今天一樣兩組為一個單位, # 且這此的實驗不用跑pspice ### E2.0 Characteristic Curves Figure 8.5 A Circuit for Measuring Device Characteristics #### E2.1 The Output Characteristic - Assemble the circuit in Fig. 8.5, - Set V_{GG} = 0V to make V_G = 0V and set V_{DD} = ? to make V_D = 10V. Raise V_{GG} = ? until drain current in is about 10uA. Measure v_G as Vt. - $\bullet \quad \text{Adjust V_{DD} and V_{GG} to control v_{GS} and v_{DS} to get i_D to finish follow table.} \\ Then plot i_D-v_{DS} characteristic figure.}$ | v_{DS} | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | |----------------------------|-------|------|-------|-----|-------|------|-----|---|-----|---| | $v_{GS}=1$ | | | | | | | | | | | | $\mathbf{v}_{\mathbf{DS}}$ | 0.5 | 1 | 1.5 | 2 | 2.5 | 2.75 | 3 | 4 | 5 | 6 | | $v_{GS}=2$ | | | | | | | | | | | | $\mathbf{v}_{\mathbf{DS}}$ | 0.125 | 0.25 | 0.375 | 0.5 | 0.625 | 0.75 | 1 | 2 | 4 | 6 | | $v_{GS}=4$ | | | | | | | | | | | #### E2.3 Control Characteristic Similar as above, adjust V_{DD} and V_{GG} to control v_{GS} and v_{DS} to get i_D to finish follow table. Then plot i_D - v_{GS} characteristic figure. | V_{GS} | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | |---------------------|-----|---|-----|---|-----|---|-----|---|-----|---| | $v_{DS}=5$ | | | | | | | | | | | | v _{DS} =10 | | | | | | | | | | | #### * E2.2 Output Resistance - With the setup as in Exp. 2.1 above, and with v_{GS} = v_{DS} = 5 V, measure i_D. - Now raise v_{DS} to 10 V, noting the increase in i_D. Then use current equation to calculate λ, V_A, τ_O