Figure 22.1 A single 741 type OpAmp Figure 22.3 An Op-Amp Circuit for Supply-Voltage-Related Testing # E1.1 Input Bias Current - power supplies is adjusted to ± 20 V, and R_n set in the middle of its value (about 5k) - Measure the voltages at C, D, E, F, H. Estimate the supply currents and input offset voltage. - Now, while measuring node C, short R_S temporarily. Estimate the input bias current. ### E2.1 Input Bias Voltage - power supplies is adjusted to ± 20 V, and R_p set in the middle of its value (about 5k) - Measure the voltages V_{JK}, V_{JF}, V_{KF}. - Now, measure the voltage at C, noting its value and then adjusting it to zero. Estimate input bias voltage. - Now, remeasure V_{JK}, V_{JF}, V_{KF}. ## E3.2 Current limiting Figure 22.5 A Current-Limit Test Circuit - power supplies is adjusted to ±10 V - Measuring the voltage at node C with your DVM, join node X first to the negative, then to the positive supply. What limiting output voltages do you find at C? - Then, with X negative, at -10V, lower V⁺ slowly toward zero, until V_C lowers by 0.1V. Measure V⁺. Return V⁺ to +10V. - Then, with X positive, at +10V, raise V⁻ slowly toward zero, until V_C raises by 0.1V. Measure V⁻. #### E3.3 Class-AB Operation - Assemble circuit in figure 22.5 with Rc=100, Rr=100, RL=100 and supplies +-15V - With a triangular wave, initially of 0.2 Vpp amplitude at 1kHz at X, display the waveforms at nodes C Calculate the gain (Vc/Vx)? ### E3.4 Zero Crossing Effect - Now, display the waveform at node E - Now, raise the input signal, noting the waveform of the signal at node E change until it becomes triangular.