in

Sweden

Age-standardized (adjusted) mortality rate in Sweden

ri(s)E =
(1.1× 56, 000) + (3.6× 33, 000) + (45.7× 11, 000)

100, 000
= 6.8per 1000 person-years (74)
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Standardized (Age-Adjusted) Mortality Rate in

Panama

Table 21: Standardized (Age-Adjusted) Mortality Rate in Sweden

Panama Standardzed Population

Mortality by Age-Group Mortality by Age-Group

Deaths Population Death Deaths Population Death

Age Number Number Rate Number Number Rate

0-29 3,904 741,000 5.3 56,000

30-59 1,421 275,000 5.2 33,000

60+ 2,956 59,000 50.1 11,000

All ages 8,281 1,075,000 7.7 100,000

Death Rate: per 103 pearson-years
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Standardized (Age-Adjusted) Mortality Rate in

Panama

Age-standardized (adjusted) mortality rate in Panama

ri(s)E =
(5.3× 56, 000) + (5.2× 33, 000) + (50.1× 11, 000)

100, 000
= 10.2per 1000 person-years (75)
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Comapring Age-Adjusted Rate:

CMF Between Sweden and Panama

Comparative Mortality Figure (CMF) = Age-Standarized Rate Ratio

(76)

1. CMF for Panama versu Sweden

CMFP/W =
10.2
6.8

= 1.5 (77)

2. Mortality in Panama is 50% higher than in Sweden and excess is

independent of age.
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Indirect Standardization

1. Reverses role of study and standard populations.

2. Question: How many cases would we observe in the study

population if the standard age-specific rates applied?

3. What do we need?

(a) Standard age-specific rates, r(s)j
(b) Number at risk in the study observed population, nij
(c) Total observed in study observed population, di+
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Indirect Standardization

1. The number expected in each age group in the ith study observed

population

Eij = r(s)j × nij =
d(s)j

n(s)j
× nij. (78)

2. The overall expected number in the ith study observed population

Ei+ = ∑
j
(Eij) = ∑

j
(r(s)j × nij) = ∑

j

(d(s)j

n(s)j
× nij

)
(79)
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Indirect Standardization:

Standardized Mortality/Morbidity Ratio (SMR)

The standardized mortality/morbidity ratio (SMR) is the ratio

of the total number observed in the ith study area (di+) and the

total number expected based on age-specific rates in the standard

population (Ei+).

SMR =
di+
Ei+

=
Observed number of cases

Expected number of cases
(80)
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Indirect Standardization

Indirectly standardized rates is multiplying SMR by overall rate in

standard population

ISR = SMR×
d(s)+
n(s)+

. (81)
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Indirect Standardization

Indirect standardization is used when

• age-specific rates in one population is not known

• age-specific rates excessively variable because of small numbers
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Indirect Standardization

Table 22: Mortality Rate in Sweden and Panama

Sweden Panama

Mortality by Age-Group Mortality by Age-Group

Deaths Population Death Deaths Population Death

Age Number Number Rate Number Number Rate

0-29 3,523 3,145,000 1.1 741,000

30-59 10,928 3,057,000 3.6 275,000

60+ 59,104 1,294,000 45.7 59,000

All ages 73,555 7,496,000 9.8 8281 1,075,000

Death Rate: per 103 pearson-years
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Indirect Standardization

Calculate expected deaths in the Panamanian population (treat

Sweden as standard population):

0− 29 0.0011× 741, 000 = 814.5

30− 59 0.0036× 275, 000 = 990.0

60+ 0.0457× 59, 000 = 2696.3

Total expected deaths is 4501.4
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Indirect Standardization

Table 23: Indrect Standardized Mortality Rate in Panama (Sweden as

Standardized Population): Death Rate: per 103 pearson-years

Sweden Panama

Mortality by Age-Group Mortality by Age-Group

Deaths Population Death Expected Deaths Population Death

Age Number Number Rate Number Number Rate

0-29 3,523 3,145,000 1.1 814.5 741,000

30-59 10,928 3,057,000 3.6 990.0 275,000

60+ 59,104 1,294,000 45.7 2696.3 59,000

All ages 73,555 7,496,000 9.8 4501.4 1,075,000
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Indirect Standardization

Standardized Mortality Ratio (SMR) of Paname

SMRP/S =
Observed deaths

Expected Death
=

O
E

=
8281
501.4

= 1.84 = 184% (82)
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Direct versus Indirect Standardization

1. CMF has observed (study) totals in the denominator and

(directly) standardized expectations in the numerator.

2. By convention, SMR has observed (study) values in the numerator

and (indirectly) standardized expectations in the denominator.
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Direct versus Indirect Standardization

3. Direct standardization depends on the age structure of the

standard population.

4. Indirect standardization depends on the age structure of the study

population.

5. So, can compare directly standardized rates, if using same

standard population.
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Direct versus Indirect Standardization

6. Direct and indirect standardization produce identical (or at least

proportional) results:

(a) If age fractions are identical in study and standard populations.

(b) If age-specific rates are identical in study and standard

populations.

(c) If age-specific rates in study population are proportional to those

in standard population.
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Direct versus Indirect Standardization

7. Direct standardization requires accurate assessment of age-specific

incidence proportions for study population.

8. For rare diseases, rij = dij
nij

may be statistically unstable

(add/remove single case can change rij dramatically).

9. Often, standard population is larger and r(s)j =
d(s)j
n(s)j

is more stable

than rij.
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Direct versus Indirect Standardization

10. Also, dij might not be as available as di+ (age-specific counts not

available but total count reported instead).

11. However, may have nij (e.g., from census).

12. In such cases, direct standardization not available (we don’t have

what we need).
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Direct versus Indirect Standardization

13. Choice between direct and indirect standardization often reduces

to the type of data available.

14. If age-specific incidence counts are available for the standard

population but not the study population, indirect standardization

is the only option available.
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Direct versus Indirect Standardization

15. Must choose standard population.

16. Indirect standardization often assumes proportionality to allow

comparability.

17. Direct standardization is inherently comparable across analyses

using the same standard, but does not allow comparison across

standards.

18. Krieger and Williams (2004) discuss the impact of changing from

the US 1940 standard population to the US 2000 standard

population (particularly with respect to measures of health

disparity).
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Standardization: Summary

1. Standardization seeks to summarize information across risk (age)

groups, giving a single number (standardized count or rate).

2. Idea: remove variation due to known risk factors so remaining

variation must be due to other (unknown) risk factors.

3. Inherent loss of information moving from age-specific to

standardized rates.
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Standardization: Summary

4. Standardization provide summaries (and as such give up some

detail)

5. Direct standardization requires age-specific incidence from study

population.

6. Indirect standardization requires age-specific incidence from

standard population.
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Standardization: Summary

7. Direct standardization comparable for same standard population.

8. Direct standardization not comparable across different standard

populations.

9. Indirect standardization comparable only in special circumstances

(proportionality assumption), but remember – all models are

wrong, but some are useful (George Box).
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Standardization: Reference

1. Fleiss, JL (2004) Statistical Methods for Rates and Proportions

(3nd ed). NY: Wiley.

2. Inskip, H (1998) Standardization methods. In P. Armitage and T.

Colton (eds.) Encyclopedia of Biostatistics, Chichester: Wiley. pp.

4237-4250.

3. Pickle, LW and White, AA (1995) Effect of the choice of

age-adjustment on maps of death rates. Statistics in Medicine 14,

615-627.

4. Selvin, S (1991) Statistical Analysis of Epidemiologic Data. NY:

Oxford University Press.
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Standardization: Reference

5. Hennekens and Burin - Epidemiology in Medicine

6. Mausner and Kramer - Epidemiology: An Introductory Text

7. Bland - Introduction to Medical Statistics
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Example: One

Table 24: Death numbers between two populations

Age Pop. One Pop. Two Pop. Standard

Group Total Death Total Death Total Death

00-20 10,000 50 20,000 90 300,000 1, 400

21-40 10,000 80 10,000 70 200,000 1, 500

41-60 20,000 100 30,000 50 500,000 1, 500

60+ 15,000 150 20,000 100 350,000 2, 500

Total 55,000 380 80,000 310 1,350,000 6, 900

c©Jeff Lin, MD., PhD. 2005 Biostat Mid-Term Exam 206



Example: One

> setwd("C://temp//Rdata")

> # age pop1 death1 pop2 death2 pop0 death0

> exam1<-read.csv("2005SMR01.csv", header = TRUE,

sep = ",", dec=".")

> exam1

age pop1 death1 pop2 death2 pop0 death0

1 20 10000 50 20000 90 300000 1400

2 40 10000 80 10000 70 200000 1500

3 60 20000 100 30000 50 500000 1500

4 80 15000 150 20000 100 350000 2500

5 100 55000 380 80000 310 1350000 6900

> attach(exam1)
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Example: One

> ## Direct Age-Adjusted Rate pop1

> (r1<-death1/pop1)

[1] 0.005000000 0.008000000 0.005000000 0.010000000 0.006909091

> (r0<-death0/pop0)

[1] 0.004666667 0.007500000 0.003000000 0.007142857 0.005111111

> (r1.s<-r1*pop0)

[1] 1500.000 1600.000 2500.000 3500.000 9327.273

> # Expected # of Death in pop1

> (r1.s.E<- ( sum(r1.s[1:4])/pop0[5] )*10**6 )

[1] 6740.741
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Example: One

> ## Direct Age-Adjusted Rate pop2

> (r2<-death2/pop2)

[1] 0.004500000 0.007000000 0.001666667 0.005000000 0.003875000

> (r0<-death0/pop0)

[1] 0.004666667 0.007500000 0.003000000 0.007142857 0.005111111

> (r2.s<-r2*pop0)

[1] 1350.0000 1400.0000 833.3333 1750.0000 5231.2500

> # Expected # of Death in pop2

> (r2.s.E<- ( sum(r2.s[1:4])/pop0[5] )*10**6 )

[1] 3950.617
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Example: One

> ##########################

> # CMF pop1 vs. pop2 ######

> (CMF12<-r1.s.E/r2.s.E)

[1] 1.70625
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Example: One

> # Indirect adjusted Rate pop1

> (r0<-death0/pop0)

[1] 0.004666667 0.007500000 0.003000000 0.007142857 0.005111111

> (E1<-r0*pop1)

[1] 46.66667 75.00000 60.00000 107.14286 281.11111

> (E1.tot<-sum(E1[1:4]) )

[1] 288.8095

> # SMR pop1

> (SMR1<-death1[5]/E1.tot)

[1] 1.315746
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Example: One

> # Indirect adjusted Rate pop2

> (r0<-death0/pop0)

[1] 0.004666667 0.007500000 0.003000000 0.007142857 0.005111111

> (E2<-r0*pop2)

[1] 93.33333 75.00000 90.00000 142.85714 408.88889

> (E2.tot<-sum(E2[1:4]) )

[1] 401.1905

> # SMR pop2

> (SMR2<-death2[5]/E2.tot)

[1] 0.7727003
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Example: One

> # SMR pop1 vs. pop2

> (SMR1/SMR2)

[1] 1.702790
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Example: Two

Table 25: Death numbers between two populations

Age Pop. One Pop. Two Pop. Standard

Group Total Death Total Death Total Death

00-20 10,000 50 20,000 90 30,0000 1, 400

21-40 10,000 Unknown 10,000 70 200,000 1, 500

41-60 20,000 100 30,000 50 500,000 1, 500

60+ 15,000 Unknown 20,000 100 350,000 2, 500

Total 55,000 380 80,000 310 1,350,000 6, 900
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Example: Two

> exam2<-read.csv("2005SMR02.csv", header = TRUE, sep = ",",

dec=".",as.is=TRUE) ## Special Care: as.is=TRUE

> exam2

age pop1 death1 pop2 death2 pop0 death0

1 20 10000 50 20000 90 300000 1400

2 40 10000 NA 10000 70 200000 1500

3 60 20000 100 30000 50 500000 1500

4 80 15000 NA 20000 100 350000 2500

5 100 55000 380 80000 310 1350000 6900

> attach(exam2)
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Example: Two

> ###############################################

> # Unknown pop1 death rate

> # Only Indirect adjusted rate can be calculated

> ###############################################
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Example: Two

> # Indirect adjusted Rate pop1

> (r0<-death0/pop0)

[1] 0.004666667 0.007500000 0.003000000 0.007142857 0.005111111

> (E1<-r0*pop1)

[1] 46.66667 75.00000 60.00000 107.14286 281.11111

> (E1.tot<-sum(E1[1:4]) )

[1] 288.8095

> # SMR pop1

> (SMR1<-death1[5]/E1.tot) # NOT WORK

Error in death1[5]/E1.tot : non-numeric argument to binary operator

> # You must use as.is=TRUE in read.csv

> (SMR1<-as.numeric(death1[5])/E1.tot)

[1] 1.315746
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Example: Two

> # Indirect adjusted Rate pop2

> (r0<-death0/pop0)

[1] 0.004666667 0.007500000 0.003000000 0.007142857 0.005111111

> (E2<-r0*pop2)

[1] 93.33333 75.00000 90.00000 142.85714 408.88889

> (E2.tot<-sum(E2[1:4]) )

[1] 401.1905

> # SMR pop2

> (SMR2<-as.numeric(death2[5])/E2.tot)

[1] 0.7727003
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Example: Two

> # SMR pop1 vs. pop2

> (SMR1/SMR2)

[1] 1.702790
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Example: Three

Table 26: Death numbers between two populations

Age Pop. One Pop. Two Pop. Standard

Group Total Death Total Death Total Death

00-20 1,000 5 20,000 90 300,000 1, 400

21-40 1,000 8 10,000 70 200,000 1, 500

41-60 2,000 10 30,000 50 500,000 1, 500

60+ 1,500 15 20,000 100 350,000 2, 500

Totals 5,500 38 80,000 310 1,350,000 6, 900
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Example: Three

> exam3<-read.csv("2005SMR03.csv", header = TRUE,

sep = ",", dec=".")

> exam3

age pop1 death1 pop2 death2 pop0 death0

1 20 1000 5 20000 90 300000 1400

2 40 1000 8 10000 70 200000 1500

3 60 2000 10 30000 50 500000 1500

4 80 1500 15 20000 100 350000 2500

5 100 5500 38 80000 310 1350000 6900

> attach(exam3)
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Example: Three

> # Small number of death, unatable r1

> # Use indirect Adjusted Rate
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Example: Three

> # Indirect adjusted Rate pop1

> (r0<-death0/pop0)

[1] 0.004666667 0.007500000 0.003000000 0.007142857 0.005111111

> (E1<-r0*pop1)

[1] 4.666667 7.500000 6.000000 10.714286 28.111111

> (E1.tot<-sum(E1[1:4]) )

[1] 28.88095

> # SMR pop1

> (SMR1<-death1[5]/E1.tot)

[1] 1.315746
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Example: Three
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Example: Three

> # Indirect adjusted Rate pop2

> (r0<-death0/pop0)

[1] 0.004666667 0.007500000 0.003000000 0.007142857 0.005111111

> (E2<-r0*pop2)

[1] 93.33333 75.00000 90.00000 142.85714 408.88889

> (E2.tot<-sum(E2[1:4]) )

[1] 401.1905

> # SMR pop2

> (SMR2<-death2[5]/E2.tot)

[1] 0.7727003
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Example: Three

> # SMR pop1 vs. pop2

> (SMR1/SMR2)

[1] 1.702790
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Example: Three

> # Consider pop2 as standardinzed population

>

>

> # Indirect adjusted Rate pop1

> (r2<-death2/pop2)

[1] 0.004500000 0.007000000 0.001666667 0.005000000 0.003875000

> (E1<-r2*pop1)

[1] 4.500000 7.000000 3.333333 7.500000 21.312500

> (E1.tot<-sum(E1[1:4]) )

[1] 22.33333

> # SMR pop1

> (SMR1<-death1[5]/E1.tot)

[1] 1.701493
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Example: Three

> # Consider pop2 as standardinzed population

> # Indirect adjusted Rate pop2

> (r2<-death2/pop2)

[1] 0.004500000 0.007000000 0.001666667 0.005000000 0.003875000

> (E2<-r2*pop2)

[1] 90 70 50 100 310

> (E2.tot<-sum(E2[1:4]) )

[1] 310

> (E2.tot<-sum(death2[1:4]) )

[1] 310

> # SMR pop2

> (SMR2<-death2[5]/E2.tot)

[1] 1
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Example: Three

> # SMR pop1 vs. pop2

> (SMR1/SMR2)

[1] 1.701493

c©Jeff Lin, MD., PhD. 2005 Biostat Mid-Term Exam 229



Example: Three

> ### Consider pop1 as standardized pop

> # Indirect adjusted Rate pop1

> (r1<-death1/pop1)

[1] 0.005000000 0.008000000 0.005000000 0.010000000 0.006909091

> (E1<-r1*pop1)

[1] 5 8 10 15 38

> (E1.tot<-sum(E1[1:4]) )

[1] 38

> # SMR pop1

> (SMR1<-death1[5]/E1.tot)

[1] 1

c©Jeff Lin, MD., PhD. 2005 Biostat Mid-Term Exam 230



Example: Three

> ### Consider pop1 as standardized pop

> # Indirect adjusted Rate pop2

> (r1<-death1/pop1)

[1] 0.005000000 0.008000000 0.005000000 0.010000000 0.006909091

> (E2<-r1*pop2)

[1] 100.0000 80.0000 150.0000 200.0000 552.7273

> (E2.tot<-sum(E2[1:4]) )

[1] 530

> # SMR pop2

> (SMR2<-death2[5]/E2.tot)

[1] 0.5849057

c©Jeff Lin, MD., PhD. 2005 Biostat Mid-Term Exam 231



Example: Three

> # SMR pop1 vs. pop2

> (SMR1/SMR2)

[1] 1.709677
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