Price and Quantity Competition in a Duopoly Homogeneous Product Market

Appendix

Proof of Lemma 1: We first derive firm 1's best-reply function.
Case 1a: Suppose $p_{2}>\frac{a+c}{2}$. If firm 1 chooses $q_{1}>0$ with $p_{1}<p_{2}$, then $q_{2}=0, q_{1}=Q=a-p_{1}>0$ and $\pi_{1}=\left(a-q_{1}\right) q_{1}$. Thus, firm 1's optimal output is $q_{1}^{*}=\frac{a-c}{2}$ with $p_{1}^{*}=\frac{a+c}{2}<p_{2}$ and equilibrium profit $\pi_{1}^{*}=\frac{(a-c)^{2}}{4}>0$. If firm 1 chooses $q_{1}>0$ with $p_{1}=p_{2}$, we have $q_{1}=\frac{Q}{2}=\frac{a-p_{1}}{2}$ and $\pi_{1}=\left(a-2 q_{1}\right) q_{1}$. Then, firm 1's optimal output is $q_{1}^{*}=\frac{(a-c)}{4}$ with $p_{1}^{*}=\frac{(a+c)}{2}$, which contradicts $p_{1}^{*}=p_{2}>\frac{(a+c)}{2}$. If firm 1 chooses $q_{1}=0$, then $\pi_{1}=0$. Thus, firm 1 will choose $q_{1}^{*}=\frac{a-c}{2}$ as $p_{2}>\frac{a+c}{2}$.

Case 1b: Suppose $p_{2}=\frac{a+c}{2}$. Firm 1 gets $\pi_{1}=0$ by choosing $q_{1}=0$ with $p_{1}>p_{2}$, and gets $\pi_{1}^{*}=\frac{(a-c)^{2}}{4}$ by choosing $q_{1}^{*}=\frac{a-c}{4}$ with $p_{1}=p_{2}$ as in Case 1a. However, if firm 1 chooses $q_{1}>0$ with $p_{1}<p_{2}$, then $q_{1}=Q=a-p_{1}$. Thus, firm 1 will choose p_{1} to maximize $\pi_{1}=\left(p_{1}-c\right)\left(a-p_{1}\right)$ subject to $p_{1}<p_{2}=\frac{a+c}{2}$. Since $\frac{\partial \pi_{1}}{\partial p_{1}}=a-2 p_{1}+c>0$ by $p_{1}<\frac{a+c}{2}$, firm 1 will choose the largest p_{1}. However, no optimal p_{1} exists due to the non-compact interval of $\left[0, \frac{a+c}{2}\right)$. Therefore, firm 1 will choose $q_{1}^{*}=\frac{a-c}{4}$ as $p_{2}=\frac{a+c}{2}$.
Case 1c: Suppose $p_{2} \in\left[0, \frac{a+c}{2}\right)$. Firm 1 will get $\pi_{1}=0$ by choosing $q_{1}=0$ with $p_{1}>p_{2}$. If it chooses $q_{1}>0$ with $p_{1}=p_{2}$, then $q_{1}^{*}=\frac{a-c}{4}$ and $p_{1}^{*}=p_{2}=\frac{a+c}{2}$ as in Case 1a, which contradicts $p_{2}<\frac{a+c}{2}$. If firm 1 chooses $q_{1}>0$ with $p_{1}<p_{2}$, then no solution exists as in Case 1 b . Thus, firm 1 will choose $q_{1}^{*}=0$ as $p_{2} \in\left[0, \frac{a+c}{2}\right)$.

Cases 1a-1c imply the $R_{1}\left(p_{2}\right)$ in Lemma 1. Next, we derive firm 2's best-reply correspondence.

Case 2a: Suppose $q_{1}=0$. Firm 2 is a monopolist with $\pi_{2}=\left(a-p_{2}\right)\left(p_{2}-c\right)$. Thus, firm 2's optimal price is $p_{2}^{*}=\frac{a+c}{2}$ with $q_{2}^{*}=\frac{a-c}{2}$ and $\pi_{2}^{*}=\frac{(a-c)^{2}}{4}$.
Case 2b: Suppose $q_{1} \in\left(0, \frac{a-c}{4}\right)$. If firm 2 chooses $p_{2}>p_{1}$, then $q_{2}=0$ and $\pi_{2}=0$. If firm 2 chooses $p_{2}=p_{1}$, then $q_{2}=\frac{Q}{2}$ and $\pi_{2}=\frac{\left(p_{2}-c\right)\left(a-p_{2}\right)}{2}$. Thus, firm 2's optimal price is $p_{2}^{*}=\frac{a+c}{2}$ with $q_{2}^{*}=\frac{a-c}{4}=q_{1}$, which contradicts $q_{1}<\frac{a-c}{4}$. If firm 2 chooses $p_{2}<p_{1}$, then $q_{2}=Q$ and $q_{1}=0$,
which contradicts $q_{1}>0$. Therefore, firm 2 will choose $p_{2}>p_{1} \in\left(\frac{3 a+c}{4}, a\right)$ as $q_{1} \in\left(0, \frac{a-c}{4}\right)$.
Case 2c: Suppose $q_{1}=\frac{a-c}{4}$. If firm 2 chooses $p_{2}>p_{1}$, then $q_{2}=0$ and $\pi_{2}=0$. If firm 2 chooses $p_{2}=p_{1}$, then $p_{2}^{*}=\frac{a+c}{2}$ with $q_{2}^{*}=\frac{a-c}{4}=q_{1}$ and $\pi_{2}^{*}=\frac{(a-c)^{2}}{8}>0$ as in Case 2 b . No solution exists if firm 2 chooses $p_{2}<p_{1}$ as in Case 2b. Thus, firm 2 will choose $p_{2}=\frac{a+c}{2}$ as $q_{1}=\frac{a-c}{4}$.
Case 2d: Suppose $q_{1} \in\left(\frac{a-c}{4}, a-c\right)$. If firm 2 chooses $p_{2}>p_{1}$, then $q_{2}=0$ and $\pi_{2}=0$. If firm 2 chooses $p_{2}=p_{1}$, then its optimal price is $p_{2}^{*}=\frac{a+c}{2}$ with $q_{2}^{*}=\frac{a-c}{4}=q_{1}$, which contradicts $q_{1}>\frac{a-c}{4}$. As in Case 2b, no solution exists if firm 2 chooses $p_{2}<p_{1}$. Therefore, firm 2 will choose $p_{2}>p_{1} \in\left(c, \frac{3 a+c}{4}\right)$ as $q_{1} \in\left(\frac{a-c}{4}, a-c\right)$.

Case 2e: Suppose $q_{1} \in[a-c, a]$. If firm 2 chooses $p_{2}>p_{1}$, then $q_{2}=0$ and $\pi_{2}=0$. As in Case 2 d , no solution exists if firm 2 chooses $p_{2}=p_{1}$ or $p_{2}<p_{1}$. Therefore, firm 2 will choose $p_{2}>p_{1} \in[0, c]$ as $q_{1} \in[a-c, a]$.

Cases 2a-2e imply the $R_{2}\left(q_{1}\right)$ in Lemma 1. The intersections of two firms' best-reply correspondence/function give the Cournot-Bertrand equilibria stated in Lemma 1.

Proof of Proposition 1: At $\left(q_{1}^{C B}=\frac{a-c}{4}, p_{2}^{C B}=\frac{a+c}{2}\right)$, we have $p^{C B}=\frac{a+c}{2}>p^{C}=\frac{a+2 c}{3}>p^{B}=c$, $Q^{B}=(a-c)>Q^{C}=\frac{2(a-c)}{3}>Q^{C B}=\frac{(a-c)}{2}, C S^{B}=\frac{(a-c)^{2}}{2}>C S^{C}=\frac{2(a-c)^{2}}{9}>C S^{C B}=\frac{(a-c)^{2}}{8}$ and $S W^{B}=\frac{(a-c)^{2}}{2}>$ $S W^{C}=\frac{4(a-c)^{2}}{9}>S W^{C B}=\frac{3(a-c)^{2}}{8}$. In contrast, at $\left(q_{1}^{C B}=\frac{a-c}{2}, p_{2}^{C B}>\frac{a+c}{2}\right)$, we have $p^{C B}=\frac{a+c}{2}>p^{C}$ $=\frac{a+2 c}{3}>p^{B}=c, Q^{B}=(a-c)>Q^{C}=\frac{2(a-c)}{3}>Q^{C B}=\frac{(a-c)}{2}, C S^{B}=\frac{(a-c)^{2}}{2}>C S^{C}=\frac{2(a-c)^{2}}{9}>C S^{C B}=\frac{(a-c)^{2}}{8}$ and $S W^{B}=\frac{(a-c)^{2}}{2}>S W^{C}=\frac{4(a-c)^{2}}{9}>S W^{C B}=\frac{3(a-c)^{2}}{8}$.

Proof of Proposition 2: The first part is because of $\frac{(a-c)^{2}}{9}>0$, and the second part is due to $\frac{(a-c)^{2}}{9}<\frac{(a-c)^{2}}{8}$ and $\frac{(a-c)^{2}}{8}>0$.

Proof of Lemma 2: We first derive the Cournot-Bertrand equilibria under the efficient tie-breaking rule.

Lemma A. Suppose that Cournot firm 1 and Bertrand firm 2 produce a homogeneous product with respective marginal costs c_{1} and c_{2}, and $a>c_{1}>c_{2}>0$. The efficient tie-breaking rule is adopted. Then firm l's best-reply function $R_{1}\left(p_{2}\right)$ is

$$
q_{1}=R_{1}\left(p_{2}\right)=\left\{\begin{array}{cl}
\frac{a-c_{1}}{2} & \text { if } p_{2}>\frac{a+c_{1}}{2} \\
0 & \text { if } p_{2} \leq \frac{a+c_{1}}{2}
\end{array}\right.
$$

and firm 2's best-reply correspondence $R_{2}\left(q_{1}\right)$ is

$$
p_{2}=R_{2}\left(q_{1}\right) \begin{cases}=\frac{a+c_{2}}{2} & \text { if } q_{1}=0, \\ >p_{1} \in\left(\frac{a+c_{1}}{2}, a\right) & \text { if } \\ q_{1} \in\left(0, \frac{a-c_{1}}{2}\right), \\ >p_{1}=\frac{a+c_{1}}{2} & \text { if } \\ q_{1}=\frac{a-c_{1}}{2}, \\ >p_{1} \in\left(c_{1}, \frac{a+c_{1}}{2}\right) & \text { if } \\ q_{1} \in\left(\frac{a-c_{1}}{2}, a-c_{1}\right), \\ >p_{1} \in\left[0, c_{1}\right] & \text { if } \\ q_{1} \in\left[a-c_{1}, a\right] .\end{cases}
$$

Accordingly, the first Cournot-Bertrand equilibrium is $\left(q_{C}^{C B}=\frac{a-q_{1}}{2}, p_{B}^{C B}>\frac{a+c_{1}}{2}\right)$ with $\left(p_{C}^{C B}=\frac{a+c_{1}}{2}, q_{B}^{C B}=0\right)$ and $\left(\pi_{C}^{C B}=\frac{\left(a-c_{1}\right)^{2}}{4}, \pi_{B}^{C B}=0\right)$, and the second equilibrium is $\left(q_{C}^{C B}=0, p_{B}^{C B}=\frac{a+c_{2}}{2}\right)$ with $\left(p_{C}^{C B}=\frac{a+c_{2}}{2}, q_{B}^{C B}=\frac{a-c_{2}}{2}\right)$ and $\left(\pi_{C}^{C B}=0, \pi_{B}^{C B}=\frac{\left(a-c_{2}\right)^{2}}{4}\right)$.

Proof. Firm 1's best-reply function is first derived below.
Case 1a: Suppose $p_{2}>\frac{a+c_{1}}{2}$. If firm 1 chooses $q_{1}=0$ with $p_{1}>p_{2}, p_{1}=p_{2} \geq a$ or $p_{1}=p_{2}<a$, then $\pi_{1}=0$. If firm 1 chooses $q_{1}>0$ with $p_{1}<\min \left\{a, p_{2}\right\}$, then p_{1} will be selected to maximize $\pi_{1}=\left(p_{1}-c_{1}\right)\left(a-p_{1}\right)$ subject to $p_{1}<p_{2}$. The optimal solution is $q_{1}^{*}=\frac{\left(a-c_{1}\right)}{2}$ with $p_{1}^{*}=\frac{\left(a+q_{1}\right)}{2}$ and $\pi_{1}^{*}=\frac{\left(a-c_{1}\right)^{2}}{4}>0$. Thus, firm 1 will choose $q_{1}^{*}=\frac{a-c_{1}}{2}$ as $p_{2}>\frac{a+c_{1}}{2}$.

Case 1b: Suppose $p_{2}=\frac{a+c_{1}}{2}$. Firm 1 will get $\pi_{1}=0$ by choosing $q_{1}=0$ with $p_{1} \geq p_{2}$. For $q_{1}>0$, firm 1 will choose p_{1} to maximize $\pi_{1}=\left(p_{1}-c_{1}\right)\left(a-p_{1}\right)$ subject to $p_{1}<p_{2}=\frac{a+c_{1}}{2}$. Since interval $\left[0, \frac{\left(a+q_{1}\right)}{2}\right)$ is not compact, no solution exists. That is, firm 1 will choose $q_{1}^{*}=0$ as $p_{2}=\frac{a+c_{1}}{2}$.
Case 1c: Suppose $p_{2} \in\left[0, \frac{a+c_{1}}{2}\right)$. As in Case 1 b , there is no solution if firm 1 chooses $q_{1}>0$. Thus, firm 1 will choose $q_{1}^{*}=0$ as $p_{2}<\frac{a+c_{1}}{2}$.

The results of Cases 1a-1c imply the $R_{1}\left(p_{2}\right)$ in Lemma A.
Next, firm 2's best-reply correspondence is derived as follows.
Case 2a: Suppose $q_{1}=0$. Firm 2 is a monopolist with $\pi_{2}=\left(a-p_{2}\right)\left(p_{2}-c_{2}\right)$. Thus, its optimal price is $p_{2}^{*}=\frac{a+c_{2}}{2}$ with $q_{2}^{*}=\frac{a-c_{2}}{2}$ and $\pi_{2}^{*}=\frac{\left(a-c_{2}\right)^{2}}{4}$.

Case 2b: Suppose $q_{1} \in\left(0, \frac{a-q_{1}}{2}\right)$. If firm 2 chooses $p_{2}>p_{1}$, then $q_{2}=0$ and $\pi_{2}=0$. If firm 2 chooses $p_{2} \leq p_{1}$, then $q_{2}=Q$ and $q_{1}=0$, which contradicts $q_{1}>0$. Thus, it will choose $p_{2}>p_{1} \in\left(\frac{a+c_{1}}{2}, a\right)$ with $q_{2}=0$ as $q_{1} \in\left(0, \frac{a-c_{1}}{4}\right)$.
Case 2c: Suppose $q_{1}=\frac{a-c_{1}}{2}$. As in Case 2b, firm 2 will choose $p_{2}>p_{1}=\frac{a+c_{1}}{2}$ with $q_{2}=0$.
Case 2d: Suppose $q_{1} \in\left(\frac{a-q_{1}}{2}, a-c_{1}\right)$. As in Case 2 b , firm 2 will choose $p_{2}>p_{1} \in\left(c_{1}, \frac{a+c_{1}}{2}\right)$ with $q_{2}=0$.
Case 2e: Suppose $q_{1} \in\left[a-c_{1}, a\right]$. As in Case 2 b , firm 2 will choose $p_{2}>p_{1} \in\left[0, c_{1}\right]$ with $q_{2}=0$.
The results of Cases 2a-2e imply the $R_{2}\left(q_{1}\right)$ in Lemma A. Firms' best-reply function/correspondence and two Cournot-Bertrand equilibria are drawn in Figure 2.

Second, we derive the Cournot-Bertrand equilibria under the equal-sharing tie-breaking rule.
Lemma B. Suppose that Cournot firm 1 and Bertrand firm 2 produce a homogeneous product with respective marginal costs c_{1} and c_{2}, and $a>c_{1}>c_{2}>0$. The equal-sharing tie-breaking rule is adopted. Then firm I's best-reply function $R_{1}\left(p_{2}\right)$ is

$$
q_{1}=R_{1}\left(p_{2}\right)=\left\{\begin{array}{lll}
\frac{a-c_{1}}{2} & \text { if } & p_{2}>\frac{a+c_{1}}{2} \\
\frac{a-c_{1}}{4} & \text { if } & p_{2}=\frac{a+c_{1}}{2} \\
0 & \text { if } & p_{2}<\frac{a+c_{1}}{2}
\end{array}\right.
$$

and firm 2's best-reply correspondence $R_{2}\left(q_{1}\right)$ is

$$
p_{2}=R_{2}\left(q_{1}\right) \begin{cases}=\frac{a+c_{2}}{2} & \text { if } q_{1}=0, \\ =p_{1} \in\left(c_{1}, a\right) & \text { if } q_{1} \in\left(0, \frac{a-c_{1}}{2}\right), \\ =p_{1}=c_{1} & \text { if } q_{1}=\frac{a-c_{1}}{2} \\ =p_{1} \in\left(c_{2}, c_{1}\right) & \text { if } q_{1} \in\left(\frac{a-c_{1}}{2}, \frac{a-c_{2}}{2}\right), \\ =c_{2} \text { or }>\frac{a+c_{2}}{2} & \text { if } q_{1}=\frac{a-c_{2}}{2} \\ >p_{1} \in\left[0, \frac{a+c_{2}}{2}\right) & \text { if } \\ q_{1} \in\left(\frac{a-c_{2}}{2}, a\right] .\end{cases}
$$

Accordingly, the first Cournot-Bertrand equilibrium is $\left(q_{C}^{C B}=\frac{a-c_{1}}{4}, p_{B}^{C B}=\frac{a+c_{1}}{2}\right)$ with $\left(p_{C}^{C B}=\frac{a+c_{1}}{2}, q_{B}^{C B}=\frac{a-c_{1}}{4}\right)$ and $\left(\pi_{C}^{C B}=\frac{\left(a-c_{1}\right)^{2}}{8}, \pi_{B}^{C B}=\frac{\left(a-c_{1}\right)^{2}}{8}\right)$, and the second equilibrium is $\left(q_{C}^{C B}=0, p_{B}^{C B}=\frac{a+c_{2}}{2}\right)$ with $\left(p_{C}^{C B}=\frac{a+c_{2}}{2}, q_{B}^{C B}=\frac{a-c_{2}}{2}\right)$ and $\left(\pi_{C}^{C B}=0, \pi_{B}^{C B}=\frac{\left(a-c_{2}\right)^{2}}{4}\right)$.
Proof. Firm 1's best-reply function is derived below.
Case 1a: Suppose $p_{2}>\frac{a+c_{1}}{2}$. As in Case 1a of Lemma A, firm 1 will choose $q_{1}^{*}=\frac{\left(a-c_{1}\right)}{2}$ with $p_{1}^{*}=\frac{\left(a+c_{1}\right)}{2}$ and $\pi_{1}^{*}=\frac{\left(a-c_{1}\right)^{2}}{4}>0$.
Case 1b: Suppose $p_{2}=\frac{a+c_{1}}{2}$. Firm 1 will get $\pi_{1}=0$ by choosing $q_{1}=0$ with $p_{1}>p_{2}$. If firm 1 chooses $q_{1}>0$ with $p_{1}=p_{2}<a$. Then, p_{1} will be selected to maximize $\pi_{1}=\frac{\left(p_{1}-c_{1}\right)\left(a-p_{1}\right)}{2}$. The optimal solution is $q_{1}^{*}=\frac{\left(a-c_{1}\right)}{4}$ with $p_{1}^{*}=p_{2}=\frac{\left(a+c_{1}\right)}{2}$ and $\pi_{1}^{*}=\frac{\left(a-c_{1}\right)^{2}}{8}>0$. If firm 1 chooses $q_{1}>0$ with $p_{1}<p_{2}$, then no solution exists as in Case 1 b of Lemma A. Thus, firm 1 will choose $q_{1}^{*}=\frac{\left(a-c_{1}\right)}{4}$ as $p_{2}=\frac{a+c_{1}}{2}$.
Case 1c: Suppose $p_{2} \in\left[0, \frac{a+c_{1}}{2}\right)$. If firm 1 chooses $q_{1}>0$ with $p_{1}=p_{2}$, then $p_{1}^{*}=p_{2}=\frac{\left(a+c_{1}\right)}{2}$ as in Case 1 b , which contradicts $p_{2}<\frac{a+c_{1}}{2}$. In contrast, if firm 1 chooses $q_{1}>0$ with $p_{1}<p_{2}$, then no solution exists as in Case 1b. Thus, it is optimal for firm 1 to choose $q_{1}^{*}=0$.

The results of Cases 1a-1c imply the $R_{1}\left(p_{2}\right)$ in Lemma B.
Next, firm 2's best-reply correspondence is derived as follows.
Case 2a: Suppose $q_{1}=0$. As in Case 2a of Lemma A, firm 2's optimal price is $p_{2}^{*}=\frac{a+c_{2}}{2}$ with $q_{2}^{*}=\frac{a-c_{2}}{2}$ and $\pi_{2}^{*}=\frac{\left(a-c_{2}\right)^{2}}{4}$.
Case 2b: Suppose $q_{1} \in\left(0, \frac{a-c_{1}}{2}\right)$. If firm 2 chooses $p_{2}>p_{1}$, then $q_{2}=0$ and $\pi_{2}=0$. If firm 2 chooses $p_{2}=p_{1}$, then $q_{1}=q_{2}=\frac{Q}{2}$ and $\pi_{2}=\left(a-2 q_{2}\right) q_{2}>0$ with $p_{1}=a-2 q_{1} \in\left(c_{1}, a\right)$ by $q_{1} \in\left(0, \frac{a-q_{1}}{2}\right)$. If firm 2 chooses $p_{2}<p_{1}$, then $q_{2}=Q$ and $q_{1}=0$, which contradicts $q_{1}>0$. Thus,
firm 2 will choose $p_{2}=p_{1} \in\left(c_{1}, a\right)$ as $q_{1} \in\left(0, \frac{a-c_{1}}{2}\right)$.
Case 2c: Suppose $q_{1}=\frac{a-c_{1}}{2}$. As in Case 2b, firm 2 will choose $p_{2}=p_{1}=c_{1}$.
Case 2d: Suppose $q_{1} \in\left(\frac{a-c_{1}}{2}, \frac{a-c_{2}}{2}\right)$. As in Case 2 b , firm 2 will choose $p_{2}=p_{1} \in\left(c_{2}, c_{1}\right)$.
Case 2e: Suppose $q_{1}=\frac{a-c_{2}}{2}$. Firm 2 will choose $p_{2} \geq p_{1}=c_{2}$ with $\pi_{2}=0$.
Case 2f: Suppose $q_{1} \in\left(\frac{a-c_{2}}{2}, a\right]$. If firm 2 chooses $p_{2}>p_{1}$, then $q_{2}=0$ and $\pi_{2}=0$. If firm 2 chooses $p_{2}=p_{1}$, then $q_{1}=q_{2}=\frac{Q}{2}$ and $p_{2}=p_{1}=a-2 q_{1} \in\left(-a, c_{2}\right)$ by $q_{1} \in\left(\frac{a-c_{2}}{2}, a\right]$, which suggests $\pi_{2}<0$. If firm 2 chooses $p_{2}<p_{1}$, then $q_{2}=Q$ and $q_{1}=0$, which contradicts $q_{1}>0$. Thus, firm 2 will choose $p_{2}>p_{1} \in\left[0, \frac{a+c_{2}}{2}\right)$ as $q_{1} \in\left(\frac{a-c_{2}}{2}, a\right]$.

The results of Cases 2a-2f imply the $R_{2}\left(q_{1}\right)$ in Lemma B. Firms' best-reply function/correspondence and two Cournot-Bertrand equilibria are drawn in Figure 3.

Accordingly, Lemmas A and B suggest $\left(q_{C}^{C B}=0, p_{B}^{C B}=\frac{a+c_{2}}{2}\right)$ with $\left(p_{C}^{C B}=\frac{a+c_{2}}{2}, q_{B}^{C B}=\frac{a-c_{2}}{2}\right)$ and $\left(\pi_{C}^{C B}=0, \pi_{B}^{C B}=\frac{\left(a-c_{2}\right)^{2}}{4}\right)$ surviving under the two tie-breaking rules. These prove Lemma 2.

Proof of Lemma 3: We first derive the Cournot-Bertrand equilibria under the efficient tie-breaking rule.

Lemma C. Suppose that Cournot firm 1 and Bertrand firm 2 produce a homogeneous product with
respective marginal costs c_{1} and c_{2}, and $a>c_{1}>c_{2}>0$. The efficient tie-breaking rule is adopted. Then firm 1's best-reply function $R_{1}\left(p_{2}\right)$ is

$$
q_{1}=R_{1}\left(p_{2}\right)= \begin{cases}\frac{a-c_{1}}{2} & \text { if } p_{2} \geq \frac{a+c_{1}}{2} \\ Q=a-p_{2} & \text { if } c_{1} \leq p_{2}<\frac{a+c_{1}}{2} \\ 0 & \text { if } 0 \leq p_{2}<c_{1}\end{cases}
$$

and firm 2's best-reply correspondence $R_{2}\left(q_{1}\right)$ is

$$
p_{2}=R_{2}\left(q_{1}\right) \begin{cases}=\frac{a+c_{2}}{2} & \text { if } q_{1}=0 \\ \geq p_{1} \in\left(\frac{a+c_{1}}{2}, a\right) & \text { if } q_{1} \in\left(0, \frac{a-c_{1}}{2}\right) \\ \geq p_{1}=\frac{a+c_{1}}{2} & \text { if } q_{1}=\frac{a-c_{1}}{2}, \\ \geq p_{1} \in\left(c_{1}, \frac{a+c_{1}}{2}\right) & \text { if } q_{1} \in\left(\frac{a-c_{1}}{2}, a-c_{1}\right) \\ \geq p_{1} \in\left[0, c_{1}\right] & \text { if } q_{1} \in\left[a-c_{1}, a\right]\end{cases}
$$

Accordingly, the first Cournot-Bertrand equilibrium is $\left(q_{C}^{C B}=\frac{a-c_{1}}{2}, p_{B}^{C B} \geq \frac{a+c_{1}}{2}\right)$ with
$\left(p_{C}^{C B}=\frac{a+c_{1}}{2}, q_{B}^{C B}=0\right)$ and $\left(\pi_{C}^{C B}=\frac{\left(a-c_{1}\right)^{2}}{4}, \pi_{B}^{C B}=0\right)$, and the second equilibrium is
$\left(q_{C}^{C B}=a-p_{B}^{C B}, p_{B}^{C B} \in\left[c_{1}, \frac{a+c_{1}}{2}\right)\right)$ with $\left(p_{C}^{C B}=p_{B}^{C B}, q_{B}^{C B}=0\right)$ and $\left(\pi_{C}^{C B}=q_{C}^{C B}\left[p_{C}^{C B}-c_{1}\right], \pi_{B}^{C B}=0\right)$.
Proof. Firm 1's best-reply function is first derived below.
Case 1a: Suppose $p_{2}>\frac{a+c_{1}}{2}$. If firm 1 chooses $q_{1}=0$ with $p_{1}>p_{2}$ or $p_{1}=p_{2} \geq a$, then $\pi_{1}=0$. If firm 1 chooses $q_{1}>0$ with $p_{1}=p_{2}<a$, then p_{1} will be selected to maximize $\pi_{1}=\left(p_{1}-c_{1}\right)\left(a-p_{1}\right)$ subject to $p_{1}=p_{2}$. The optimal solution is $p_{1}^{*}=\frac{\left(a+c_{1}\right)}{2}=p_{2}$ with $q_{1}^{*}=\frac{\left(a-c_{1}\right)}{2}$, which contradicts $p_{2}>\frac{a+c_{1}}{2}$. If firm 1 chooses $q_{1}>0$ with $p_{1}<p_{2}$, then p_{1} will be selected to maximize $\pi_{1}=\left(p_{1}-c_{1}\right)\left(a-p_{1}\right)$ subject to $p_{1}<p_{2}$. The optimal solution is $p_{1}^{*}=\frac{\left(a+c_{1}\right)}{2}<p_{2}$ with $q_{1}^{*}=\frac{\left(a-c_{1}\right)}{2}$ and $\pi_{1}^{*}=\frac{\left(a-c_{1}\right)^{2}}{4}>0$. Thus, firm 1 will choose $q_{1}^{*}=\frac{a-c_{1}}{2}$ as $p_{2}>\frac{a+c_{1}}{2}$.
Case 1b: Suppose $p_{2}=\frac{a+c_{1}}{2}$. If firm 1 chooses $q_{1}=0$ with $p_{1}>p_{2}$, then $\pi_{1}=0$. If firm 1 chooses $q_{1}>0$ with $p_{1}=p_{2}$, then p_{1} will be selected to maximize $\pi_{1}=\left(p_{1}-c_{1}\right)\left(a-p_{1}\right)$ subject to $p_{1}=p_{2}$. The optimal solution is $p_{1}^{*}=\frac{\left(a+c_{1}\right)}{2}=p_{2}$ with $q_{1}^{*}=\frac{\left(a-c_{1}\right)}{2}$ and $\pi_{1}^{*}=\frac{\left(a-c_{1}\right)^{2}}{4}>0$. However, if firm 1 chooses $q_{1}>0$ with $p_{1}<p_{2}$, then p_{1} will be selected to maximize $\pi_{1}=\left(p_{1}-c_{1}\right)\left(a-p_{1}\right)$ subject to $p_{1}>p_{2}=\frac{a+c_{2}}{2}$. Since $\frac{\partial \pi_{1}}{\partial p_{1}}>0$ and interval $\left[0, p_{2}\right)$ is not compact, no solution exists. Thus, the optimal solution is $q_{1}^{*}=\frac{\left(a-c_{1}\right)}{2}$ as $p_{2}=\frac{a+c_{1}}{2}$.

Case 1c: Suppose $p_{2} \in\left[c_{1}, \frac{a+c_{1}}{2}\right)$. As in Case 1b, firm 1 will choose $p_{1}^{*}=p_{2} \in\left[0, \frac{a+c_{1}}{2}\right)$ with $q_{1}^{*}=a-p_{2}$ and $\pi_{1}^{*}=\left(p_{1}-c_{1}\right) q_{1}^{*}>0$.

Case 1d: Suppose $p_{2} \in\left[0, c_{1}\right)$. If firm 1 chooses $q_{1}=0$ with $p_{1}>p_{2}$, then $\pi_{1}=0$. If firm 1 chooses $q_{1}>0$ with $p_{1}=p_{2}$, then $-c_{1} \leq p_{1}-c_{1}<0$ by $p_{2} \in\left[0, c_{1}\right)$. Hence $\pi_{1}<0$. We have $\pi_{1}<0$ as well if firm 1 chooses $q_{1}>0$ with $p_{1}<p_{2}$. Thus, it is optimal for firm 1 to choose $q_{1}^{*}=0$ as $p_{2} \in\left[0, c_{1}\right)$.

The results of Cases 1a-1d imply the $R_{1}\left(p_{2}\right)$ in Lemma C.
Next, firm 2's best-reply correspondence is derived as follows.
Case 2a: Suppose $q_{1}=0$. As in Case 2 a of Lemma A, firm 2 will choose $p_{2}^{*}=\frac{a+c_{2}}{2}$ as $q_{1}=0$. Case 2b: Suppose $q_{1} \in\left(0, \frac{a-q_{1}}{2}\right)$. If firm 2 chooses $p_{2}>p_{1}$, then $q_{2}=0$ and $\pi_{2}=0$. If firm 2 chooses $p_{2}=p_{1}$, then $q_{2}=0$ and $\pi_{2}=0$. If firm 2 chooses $p_{2}<p_{1}$, then $q_{2}=Q$ and $q_{1}=0$, which contradicts $q_{1}>0$. Thus, firm 2 will choose $p_{2} \geq p_{1} \in\left(\frac{a+q_{1}}{2}, a\right)$ with $q_{2}=0$ as $q_{1} \in\left(0, \frac{a-q_{1}}{2}\right)$. Case 2c: Suppose $q_{1}=\frac{a-q_{1}}{2}$. As in Case 2b, firm 2 will choose $p_{2} \geq p_{1}=\frac{a+q_{1}}{2}$ with $q_{2}=0$. Case 2d: Suppose $q_{1} \in\left(\frac{a-c_{1}}{2}, a-c_{1}\right)$. As in Case 2 b , firm 2 will choose $p_{2} \geq p_{1} \in\left(c_{1}, \frac{a+c_{1}}{2}\right)$ with $q_{2}=0$.
Case 2e: Suppose $q_{1} \in\left[a-c_{1}, a\right]$. As in Case 2 b , firm 2 will choose $p_{2} \geq p_{1} \in\left[0, c_{1}\right]$ with $q_{2}=0$.
The results of Cases 2a-2e imply the $R_{2}\left(q_{1}\right)$ in Lemma C. Firms' best-reply function/correspondence and two Cournot-Bertrand equilibria are drawn in Figure 4.

Second, we derive the Cournot-Bertrand equilibria under the equal-sharing tie-breaking rule.
Lemma D. Suppose that Cournot firm 1 and Bertrand firm 2 produce a homogeneous product with respective marginal costs c_{1} and c_{2}, and $a>c_{1}>c_{2}>0$. The equal-sharing tie-breaking rule is adopted. Then firm I's best-reply function $R_{1}\left(p_{2}\right)$ is

$$
q_{1}=R_{1}\left(p_{2}\right)= \begin{cases}\frac{a-c_{1}}{2} & \text { if } p_{2}>\frac{a+c_{1}}{2} \\ \frac{a-c_{1}}{4} & \text { if } p_{2}=\frac{a+c_{1}}{2}, \\ 0 & \text { if } p_{2}<\frac{a+c_{1}}{2}\end{cases}
$$

and firm 2's best-reply correspondence $R_{2}\left(q_{1}\right)$ is

Figure 4

$$
p_{2}=R_{2}\left(q_{1}\right) \begin{cases}=\frac{a+c_{2}}{2} & \text { if } q_{1}=0, \\ =a-2 q_{1} & \text { if } q_{1} \in\left(0, \frac{a-c_{2}}{2}\right], \\ >p_{1} \in\left(\frac{a+c_{1}}{2}, \frac{a+c_{2}}{2}\right) & \text { if } q_{1} \in\left(\frac{a-c_{2}}{2}, \frac{a-c_{1}}{2}\right), \\ >p_{1} \in\left[0, \frac{a+c_{1}}{2}\right] & \text { if } q_{1} \in\left[\frac{a-c_{1}}{2}, a\right] .\end{cases}
$$

Accordingly, the first Cournot-Bertrand equilibrium is $\left(q_{C}^{C B}=\frac{a-c_{1}}{2}, p_{B}^{C B}>\frac{a+c_{1}}{2}\right)$ with $\left(p_{C}^{C B}=\frac{a+c_{1}}{2}, q_{B}^{C B}=0\right)$ and $\left(\pi_{C}^{C B}=\frac{\left(a-c_{1}\right)^{2}}{4}, \pi_{B}^{C B}=0\right)$, and the second equilibrium is $\left(q_{C}^{C B}=\frac{a-c_{1}}{4}, p_{B}^{C B}=\frac{a+c_{1}}{2}\right)$ with $\left(p_{C}^{C B}=\frac{a+c_{1}}{2}, q_{B}^{C B}=\frac{a-c_{1}}{4}\right)$ and $\left(\pi_{C}^{C B}=\frac{\left(a-c_{1}\right)^{2}}{8}, \pi_{B}^{C B}=\frac{\left(a-c_{1}\right)^{2}}{8}\right)$.

Proof. Firm 1's best-reply function is first derived below.
Case 1a: Suppose $p_{2}>\frac{a+c_{1}}{2}$. As in Case 1a of Lemma B, firm 1 will choose $q_{1}^{*}=\frac{\left(a-q_{1}\right)}{2}$ with $p_{1}^{*}=\frac{\left(a+c_{1}\right)}{2}$ and $\pi_{1}^{*}=\frac{\left(a-c_{1}\right)^{2}}{4}>0$.
Case 1b: Suppose $p_{2}=\frac{a+q_{1}}{2}$. As in Case 1 b of Lemma B, firm 1 will choose $q_{1}^{*}=\frac{\left(a-c_{1}\right)}{4}$ with $p_{1}^{*}=\frac{\left(a+c_{1}\right)}{2}$ and $\pi_{1}^{*}=\frac{\left(a-c_{1}\right)^{2}}{8}>0$.

Case 1c: Suppose $p_{2} \in\left[0, \frac{a+q_{1}}{2}\right)$. As in Case 1 c of Lemma B, firm 1 will choose $q_{1}^{*}=0$.
The results of Cases 1a-1c imply the $R_{1}\left(p_{2}\right)$ in Lemma D.
Next, firm 2's best-reply correspondence is derived as follows.
Case 2a: Suppose $q_{1}=0$. As in Case 2a of Lemma B, firm 2's optimal price is $p_{2}^{*}=\frac{a+c_{2}}{2}$ with $q_{2}^{*}=\frac{a-c_{2}}{2}$ and $\pi_{2}^{*}=\frac{\left(a-c_{2}\right)^{2}}{4}$.
Case 2b: Suppose $q_{1} \in\left(0, \frac{a-c_{2}}{2}\right)$. If firm 2 chooses $p_{2}>p_{1}$, then $q_{2}=0$ and $\pi_{2}=0$. If firm 2 chooses $p_{2}=p_{1}$, then $q_{1}=q_{2}=\frac{Q}{2}$ and $\pi_{2}=\left(a-2 q_{2}\right) q_{2}>0$ with $p_{1}=a-2 q_{1} \in\left(c_{2}, a\right)$ by $q_{1} \in\left(0, \frac{a-c_{2}}{2}\right)$. If firm 2 chooses $p_{2}<p_{1}$, then $q_{2}=Q$ and $q_{1}=0$, which contradicts $q_{1}>0$. Thus, firm 2 will choose $p_{2}=p_{1} \in\left(c_{2}, a\right)$ as $q_{1} \in\left(0, \frac{a-c_{2}}{2}\right)$.
Case 2c: Suppose $q_{1}=\frac{a-c_{2}}{2}$. As in Case 2 b , firm 2 will choose $p_{2}=p_{1}=c_{2}$.
Case 2d: Suppose $q_{1} \in\left(\frac{a-c_{2}}{2}, \frac{a-c_{1}}{2}\right)$. If firm 2 chooses $p_{2}>p_{1}$, then $q_{2}=0$ and $\pi_{2}=0$. If firm 2 chooses $p_{2}=p_{1}$, then $q_{1}=q_{2}=\frac{Q}{2}$ and $p_{2}=a-2 q_{2} \in\left(c_{1}, c_{2}\right)$ by $q_{1} \in\left(\frac{a-c_{2}}{2}, \frac{a-c_{1}}{2}\right)$, which suggests $\pi_{2}<0$. If firm 2 chooses $p_{2}<p_{1}$, then $q_{2}=Q$ and $q_{1}=0$, which contradicts $q_{1}>0$. Thus, firm 2 will choose $p_{2}>p_{1} \in\left(\frac{a+c_{1}}{2}, \frac{a+c_{2}}{2}\right)$ as $q_{1} \in\left(\frac{a-c_{2}}{2}, \frac{a-q_{1}}{2}\right)$.
Case 2e: Suppose $q_{1} \in\left[\frac{a-c_{1}}{2}, a\right]$. If firm 2 chooses $p_{2}>p_{1}$, then $q_{2}=0$ and $\pi_{2}=0$. As in Case 2 d , $\pi_{2}<0$ if firm 2 chooses $p_{2}=p_{1}$. If firm 2 chooses $p_{2}<p_{1}$, then $q_{2}=Q$ and $q_{1}=0$, which contradicts $q_{1}>0$. Thus, firm 2 will choose $p_{2}>p_{1} \in\left[0, \frac{a+c_{1}}{2}\right]$ as $q_{1} \in\left[\frac{a-q_{1}}{2}, a\right]$.

The results of Cases 2a-2e imply the $R_{2}\left(q_{1}\right)$ in Lemma D. Firms' best-reply function/ correspondence and two Cournot-Bertrand equilibria are drawn in Figure 5.

Accordingly, Lemmas C and D imply that $\left(q_{C}^{C B}=\frac{a-c_{1}}{2}, p_{B}^{C B}>\frac{a+c_{1}}{2}\right)$ with $\left(p_{C}^{C B}=\frac{a+c_{1}}{2}, q_{B}^{C B}=0\right)$ and $\left(\pi_{C}^{C B}=\frac{\left(a-c_{1}\right)^{2}}{4}, \pi_{B}^{C B}=0\right)$ surviving under the two tie-breaking rules. These prove Lemma 3.

Proof of Proposition 4: There are two cases according to relative sizes of c_{1} and c_{2}.
Case 1: Suppose $a>c_{1}>c_{2}>0$ and $a>2 c_{1}-c_{2}$. First, since $p^{C}=\frac{a+c_{1}+c_{2}}{3}, p^{B}=c_{1}$ and $p^{C B}=\frac{a+c_{2}}{2}$, we have $p^{C}-p^{B}=\frac{a+c_{2}-2 c_{1}}{3}>0, p^{B}-p^{C B}=\frac{2 c_{1}-a-c_{2}}{2}<0$ and $p^{C}-p^{C B}=\frac{-a-c_{2}+2 c_{1}}{6}<0$ by $a>2 c_{1}-c_{2}$. Thus, $p^{C B}>p^{C}>p^{B}$. Second, since $Q^{C}=\frac{2 a-c_{1}-c_{2}}{3}$, $Q^{B}=a-c_{1}$ and $Q^{C B}=\frac{a-c_{2}}{2}$, we have $Q^{C}-Q^{B}=\frac{-a-c_{2}+2 c_{1}}{3}<0, Q^{B}-Q^{C B}=\frac{a+c_{2}-2 c_{1}}{2}>0$ and $Q^{C}-Q^{C B}=\frac{a+c_{2}-2 c_{1}}{6}>0$ by $a>2 c_{1}-c_{2}$. Thus, we have $Q^{B}>Q^{C}>Q^{C B}$. Third, since
$Q^{B}>Q^{C}>Q^{C B}$, we have $C S^{B}>C S^{C}>C S^{C B}$. Fourth, some calculations show $S W^{C B}-S W^{B}=\frac{\left[a-c_{2}+2\left(c_{1}-c_{2}\right)\right]\left[2 c_{1}-a-c_{2}\right]}{8}<0$ by $a>2 c_{1}-c_{2}$ and $a>c_{1}>c_{2}>0$. Moreover, $S W^{B}-S W^{C}=\frac{1}{18}\left\{-3\left(a-c_{1}\right)^{2}+5\left(a-c_{1}\right)\left(a-c_{2}\right)+11\left(a-c_{1}\right)\left(c_{1}-c_{2}\right)-4\left(a-c_{2}\right)\left(c_{1}-c_{2}\right)-6\left(c_{1}-c_{2}\right)^{2}\right\}$ $>\frac{1}{18}\left\{2\left(a-c_{1}\right)^{2}+\left(c_{1}-c_{2}\right)^{2}\right\}>0$ by $a>2 c_{1}-c_{2}$ and $a>c_{1}>c_{2}>0$. And $S W^{C}-S W^{C B}=\frac{1}{72}\left\{12\left(a-c_{1}\right)^{2}-15\left(a-c_{2}\right)^{2}+32\left(c_{1}-c_{2}\right)^{2}+8\left(a-c_{1}\right)\left(a-c_{2}\right)\right\}=$ $\frac{1}{72}\left\{\left[2\left(a-c_{1}\right)+3\left(a-c_{2}\right)\right]\left[6\left(a-c_{1}\right)-5\left(a-c_{2}\right)\right]+32\left(c_{1}-c_{2}\right)^{2}\right\}>\frac{1}{72}\left\{-20\left(c_{1}-c_{2}\right)^{2}+32\left(c_{1}-c_{2}\right)^{2}\right\}=$ $\frac{1}{72}\left[12\left(c_{1}-c_{2}\right)^{2}\right]>0$. These imply $S W^{B}>S W^{C}>S W^{C B}$.
Case 2: Suppose $a>c_{2}>c_{1}>0$ and $a>2 c_{2}-c_{1}$. Using the same method, we can obtain the results similar to those in Case 1.

Figure 5

Proof of Proposition 5: Suppose $c_{1}=c_{2}=c$. First, the Cournot-Bertrand equilibrium $\left(q_{C}^{C B}=\frac{a-c}{4}, p_{B}^{C B}=\frac{a+c}{2}\right)$ is unstable under the best-reply dynamics. For any $p_{2, t}>\frac{a+c}{2}$, we have $q_{1, t+1}=R_{1}\left(p_{2, t}\right)=\frac{a-c}{2}$, and $q_{1, t+1}=R_{1}\left(p_{2, t}\right)=0$ for $p_{2, t}<\frac{a+c}{2}$. These imply $\lim _{t \rightarrow \infty} R_{1}\left(p_{2, t}\right)=0$ or $\frac{a-c}{2}$. Similarly, for any $q_{1, t}<\frac{a-c}{4}$, we have $p_{2, t+1}=R_{2}\left(q_{1, t}\right)>\frac{3 a+c}{4}>\frac{a+c}{2}$. These imply $\lim _{t \rightarrow \infty} R_{2}\left(q_{1, t}\right) \neq \frac{a+c}{2}$. Thus, no neighborhood around $\left(q_{C}^{C B}=\frac{a-c}{4}, p_{B}^{C B}=\frac{a+c}{2}\right)$ exists such that the
trajectory starting from the neighborhood will converge to it as $t \rightarrow \infty$. Second, the CournotBertrand equilibrium $\left(q_{C}^{C B}=\frac{a-c}{2}, p_{B}^{C B}>\frac{a+c}{2}\right)$ is unstable as well. For any $p_{2, t} \leq \frac{a+c}{2}$, we have $q_{1, t+1}=R_{1}\left(p_{2, t}\right)=0 \neq \frac{a-c}{2}$. For any $q_{1, t} \in\left(\frac{a-c}{4}, \frac{a-c}{2}\right)$, we have $p_{2, t+1}=R_{2}\left(q_{1, t}\right)>\frac{a+c}{2}$. These suggest no neighborhood around $\left(q_{C}^{C B}=\frac{a-c}{2}, p_{B}^{C B}>\frac{a+c}{2}\right)$ existing such that the trajectory starting from the neighborhood will converge to it as $t \rightarrow \infty$.

Suppose $c_{1}>c_{2}>0$. The Cournot-Bertrand equilibrium $\left(q_{C}^{C B}=0, p_{B}^{C B}=\frac{a+c_{2}}{2}\right)$ is unstable under the best-reply dynamics. For instance, for all $q_{1, t} \in\left(0, \frac{a-c_{1}}{2}\right)$, we have $p_{2, t+1}=R_{2}\left(q_{1, t}\right)>\frac{a+c_{1}}{2}>\frac{a+c_{2}}{2}$. Thus, no neighborhood around $\left(q_{C}^{C B}=0, p_{B}^{C B}=\frac{a+c_{2}}{2}\right)$ exists such that the trajectory starting from the neighborhood will converge to it as $t \rightarrow \infty$. Similar arguments can be applied to proving that the Cournot-Bertrand equilibria under $c_{2}>c_{1}>0$ are unstable as well.

