Appendix

Proof of Lemma 1. Denote L; and L, the Lagrange functions of operators 1 and 2 in

problem (9) with

Li = (1—q —bg)g—(ct+7)q1— f+ X (g —0) and

Ly = (1—q—bq1)ga — (ca+7)q2 — f + Xalgz — 9),

where A; and Ay are the respective Lagrange multipliers of operators 1 and 2. Then,

the Kuhn-Tucker conditions for operator 1 are

L Ly
61—1—2q1—bqg—cl—r+)\1<0 qla =0 and (A1)
aql 8Q1

oL, 0L,

—_— —6>0, A = 0; A2

IV Yon (42)
and for operator 2 are

L L
a2_1—2q2—bq1—cg—r+)\2<0 q282—0and (A3)
(9q2 8(]2

8L2 0L,
= 0>0, A =0. A4
e BT 2 (44)

If % < 0, we have ¢f = 0 by (A1). Then ¢f > § will not hold unless 6 = 0. Since this
is not an interesting solution, we focus on solution ¢}, which satisfies aLl =01in (Al).
Similarly, we focus on solution ¢j, which satisfies %_sj = 0in (A3). Based on the values

of A1 and A\, there are four cases as follows.

Case 1: Suppose A; =0 and A5 = 0. Then (A1) and (A3) suggest
1—2¢ —bgg —c; —r=0and
1—2g9 —bgy —co —r=0.

beo—2c¢1 * _ 1—r bc1—2c¢o
2+ and g5 = o7 + *=2. The conditions

Solving these equations yields ¢} = é—jrl’; +

in (12) imply non-negative ¢ for i = 1, 2. To guarantee ¢f > § and g5 > 4, condition



0<6 <o = é—;g 4 ba=Ze: — g% should be met, because ¢; < ¢, implies ¢& > ¢}

42
and g5 > ¢ implies ¢ > 6. Substituting ¢ and ¢} into (1)-(2) yields p5 = %ﬁ;b) +
[c2(2—b%)+c1b] 14+7(14b) 2—b2)+cab)

> pi = + ) > 0, and into (4) yields 7} = (¢})? — f for

4—b? 2+b

i =1, 2. These prove Lemma 1(i).
Case 2: Suppose A} =0 and A5 > 0. Then, (A1), (A3), and (A4) suggest

(1—=2g1 —bge —c1—1) =0, (g2—06) =0, and (1 —2gy — bg; — ca — r+ Ag) = 0.

They in turn imply ¢ = PT_TC“I"S ¢ =06, and \j = (44’2)#. To guarantee \5 > 0,

conditions § > 0; = %

to have ¢f > ¢, conditions § < 0y = 1_25% and 7 < (1 — ¢;) are needed. Thus,

, 7 <7,and ¢y < ¢ are needed. On the other hand,

the plausible range for § is § € (01, Jo]. Substituting ¢f and ¢ into (1)-(2) produces
py=3[(2=b) — (2= 028+ bey 4+ br] > pj = 3(1 —bd +¢1 +7) > 0if § < &, and into
(4) gives 77 = (¢)? — f and 73 = $[(2 = b)(1 — 7) — (2 — b?)d + bey — 2¢2] — f. These

prove Lemma 1(ii).
Case 3: Suppose A} > 0 and A5 = 0. Then (A1)-(A3) suggest
(1 —90)=0, (1 —=2g2—bg —ca—7r) =0, and (1 —2¢; —bgs —c1 — 7+ A1) =0.

Solving these equations yields

_l—r—cy—bd
2

(4 — b?) 1—r bey —2¢

cand A= =0 = (Gog )

To guarantee A} > 0, conditions

1—r bey —2¢ 2c1 — bey
) <l— ——= A
>2—|—b+ . and r < 5 (Ab)

are needed. On the other hand, ¢ > ¢ is guaranteed by assuming

l—co—r

240 (46)
However, (A5) and (A6) are incompatible with each other because 1;?; L — (;;Jr’l; +
bcj__ffl) = _21(3;261) < 0. Thus, no solution exists in this case.
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Case 4: Suppose A} > 0 and A\ > 0. Then, (A2) and (A4) suggest ¢; = ¢ and g3 = 6,
and (A1) and (A3) imply A\ = =14+ (2+b)d+c1+r,and Ay = -1+ (2+b)d +c2 + 7.
To have A} > 0 and A3 > 0, conditions § > d; = 525" and r < (1 — ¢1) are needed.
Note that r < (1 — ¢1) is inferred from r < 7 = (2_17);# Substituting ¢f = ¢5 =9
into (1)-(2) produces pj = p; = 1 —-(14+0)d > 0if § < ﬁb, and into (4) gives
mf=0[1—(140b)0 —c¢;—r] — f for i =1, 2. These prove Lemma 1(iii). O

Proof of Lemma 2: The proofs are similar to those of Lemma 1, and thus omitted. O

Proof of Lemma 3: The proofs are similar to those of Lemma 1, and thus omitted. O

Proof of Lemma 4: Lemma 1 shows that operators’ optimal choices depend on the

values of 9. Thus, we have the following cases.

Case 1: Suppose 6 € [0, ¢;]. Then Lemma 1(i) implies 7] > 73, and f* = 75 =

2(¢3)? > 0. The problem in (15) thus becomes
max 2f +7(qr + )
st. 0<d<fandO<r<r.
Its Lagrange function is
L= (g3)" +7(qi + ) + Xi(01 = 8) + Ao — 1),

where \; and )\, are the Lagrange multipliers associated with the inequality constraints.

Then, the Kuhn-Tucker conditions are

g—f=2q§%?+r(%+%)+(qi+£)+&%—&§07T'g—fz()’ (A7)
g—§ = -\ <0, 5% =0, (48)

g_i:al_ézo, Alg—izo, and (A9)

g—i:f—'r’ZO, )xgg—fz:o- (A10)



Based on the values of \; and Ay, we have four sub-cases.

Case la: Suppose A} = 0 and \; = 0. Then, (A7) becomes —1—[(2 + 2b) —

(2+0)?
2 2
—b?)c c D . (242b)+ 2 c2 (4+2b=bT)ey
r(4b+6) - (4+(22b—lf)2) -+ (22—12;)] = 0, which implies r* = [ (2(4bb)+6) =5 > 0.

It remains to check whether r* < 7 holds. By some calculations, we have r* < 7
iff ¢y < ¢ = PE2HEE0Al On the other hand, (A9) implies both §* € [0, 6] with

_1—7* | be1—2ca _ 2(2—b)+(2+43b)c1 —(6+b)c x _ 172(2=b)+(24+3b)c1 —(6+b)c2 12
0= Sy T = o nerm - and f1 =3 so ez ) > 0. Thus,

at the equilibrium, port authority’s fee revenue equals

22—-0b)+ (24 3b)cy — (6 +b)cay . 2(1 —7%) — (c1 + c2)
2(2 — b)(3 + 2b) Pl 2+ I

R* =] (A11)

Case 1b: Suppose A; = 0 and A > 0. Then, (A10) suggests r* =7 = W
However, at r*, we have f* = 0 due to ¢ = 0, which contradicts the requirement of

positive fixed fee. Thus, no solution exists in this case.

Case lc: Suppose A7 > 0 and Aj = 0. Then, (A9) suggests 6* = §; > 0. This in

turn implies A} = 0 by (A8). It is a contradiction. Thus, no solution exists in this case.

Case 1d: Suppose A\ > 0 and A > 0. As in Case 1b, we have f* = 0. Again, no

solution exists here.

Case 2: Suppose 6 € (01, 02]. Then Lemma 1(ii) implies 7} > 73, and f* = 75 =
8[(2=b)(1 —7) — (2= b%)8 + bey — 2¢o). We have f* > 0 iff § < (Q_b)(l(;i);gcl_QQ

> (L) & iff r < (>

and r < 7 = (2—1;)-;#' In addition,

(2=b)(1—r)+bc1 —2c2
(2-b%)

)14 (140b)e; — (2 + b)cy. Thus, we have two sub-cases as follows.
Case 2a: Suppose 1 > [14(1+b)c; — (2+b)cs]. Then, the problem in (15) becomes
max 2f +r(gr + )

(2—=0)(1 —7)+bcy — 2¢9

s.t. 51 << (2 — b2)

and [1+ (14+b)cy — (24 b)eo] <r < 7. (Al2)



Its Lagrange function is

I — g[(g —b)(1—7) — (2= b%)8 + ber — 2¢0] + g[

(2=0)(1—71)+bcy — 2¢9

14+ (2—=0)0 —c1 — 1]+ (0 —01)

+ o] o= =0+ X{r—[1+(1+bc1 — (2+b)ca]} + M(F — 7).
Then, the Kuhn-Tucker conditions are

g—f = %<1_2T_Cl)+2—1kb 1—(22__bbz>)\2+>\3—>\4§0,r~g—f20,

g—? = %[(2—6)—2(2—62)(5—|—b01—262]4-)\1—)\2SO,5-2—?:0,

s sz ng

SALQ _ (2—6)(1&?;)()01—202_620’ AQ’S_A@:O’

g—i = r—[1+(1+bcg—(2+b)cg] >0, )\3-2—){;:0, and

g—/i = r—r>0, >\4~§—i:0,

where A1, A2, A3, and A4 are the Lagrange multipliers for the four constraints in (A12).

Since three of the constraints are strict inequalities, we must have A\ = \; = A} = 0. If
(2—b)(1—r*)+bc1 —2c2

A5 = 0, we have §* = % By some calculations, we have ) -
(2_2)(;3‘;12)_2‘32 — 22((621__;22)) < 0, which contradicts 6* < (Q_b)(l(_;_*l);)bcl_h required by prob-

lem (A12). Thus, no solution exists in this case. By contrast, if \j > 0, we have r* =

1+ (14+D)er — (24b)cy, 6° = EDH0a2e2 ynd s = L[14(34-20)¢; —2(2+b)ca). Note that

2(2-b2)
N> 0iff e < % On the other hand, gTLQ > 0 requires (Q_b)(lg_*l));gbcl_m —6* > 0.
By some calculations, we have (2_1))(1(_27"_*());#’01_262 — 0 = _(2_b)_(4+g(_22_bz%§1+2(3_b2)c2 >0
iff ¢ > (276);((;%2;)%2)61, which contradicts ¢y < % required by Aj > 0. That is
because (27b);((§j;)2b2)01 > HQ(?;E:))CF Thus, no solution exists in this case.

Case 2b: Suppose r < [14 (1 +b)c; — (2+b)cs]. Then the problem in (15) becomes
max 2f" +7(qy + ¢3)
st.01 <d<dpand 0 <r <[1+4+ (1+0b)c; — (24 b)cal. (A13)
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Its Lagrange function is

L = g[(Q—b)(l—7“)—(2—62)5+bc1—202]+g[1+(2—b)5—cl—r]

+)\1(6 — 51) —f- )\2((52 — (5) —I— )\3[1 —f- (]_ —|— b)Cl — (2 + b)CQ — ’I“].

Then, the Kuhn-Tucker conditions are

gf ;(1_2r_cl)+2ibh_2j1LbA2_A3§O’T'g_fzo’ A
2 b 22— )5 b~ 20t A =X <0500 =0, (A1)
gfl—(s 5 >0, A - SALl 0, (A16)

%:52_520, AQ-g—izo, and (A17)

gi_H( +0)ey — (24 b)ey —1r >0, Ag- gfg 0, (A18)

where A\, Ay, and A3 are the Lagrange multipliers for the three constraints in (A13).
Constraints 6; < ¢ and 7 < [1 4+ (1 4+ b)e; — (2 4 b)co] suggest \j = Aj = 0 by

(A16) and (A18). If A5 > 0, (Al4), (A15) and (A17) suggest =%—t) — o —
0 [(2—b)—2(2—b2)5+bc1—2c2]

— X = 0, and (02 — 0) = 0. Solving these equations yields

. _ [204b)— (4+3b)c +(2+b)ca] . _ (2—ci—c « _ @+)1+0+ber—(2+b)e]
o= 2(3+20) = >0, 9 2(3—1|-2b2 ; and Ay = S(3+2b) <. By
some calculations, we have (6* — ;) = 2(22—01 0, and A\ > 0 iff ¢; < 1+(;T+;> On
the other hand, we have [r*—14(14+b)c; — (2+b)cy] = %[—2—(5+4b)01+(7+4b)02}
Thus , we get r* < 1+ (1 +b)c; — (2+b)cg iff cg < ¢ = %.

By contrast, if A5 = 0, we have r* = (1;—61) and 0" = (Qb)(;# by (A15) and
(A16). Note that 6* < 0y iff co > 1+(21::)61. It in turn implies [14 (1+b)c; — (2+b)cs] <

0 < r*, which contradicts r* < [1 + (1 4+ b)c; — (2 + b)cs]. Thus, no solution exists in

this case.
In sum, if c; < ¢ = 2+(7Eir—4?q, an equilibrium with r* = [2(1+0)- (423335)221)“2%)62] >0
and 0* = (22%;1_;;)2) exists. At the equilibrium, port authority’s fee revenues equals
(2 —C1 — 02)2
Rf="—~ = </ Al19
4(3 + 2b) (419)
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Case 3: Suppose 6 € (da, (L) Then, Lemma 1(iii) implies 7} > 73, and f* = 7} =

1+0)
1= (1+b)d—co—r]d with f* > 0iff § < 1(_fjb_)r and r < (1—cy). Note that r < (1—c¢)
is implied by r <7 = (24’);#. Accordingly, the problem in (15) becomes

max Sl—(1+b)d—co—r]+2rd

l—co—1r

— and . A20
1+ and r < T (A20)

s.t. (52 <o <

Its Lagrange function is

1—c—r

L:(S[l—(1+b)6—c2—r]+2r5+A1(5—52)+A2[W_5]+,\3(f_7~),
Then, the Kuhn-Tucker conditions are

?9_7[: = 5+2ibA1_1ibA2_A3§O’T'?)_f:o’

g—? = 1-214b)d—co+r+A — A <0, 6'(2—?:0,

g—i = 5—5220,/\1%—0,

g){; = 1&21)_)T—(520,)\26—)\2:0, and

g—){; = r—r>0, /\35—){;:0

Since all constraints in problem (A20) are strict inequalities, we must have A} = A5 =
A; = 0. However, by some calculations, we discover that when A\ = A5 = A\ = 0,

r* = —1+ ¢y < 0 contradicts r* > 0. Thus, no solution exists in this case.

Based on the above, we can obtain the ensuing optimal two-part tariff contracts.

Since ¢y = % < Gy = W, we have two cases. First, if ¢; € (¢, ¢2),

one solution exists in Case la with R* = 2f* + T*[W] in (A11), and one

solution exists in Case 2b with R* = % in (A19). Because % —2f* —
*[2(1—7“*)—(01—1—02)] _ (e2—c1)[(2—b)+bec1 —2¢2]
(2+b) - (3-+25)(2—)?

part tariff contract and the minimum throughput guarantee are those in Case 2b. These

> 0 by ¢y < ¢o, port authority’s optimal two-

prove Lemma 4(i). Second, if ¢y € (¢é2, ¢, there exists a unique solution in Case la,

which is the optimal contract. Lemma 4(ii) is then proved. O

7



Proof of Lemma 5: Lemma 2 shows that ¢f and ¢ depend on the values of . Thus,

we have three cases and their sub-cases as follows.

Case 1: Suppose ¢ € [0, d;]. Lemma 2(i) implies 7}’ > 7% > 0 due to r < 7 and ¢y > ¢;.

Accordingly, the problem in (16) becomes

max 7(qy + ¢s)

st. 0<d<dandO<r<r.

Its Lagrange function is

20—=7r)—c1 — e

L=r 2+ b

]+)\1(51—5)+)\2(f—T).

Then, the Kuhn-Tucker conditions are

oL 2—01—02—47" 1 oL
= — — X < — = A21
or 2+b) Gy sy =0 (421)
oL oL
—_— = — < _— =
=M <0, 050 =0, (422)
oL oL
_— = —0 > —_— =
a)\l (51 ) = O, )\1 a/\l 0, and (A23)
oL oL
—_ =7 — > _— =
% T—r>0, )\ o 0, (A24)

where \; and Ay are the Lagrange multipliers for the two inequality constraints. If
A} > 0, then g—{; = —A} < 0 and 0* = 0 by (A22). They in turn suggest g—/\Ll =0, >0
and A} = 0 by (A23). This is a contradiction. Thus, we must have A} = 0, and two

sub-cases below.

Case la: Suppose A5 = 0. Then, we have r* = 2"3}% by (A21). In addition,

— u 2(2—b)+(243b)c1 —(b+6)c . ~ _ [2(2—=b)+(243b)c
(7’—1”):[( )+(4—22—)b)1 (+)2]201ff02§02:[( zl—iﬁ;— Jei]

. Thus, port authority’s

equilibrium unit-fee revenue equals

(2 — C1 — 62)2

R" =
8(2+1b)

(A25)



and the optimal minimum throughput guarantee is " € [0, 2(2‘b)+(j(+4?f’;§1)‘(b+6)02] if

Co S 62.
Case 1b: Suppose A5 > 0. Then (A24) suggests r* =7 = %, and (A21)

suggests A\ = [_2(2_b)_((24t3;2))61+(b+6)c2}. We have r* > 0 iff ¢y < & = (Z_b%erCl, A5 > 0iff

Co > Co, and 0" = 0 due to §; = % + b(ci__;cf = 0. At the equilibrium, port authority’s

fee revenue equals
(CQ — Cl)[(2 — b) + bCl — 202]

B= @b

(A26)

Case 2: Suppose § € (01, d5]. Then, Lemma 2(ii) implies 7 > 7% = 2[(2—b)(1 —7r) —

(2 — 0?8 + bey — 2¢o] and 7y > 0 iff § < [(2_17)(1(;);;”1_202] and r < 7= EbHbaz2e

2-b
Moreover, because [(27b)(1(;i)b+2;)c17202] > () oiff r < () [1+ (1 +b)ey — (24 b)cal,

and [1+ (1 +b)c; — (2+ b)ea] < 7 by ¢ < ¢z, we have two sub-cases below.

Case 2a: Suppose 0 < 7 < [1 + (1 +b)e; — (2 + b)eo). Then the problem in (16)

becomes
max 7(qy + ¢;)
st. 1 <d<dhand 0<r <[1+4+(1+4+b)c; — (2+b)cyl.

Its Lagrange function is

rll+(2—=0)0 —c; — 1]
2

L= + )\1(5 — (51) + )\2((52 — 5) + )\3[1 + (1 + b)Cl — (2 + b)CQ - 7’]-

Then, the Kuhn-Tucker conditions are

8L [1 + (2 - b)5 — C1 — 27“] )\1 )\2 8L
_— = — — < T =
or 2 Toap agp eS0T =0 (420)
oL (2—-0b)r oL
_— = — < —_—_ =
o 5 M= A <0, 50 =0, (A28)
oL oL
— 55 > = A2
N §—68, >0, Mgy =0 (A29)
oL oL
8)\2 52 0 = O, )\28>\2 0, and ( 30)



oL oL
— =141 —r> . 1
a)\3 + ( + b)Cl (2 + b)Cg r 0 )\3 8)\3 =0 (A3 )

Since ¢ > d;, we have \} = 0 suggested by (A29). Thus, A5 > 0 is inferred form (A28)

and r > 0, and two sub-cases are as follows.

Case 2a-1: Suppose \; > 0. Then (A30) and (A31) suggest r* = 1+ (1 + b)e; —

(2 + b)ey and 6 = 8 = (c2 — 1) > 0. Moreover, (A28) implies \j = &2 —

—92[1+(3+2b)c1 —2(2+b)ca]

(Q_b)[1+(1+b)cl_(2+b)62] and (A27) implies \} = b . By some calcula-
tions, we have % = 0y > 61, r* > 0, X5 > 0iff ¢ < f = 1+((21:;’)Cl, and A5 > 0 iff
14+(342b)c 14+(3+2b)c 1+(1+b)c +(3+2b)cy 1+(1+4b)c
cy > W with 2(21h) L < o+D) L. Thus, under 2 ﬁ <2 < gy L the

equilibrium exists and port authority’s fee revenue equals
R = 2(02 - Cl)[l + (1 + b)Cl - (2 + b)CQ]. (A?)Q)

Case 2a-2: Suppose A\j = 0. Then (A27)-(A31) suggest r* = 152 > 0, 0% =6, =

%Qj:})) > 0, and \5 = M > 0. By some calculations, we have [1+ (14 b)c; — (2+

b)co] — 52 = {14 (34+2b)c; —2(24b)ca] > 0iff ¢ < %. Thus, under condition

, we have " < [14 (14 b)c; — (2 +b)cs), and the equilibrium exists

14(34+2b)cr

2 < G = 55

with port authority’s fee revenue equal to

(1 — 01)2

Rt=
2(2 +b)

(A33)

Case 2b: Suppose > [1+(1+b)c; — (2+0b)cs). Then, the problem in (16) becomes

max 7(gy + ¢3)
[(2—=0)(1 —7r)+bcy — 2¢)

.t. <
s.t (51<5_ (2—()2)

and [1+ (1 +b)cy — (2+b)eg) <7 < T

Its Lagrange function is

g[1+ (2—b)5 — ¢ — 1] +/\1(5—51)+/\2{[(

+A3{r = [14+ (1 +b)cy — (24 b)ea]} + Au(F — 7).

2—=0)(1 —r)+bcy — 2¢,]
- 5) -

I —
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Then, the Kuhn-Tucker conditions are

OL_[+@-tf-a-m, A _ <(22—_bb>j)2 FXh<0, O 20, (As4)
g_s:r(zz—b) F A=A <0, 52—?20, (A35)

%:5_5120’ Alg—ith (A36)

gi _(2- b)(l(; i)b;r)bcl —20 550, 2 gi 0, (A37)
_H) ez 2w
S_Ai For >0, Mgi 0. (A39)

Since 6 > 6; and r > [1 + (1 +b)c; — (2+b)ca), AJ = Aj = 0 are implied by (A36) and
(A38). Thus, (A35) suggests A5 > 0, and two sub-cases are as follows.

Case 2b-1: Suppose A; > 0. Then, r* = 7 is implied by (A39), and 6* = 0 by

(A37). However, since 6; = bar—2e2 — (), we have §* = &, = 0, which contradicts

2+b + 4—b?

0 > 07. Thus, no solution exists in this case.

Case 2b-2: Suppose Aj = 0. Then (A34)-(A35), (A37), and A5 > 0 suggest r* =
[(3—2b) (1 b)Cl (2 bCQ] 5u — 2 b)(l—’r'”‘)—f—bcl—2(227 and )\; —_ (2—5)7»“

2(3—2b) (2-62)
we have r% — [1 + (1 + b)01 (2 + b)cz] _ (3*2[))7(7+b;(4?f7i)2cbl)+(10*[)74[)2)62] and (F o Tu) _

[(2_b)(3_2b)+(22(§il;)_(?£)221)_(8_4b_b2 2l Thus, 7¢ > M+ (1+bct— (24 Db)es] iff cg > ¢y =

. By some calculations,

_ TEI u . ~ (2-b)(3— —362)c u .

3 285“_(?:31)24)[) ) Lort < riff ¢ < & = )]t (Zb)Ib@;;‘g)b 86°) Loand 7 > 0 iff ¢y <
(3—2b)—(1-b)c (3—2b)+(7+b—4b%)c (2—b)(3—2b)+(2+3b—3b%)c (3—2b)—(1-b)c
oy With gy < Ty - < oy Moreover,
we have A5 > 0 and 0" > 4; implied by r* > 0 and " < 7, respectively. Thus, under
condition B=20H(THb—4b%)er ey < (2-0)(3-26)+(243b—3b")c , the equilibrium exists and

(10—b—4b?) (8—4b—b?)

port authority’s fee revenue equals

[(3—=2b) — (1 —Db)er — (2 — b)eo)?

1= A(3 = 2b)(2 — 1?)

(A40)
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Case 3: Suppose 6 € (do, 1+b)) Then, Lemma 2(iii) suggests 7} > w5 = 0[1 — (1 +
b)d —cy — 1] > 0iff 6 <1 Tty and r < (1 —¢) with (1 —¢z) > 7. Thus, the problem

n (16) becomes

max 2rd
1 — ¢y —
s.t. &<6§#and0<r§f
Its Lagrange function is
L= 26+ Mo — 6 + 2l S 2= s ()
= 1 2 2 1+0) 3 .
Then, the Kuhn-Tucker conditions are
oL A1 A2 oL
=95 - —X3<0, 7r— =0 A4l
o T ety axy U Y (441)
L oL
I —\ < =
96 2r + )\1 )\2 ~ 07 586 0, (A42)
oL oL
= >0, A A4
o =0 — 0y >0, o =0, (A43)
oL l—cy—r oL
= —0>0, g=— = d A44
Do (1+0) 20, dag =0, an (444)
oL oL
— =7 A ) A4
s =0 dagy, =0 (445)

Since d > do, we have A} = 0 by (A43), and A\ > 0 by r > 0 and (A42). Thus, there

are two sub-cases as follows.

Case 3a: Suppose A = 0. Then, (A41), (A42), and (A44) suggest r* = =2 >

0, 0% = ﬁ > 0, and A} = 2r* > 0. Under the circumstance, we have (7 —

w\ _ (2=b)+bci—2¢ 1—co __ (2—b)+2bc1—(2+b)c u I (1—c1—r%)

) = 2= bl) -5 = 2(214)) * and (6" —0a) = 2040 (2l+b) =

[HQ(;T:)F?) (2(_‘:);3%)”] Thus, ¥ > r* iff ¢, < —(2_(2:;2)1761, and 0% > 0y iff co < ¢ = —1+(23(J1r;f))cl

with & (g):f)bcl > 1+(23(J1r—;’))01. For ¢y < %, the equilibrium exists with r* = 1_702
and 0" = 2(1 +b At the equilibrium, port authority’s fee revenue equals

(1 — 62)2
RY = ——=—. A46
2(1+0b) ( )
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Case 3b: Suppose A > 0. Then we have r* = 7 by (A45) and 6" = (b(”—_cl)

1+b)(2—0)
by (A41). However, condition (6% — d3) = (fffg)z;i)b) - 1_(26‘1;; - = _((ill’;gicfb}?) <0

contradicts 0 > 9. Thus, no solution exists in this case.

Based on the above, we can derive optimal unit-fee schemes as follows. We first

compare the values of ¢, = %—%}L?’M in Case la, ¢y’ = —H((gl:f))q

(3—2b)+(7+b—4b)c1 (2—b)(3—2b)+(24+3b—3b%)c1 -
(10—b—4b2) (8—4b—b?) m

in Case 2a-1 and

o 14(3+2b)cy
2 7 T2(2+b)

and ¢, =

in Case 2a-2, ¢, =

Case 2b-2, and ¢’ = % in Case 3a. Some calculations show ¢ < ¢, < ¢ <

min{cy, ¢o} < max{cy, céy} < é < &.! Thus, we have the ensuing six cases.

First, for ¢y € (¢1, ), equilibria of R* = Cci—a) 4 (A25) of Case la, R* =

8(2+0)
(21(;:2)2 in (A33) of Case 2a-2, and R* = (21(;?2)2 in (A46) of Case 3a exist. Defining
My = G — BSRERE and Ms = G5 — Gomy. Since G = S5 + Cpanpl <
_((114::)2) T (24_(0214:152) - _(1_831511)7(;-1:1:));41)2) < 0 and a;i\gl - 4(1(12_)?12))-&-b) > 0, we have M, =
Say — SSamr > e - Csamr = Cstenemp > 0 and thus G >
% Similarly, since %I‘iQ = *((11;;)2) < 0 and 8;i\§2 = 15 > 0, we have M, =
(21(_1:?2)2 - (21(5323)2 (21(_1223)2 B (21(;1:13)2 - 8(1(-&1-1:)%)4?12)2 >0, and thus (21(_13517))2 = (21(;:13)2 . Hence,

for ¢y € (c1, ), the port authority will choose the unit-fee scheme in Case 3a with

— . e . —_ 2 .
ré = @ and 0% = 51(14(;217;7 and obtain the equilibrium fee revenue R* = (21(1fb)) in
(A46).

er—cs)?
Second, for ¢y € (¢, ch], equilibria of R* = % in (A25) of Case la, R* =
e)? .
2(ca — c)[1 + (1 +b)ey — (24 b)es] in (A32) of Case 2a-1, and R* = (21(1ffb)) in (A46)
of Case 3a exist. In this parameter range, we have %]g; = 7((11;5)2) + (2;(;:52) <
—(1-ch) (2—c1—ch) —(1-cf) (2—c1—c”) _ —(1—c1)(1144b) 82M; (74+3b)
am T oaems < ey T oaps — e <V and acgl = e > O
. _ (1—c2)? (2—c1—c2)? (1—ch)? (2—c1—ch)? (1—ci)? (2—c1—c)?
Accordingly, My = 530y — 5amm) — > wire) — s@ih) - O a0i) T 8@
IThat is because (ch — &) = % >0, (" —dy) = % > 0, (cff —
_ (1+b)(1—c A _ (64+b—4b*)(1—c A (2= b=2b*)(1—cy) .
") = E2+b%§3+22§ >0, (b —¢") =1 (b+6)(3)4(r2b)1) >0, (6 —c”) =1 (b+6)(%(+b) = > (<) 0iff
~ ~ —b)2(1—c ~ = —b*)(1—c
(2 —b— 2b2) > (<) 07 (02 — 02) = (I)(—?-6)l)()8£14b—1b)2) > 07 (C2 — C”/) = 2(%24{)11;?8—1741))(—11)2)1) > 0, and
~ — _p2 —c
(62— 22) = CHEI=e) )
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(—c1)*(7480) 0, and thus (U-ca)® o @-c1=¢)’ () the other hand, we have (1—cp)®

8(2+b)(3+2b)? 2(1+4b) 8(2+b) 2(14b)
2(co—c1)[14+(14b)c1—(24b) o] = [1+2(1+b2)(011+§?+2b)02] > 0. Accordingly, for ¢ € (c1, ¢,
the port authority will choose the unit-fee scheme in Case 3a with r* = 1‘% and
gt = 2}1_43) and obtain the equilibrium fee revenue R* = 1(1ffb in (A46).

Third, for ¢, € (c), ¢”), equilibria of R* = 28(621—+§)2 n (A25) of Case la, R* =

. —2b)—(1—b)c1 —(2—b)ca)?
2y — 1)1+ (14b)er — (2+b)cy] in (A32) of Case 2a-1, R* = 1& 2b)4(52§;(2_1522) bles]

(A40) of Case 2b-2, and R" = (1 ) in (A46) of Case 3a exist. Similarly, we can show

2(1+b)
(21(133) > 2(ca—cp)[1+ (1+b)er — (2+b)cy] and 11ffb > (28(621+g)2 . Thus, it remains to
compase $558 2808 Dot iy = S 2t
Since 8 — i)+ CSD -0l g 2 — L LS,
have Gt < ot o+ GRG0 = at ) o,
(21(_112&3)2_[(3 2b)4z3(i;ll:))(621:l£22)_b)0/2]2 _ 2(1(};)1;()120(:214):2)2 > 0, and M, (21(—11’2’17))2_[(3—2b11—(§1_;z§?;:£3;b)6g]2

_ _ —(1-b)2(1—c1)?
= 1(3-2b)(2—b2)(3+2b)

5 < 0. These imply that M3 can be positive or negative for ¢, €
(ch, "), and there must exist some ¢y, ¢y < éy < ¢, at which M3 = 0. Solving M3 =0

vields & = gy {[(2+0)(3-2b)+(1+b)(2—b)er] —/2(1 + b)(3 — 20)(2 — b?)(1 — 1)}

(1—c2)? [(3—20)— (1=b)e1 —(2—b)ca]?
sy = (<) e

Accordingly, we have ¢ for ¢y < co < éy (63 < <
cy). For ¢ € (c, "), there are two sub-cases. If ¢y € (c), é], the port authority will

choose the unit-fee scheme in Case 3a with r* = 1_702 and 0% = ===%2_and obtain the

2(116)”
equilibrium fee revenue R" = (21(13-21; in (A46). If c; € (éa, ¢f), the port authority
will choose the unit-fee scheme in Case 2b-2 with r% = [(3_%)_(21(35)205)_(2_1))02} and 0% =

(2—b)(1—r")+be1 —2c2
252

n (A40).

[(3—2b)—(1—b)c1 —(2—b)ca]?
4(3=2b)(2—b?)

, and obtain the equilibrium fee revenue R* =

o
=

Fourth, we have either ¢/ = 1+((21::))01 < G = @—1)[2(2 —b) + (2 + 3b)cq]

Gy < . If &) < ¢y, then (2 — b — 2b*) > 0. For o € [y, cy'), equilibria of R* =
Goaza)l 4y (A25) of Case la, R" = 2(c; — c1)[1 + (1 + b)e; — (2 + b)co] in (A32) of

8(21b)
Case 2a-1, and Rv = [G=2-U-ba-@bef® 4 (A40) of Case 2b-2 exist. Define My =

4(3— 2b)(2 b?)
[(3—2b)—(1—b)01—(2—1))62]2 (2—c1— CQ OMy —(Q—b)[(3—21))—(1—())01—(2—1))62]+(2—61—82
Ocy 2(3—2b)(2—b2) 4(24b)

4(3—2b)(2—b2) T 8(2+b)

. Since and
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My —(2=B)[(3-20)—(1=b)er—(2—b)ell] | (2—er—cll)
y > 0, we have G < BT ) =+ e

0c2 T 4(2+b)(3—2b)(2—b2
—7(1—c1) [(3—2b)—(1—b)c1—(2—b)cl']? (2—c1—cy)?  (5—2b—4b?)(1—c1)?
4(3*2b)(2<1|*b)2 <0 and M4 > 4(3726)(127b2) 2 - 8(12+b§ — 8(372b)(2+b)31 >0 by

—2b)—(1—b)c1—(2—b)ca)? —c1—c2)?
(5—2b— 4b%) > (2 — b — 2?) > 0. Then, we have [E=2-Uoa-Gbal  Eoaar

On the other hand, we have Ki””"{gﬁ;g))(c;:,fi)‘b)@]2 —2(ca — )1+ (1 +b)ey — 2+

—(3—2b)—(74+b—4b2)c1 +(10—b—4b?)c2]? ” 3—2b)—(1—b)c1 —(2—b)c2]? -
b)ey] = BT 2L > 0. Thus, R = B2 00020l in (A40)

O2My 10—4b—b2

is optimal for the port authority if ¢ € [}, ') with ¢} < é,.

For ¢ € [¢), ¢3), equilibria of R* = Zraza)® 4y (A25) of Case la and R* =

8(210)
(00 5 (40 of Case 212 cxi, Since 248 = e g
OMy . —(2-B)[(3-2b)—(1—b)e1—(2-b)éo] | (2—c1—&2) _ —(8—4b—b2)(1—c1)
and 574 < 503-35) (257 e @ e < U, we have My >
[(3—2b)—(1—b)c1 —(2—b)é2]?  (2—c1—E2)% (2—b)2(1—c1)? [(3—2b)—(1—b)c1 —(2—b)c2]?
e s~ 1wrere-m e > V- Thus, PRSI e
%. It implies that for ¢y € [c), ¢) with ¢ < ¢, the port authority will

[(3—2b)—(1—b)c1—(2—b)ca] w o
2G-3b) = and 0" =
[(3—2b)—(1—b)c1 —(2—b)c2]? -
A(3-2b)(2_b2) mn

choose the unit-fee scheme in Case 2b-2 with r% =

(2=b)(1—r")+bc1 —2¢2
(2-02)

(A40).

, and get the equilibrium fee revenue R* =

By contrast, if ¢§ > ¢é, then (2 — b — 2b?) < 0. For ¢y € [c}, &), equilibria of
R" = % in (A25) of Case la, R* = 2(co—c1)[1+ (14b)c1 — (2+b)cs] in (A32) of

Case 2a-1, and R* = [(3_%)4?;::))&1:522)_ beal® j (A40) of Case 2b-2 exist. Similarly, we

[(3—2b)—(1—b)c1 —(2—b)ca]? (2—c1—c2)? [(3—2b)—(1—b)c1 —(2—b)c2]?
4(3—2b)(21—b2) = > 8(21+b)2 and 4(3—21))(21_1;2) = > 2(c — o)1+

(14-b)c1 —(24b)ca). For ¢o € (éq, ¢3'), equilibria of R* = 2(ca—cy)[14+(1+b)cy —(24b)co]

in (A32) of Case 2a-1 and R" = [(3_2bzlz;i;£))f21:é§)_b)02]2 in (A40) of Case 2b-2 exist. We

can show

[(3—2b)—(1—b)c1 —(2—b)c2]?
4(3—2b)(2—b2)

can show > 2(ca —c1)[1 + (1 +b)cy — (2 + b)eg]. These imply

that for co € [, ) with ¢ < ¢, the port authority will choose the unit-fee scheme

in Case 2b-2 with r* = [(3_%)_(21(;?20;)_(2_6)62] and 0" = (2_b)(1(_;jgj)bcl_202, and get the

[(3—2b)—(1=b)c1—(2—b)ea]? .
4(3—2b)(21—b2) - in (A40).

equilibrium fee revenue R* =

Fifth, we have either ¢y € [¢2, &) with )

In both cases, equilibria of R* = (62761)[((22:?)?017262} in (A26) of Case 1b and R" =

< 62 or ¢y € [Cg/, 52) with Cg/ > 62.

[(3_%)4@532))?21:1522)_ bea iy (A40) of Case 2b-2 always exist. By some calculations, we can

15



get [(3B=2b)—(1=b)c1—(2=b)cz]>  (co—c1)[(2—b)+bc1—2co] __ _ [(=6+7b— 2b2)—(24-3b—3b%)c1 +(8—4b—b?)ca]? >

4(3-2b)(2—b2) (2-b)2 1(3-2b)(2—b2)(2—0)2
0. Thus, the port authority will choose the unit-fee scheme in Case 2b-2 with r* =

[6=2b)— (21(317)20;) @2=bea] ypd v = (z_b)(l(_QTqu)bcl_ZCQ, and obtain the equilibrium fee revenue

w _ [(3=20)—(1—b)c; —(2—b)ca]?
R = 4(37211)(; b2) = in (A40).

Sixth, for ¢y € [¢a, @), there is a unique equilibrium in Case 1b. Thus, the port
authority will choose the unit-fee scheme with r* = r = Wr# and 0" = 0, and

obtain the equilibrium fee revenue Rv = (2= [((22 bb);rbcl 22l in (A26).

In sum, the first, second and third cases yield Lemma 5(i), the third, fourth and

fifth cases provide Lemma 5(ii), and the sixth case gives Lemma 5(iii). O

Proof of Lemma 6: Lemma 3 shows that q1 and q2 depend on the values of d. Thus,

we have three cases below.

Case 1: Suppose 6 € (0, 03] with d3 = 2+rb + 2222 Then Lemma 3(i) suggests

>l =(g))?— f, and ff = 5[5t + X4=#2]>. The problem in (17) thus becomes

1 b01—2022
mex T i )

1 bCl — 262

(A47)

Since the constraint in (A47) is independent of the objective function of this problem,
equilibrium §/ can be any value within [0, 3], and port authority’s equilibrium fee

revenue equals

1 bCl — 202
R = g A4
[2 +0 + 4 —b? ) (448)
Case 2: Suppose 0 € (03, d4] with §4 = 2+b (i) suggests mf > mf =

S[(2—b) — (2= b%)8 +bey — 2¢o] — f, and ff =7 = 2[(2 =) — (2 = b?)d + by — 2¢4)].

We will have f/ > 0 iff § < G222 and ¢, < & = 2= On the other hand,

we have (2_17();_# > ()4 iff oo < (>) H((21+lf))q with % < Cy. Thus, there

are two sub-cases as follows.
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1+(14b)er

Case 2a: Suppose ¢y < o)

. Then the problem in (17) becomes

maxg g[(? —b) — (2= b%)0 + by — 2]
1-— C1
24+b°

st. 03<d< =
Its Lagrange function is
o

Then, the Kuhn-Tucker conditions are

L 1 L
2_5 = 5[(2=b) = 2(2 = )0 + ber — 2c2] + M1 = X2 0, 5—25 =0, (A449)
oL oL
_ oL _ A
W =5—8;>0, A > =0, and (A50)
oL oL
5 — 9E . A51
o =6, —6>0, )\28)\2 0 (A51)

Because ¢ > J3, we have A} = 0 by (A50), and the following two sub-cases.

Case 2a-1: Suppose A; > 0. Then, (A51) implies 6/ = d; = =% and (A49) suggests

s — [b2+(4+2b;€22_)|_cbl)—2(2+b)c2] To have \; > 0, we need ¢y < ”2(‘;22+)b)01' In addition,
24 (442b—b%)ey

we have (07 — &3) = M > 0. With condition ¢y, < , port authority’s

2(2+b)

equilibrium fee revenue equals

(1 —c)I+ (A +b)er — (2+b)es]

R = A52

(24 b)? (452)

Case 2a-2: Suppose A\; = 0. Then we have 6/ = W by (A49). By some
calculations, we have (8, —6/) = = v (4+(221bl;2()201;§(2+b)62] > 0iff g > %, and
6/ > 65 iff ¢y < €. Combining this condition with ¢y < H((?li;))cl nd 2+ (4zr22fb)b2)cl <

1+(1+b)cy
(2+b)

b2+ (4+2b—b2)c;
2(2+b)

1+(1+b c1
(2+b)

, We assume < o < . Under the circumstance, port

authority’s equilibrium fee revenue equals

[(2—b) + bey — 26,

f pu—
R 8(2 — 1)

(A53)
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Lltben ) < g = 0 Then, the problem in (17)

Case 2b: Suppose —7 77 2

becomes

maxg g[(? —b) — (2= b%)0 + by — 2]

(2 — b) + bCl — 202

s.t. 53 <d< (2 — b2)

Its Lagrange function is

5 (2—b)+b61—262

L:—[(2—[))—(2—b2)5+b61—2CQ]+>\1<(5—(53>+/\2[ 3 —5]
2 (2—-0?)
Then, the Kuhn-Tucker conditions are
oL 1 oL
5= 5[(2 —b) —2(2—b*)8 +bey — 2¢3] + A — A <0, 5% =0, (A54)
oL oL
a)\l =0— (53 O )\1 8)\1 = 0, and (A55)
= —02>0, A : A
A (2 —1?) 20 Ay =0 (456)
Since 03 < § < % we have \i = X3 = 0 by (A55)-(A56) and 6/ = %
by (A54). Obviously, 6/ < (Qb();# and 6 > 83 iff ¢; < & = % For
1+((21::))c1 < ¢y < €9, port authority’s equilibrium fee revenue equals
2 —b) + bey — 2¢,)?
Rf — [( ) + Cl CQ] (A57>

82— 1?)

Case 3: Suppose d € (04, 113)- Then, Lemma 3(iii) suggests == (14b)d—c]o—f

for i =1, 2, and thus f/ = $[1 — (1 +b)§ — co]. To have ff > 0, condition § < (- CQ))

is needed. The problem in (17) thus becomes

maxs [1— (1+ b)) — 20
1—61 1—62
2+b< < 1+b°

s.t.

Its Lagrange function is

1—(31 1—02
2y T

L=1[1-(1+b)—cy)d+ M\ (6 — —9).
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Then, the Kuhn-Tucker conditions are

oL OL

5
oL 1— C1 oL
— =0- >0, A =0, and A59
o PR VR (A59)
8L 1— Co 0L
— = —0>0, p=— =0. A60
DMe  (1+b) 77 0N (A60)
Because ﬁ << 11+le we have AT = A5 = 0 by (A59)-(A60). We can also obtain
07 = 5% > 0 by (A58). However, since (67 —dy) = —C 20(11)+1§)2(J2r?1§)62 ) < 0 due to

0 < ¢1 < ¢ < 1, no solution exists in this case.

Based on the above, we can derive optimal fixed-fee schemes as follows. Since

Cy = bz“égfg)b%l < 1+((21::))01 <Gy = m we have three cases below.

First, for ¢; € (1, €3), equilibria of R/ = [3 4+ %4=221% in (A48) of Case 1, and
Rf == Cl)[H((lQibb))cl @tb)ea] in (A52) of Case 2a-1 exist. Define Mg = [ + 225217 —
ﬂﬂl)[lﬂéﬁ?ﬁl 2+Yer]  Then, we have Mz = 0 when ¢y = ¢, and My = %
when ¢y = '¢5. Since 88—1‘0425 = S(Cz_g)zgglgél_q nd &M — o b)28(2+b)2 > 0, we have
Ms < max{Ms|,,_., . Ms|.,_,} = {0, %} = 0 and thus [5}; + 24752 <

(1 Cl)[l—‘r(l—l-b)cl (2+b)62
(2+4b)?2
scheme in Case 2a-1 with ff = (l_cl)[Hé};{)gé (2+b)es] and §F = 6, = 2+Cbl, and get the
(1—c1)[14+(14b)er —(2+b)

(2+b)?

if ¢ € (¢1, '¢3). The port authority will choose the fixed-fee

equilibrium fee revenue R/ = el These prove Lemma 6(i).

14+(14b)c
(2+b) : 45

be1=22212 in (A48), and an equilibrium exists in Case 2a-2 with R/ = %

. 2—b)+bcy —2c2]? c1—2¢ bA[(2—b)+bc1 —2¢
n (A53). Since % — [ + 9= = 8(2[( bz)();_ b)lz(Qfg)z > 0, the port

Second, for ¢y € [, ), an equilibrium exists in Case 1 with R/ = [;&

[(2 b)+bcl 202

16(2—67) and

authority will choose the fixed-fee scheme in Case 2a-2 with f/ =

6 = %, and obtain the equilibrium fee revenue Rf = %. These

prove Lemma 6(ii).

Third, for ¢, € [H((Ql::))q, Cy), an equilibrium exists in Case 1 with R = [535 +
ba=2c2)2 in (A48), and an equilibrium exists in Case 2b with R = (20 daz2el 4,
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(A57). Since [@=bjrber2es [52 4 ba=22]2 the port authority will choose the fixed-

8(2—1?) 240 T 4-b2
fee scheme in Case 2b with f/ = % and 67 = %, and obtain the
equilibrium fee revenue R/ = W. These prove Lemma 6(ii). O

Proof of Proposition 1: We can obtain optimal concession contracts by comparing

port authority’s equilibrium fee revenues derived in Lemmas 4-6. Since (é; — ¢o) =

(1—61)

8+4b—T7b%—4b%)(1— . .. A ~ _
( I Cl)>0,(cé—@)zm>O,andc’2<02<02<02<02as

2(2+b) (7+4b)

shown in the proof of Lemma 5, we have €y < ¢y < &y < &y < & < . Thus, we have

the following six cases.

Case 1: Suppose ¢y € [C2, C2). Then Lemma 5(iii) shows R* = (62_61)[((22__12;52761_262} >0

in (A26), and Lemma 6(ii) displays R/ = % in (A57). Some calcula-

tions yield (Ru N Rf) _ [(27b)+bc172(:2][7(27b)38z2(i6b;r)4(2:1b§22+b3)01+(2478b76b2)c2] > 0 due

to [—(2 — b)®> — (16 + 4b — 12b* + b%)c; + (24 — 8b — 6b*)cz] > 0 by ¢3 > ¢ and

~ (2—b)34+(16+4b—12024+b%)c1 _ (2—b)(2—b%)(20—12b—b2)(1—c1)
€2 — (21-8b—6b?) - = (3_4b—b2)(24—8b—6b2 = >0, and [(2—b) +bcy —2¢5] > 0

by ¢ < . Thus, R* > R/. Then, port authority’s best choice is the unit-fee contract

(27b)+b617202 5u — 0 and Ru — (62761)[(27b)+b617282}

with r* =7 =

2—b (2—b)2 .

Case 2: Suppose cs € [Ca, ¢3). Then Lemma 5(ii) shows R* = [(3‘2blf§igf))f;:§§)_ blea)”

in (A40), and Lemma 6(ii) displays R/ = % in (A57). Define Mg =

[(3=2b)—(1—b)e1—(2—b)e2]®  [(2=b)+be1—2c2]® __ [(3—2b)—2(3—2b)c1+4c1ca+(1—2b)ci —2c] Sj OMs __

A(3-2b)(2_b?) 8(2_b7) = 8(3_2b) - DINCE 5o~ =

(c1—c2) [(3=2b)—(1—b)c1 —(2—b)E2]%  [(2—b)+bc1 —282]% _ (2—b2)(20—12b—b?)(1—c1)?
2(}5—2?7) < 0, we have Mg > 4(3—2b)(21—b2) - 8(2—112) = 8(8—4b—b2)2 :

> 0. Thus, R* > R/, which implies that port authority’s best choice is the unit-fee con-
3

. w _ [(3=2b)—(1—b)c1—(2—b)ca] w _ (2=b)(1—r*)+be1—2¢ w 1
tract with r* = 2(3_22) 2 s ot = 2_b2) ! 2, and R* = m[(

Qb) — (1 — b)Cl — (2 — b)CQ]Q.

Case 3: Suppose ¢y € (¢éa, ¢é3). Then Lemma 4(ii) demonstrates R* = [2(2_17);((22:3222_1)()6%)02]2

pr 2 (erte)] iy (A11), Lemma 5(ii) shows R* = [(3=20)—(—ber ~@bjea]? ;) (A40),

24b 4(3—20)(2—b2)
and Lemma 6(ii) displays R/ = % in (A57). Define M; = m[(?) —
2(2—b)+(243b)c1 —(6+b)c x712(1—r*)—(c1+ec2)1 1
2b)—(1-b)er—(2—b)co)* | 2(2_b)(3i2b) 22— T a— | = TA202)(2-b)2(9—4b?)
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[(—124200+ 20> —110%) + (24 — 400+ 106>+ 100> — 4b* ) ¢q + (120> — 140> + 4b* ) cg + (—48+
16b+ 3202 — 2b3 — 8b*)cyco + (124120 — 216% — 4b% 4+ 6b%) 2 + (24 — 8b — 22b% + 8b® 4 2b*) 2]

. b2 (12—14b4+4b%)(1—c1 ) +4(12—4b—11b%+4b> +b*) (ca—c .
with 88_](\:427 = ( u )(74(217);;)&71))2(9741)2‘;» +b%)(e2 1)- Since (12 — 14b + 4b2) > 0
py 202-WbH) 14 4 8p < 0, and (12 — 4b — 1102 + 463 + b%) > 2 > 0 by
ob
QM) = 4 — 22b + 1267 + 46° < 0, we have 22 < 0 and M; >
[(372b)7(17b)c17(2717)62]2_[ (27b)+(2+3b)017(6+b)02] __[ (1fr)f(cl+02)] _ (2-b)2(1—c1)? >0
4(3—2b)(2—b?) 2(2—b)(3+2b) 2+b T 4(3—2b)(2—b2)(b+6)2 :

Thus, we have R* > R* and R* > R/ by ¢y < é, < & as in Case 2. That is, port

_ [(3=2b)—(1=b)c1 —(2— bcg] Su —
- 2(3—2b) -

authority’s best choice is the unit-fee contract with r*

(2—b)(1—r*)+bc1 —2¢ u _ [(3=2b)—(1=b)c1—(2—b)co]?
2_t2) —, and R" = 4(3—2b)(21—b2) =

2(2—b)+(2+43b)c1 — (6+b)ca ]2
2(2-0)(3+2b)

xR ertea) ] 5 (A11), Lemma 5(i) shows R = U= )’ i (A46), and Lemma 6(ii)

Case 4: Suppose ¢z € [¢g, ¢2]. Then Lemma 4(ii) demonstrates R* = |

24b 2(1+b)
displays R/ = [(2“’)(;’)—0;;)202} in (A57). We can show R* > R/ by ¢y < ¢y < & as in
Case 2, R* > R* due to (21(1ffb)) > 6= 2b)4(?f1 22))(621 153) blea]? by ¢y < ¢y < ¢ as in the proof

[(3—2b)— (1—b)c1 —(2—b)ea]?
1(3-2b)(2—b2)

3. Thus, R* > R* and R* > Rf. Then, port authority’s best choice is the unit-fee

l—co2 u . l—co u . (1= 02)2
52, 0 and R* = {

of Case 3 of Lemma 5, and | > R* by ¢y < ¢ as shown in Case

contract with r* =

2(1+b) 2(1+)
Case 5: Suppose ¢y € [Ca, ¢é2). Then Lemma 4(i) demonstrates R* = % in
(A11), Lemma 5(i) shows R" = (21(133 n (A46), and Lemma 6(ii) displays R/ =
% in (A57). As in Case 4, we have R* > R/ by ¢y < ¢ < & < ¢o.
It remains to compare R* and R". Define Mg = (21(13?,3)2 - (27(2:2%3)2. Since %—Af; =
[f2(2+b;(—1(J1rzr)lz)3c+1;Lb()5+3b)cQ] and PMs _ 20&5&12%) > 0, we have aaMg < [— 2(2+b%(—1(i2)z&i;b()5+3b)ég]
= _((fifﬁ)ﬁlzfi) < 0 and My > (21(_1?1;))2 - (24((;1222))2 = 2(1J(r1b)(c71J)r24b)2 > 0. These imply

R" > R*. Thus, the port authority will choose the unit-fee scheme with r* = 1‘%, ot =

1 2
oo and Ru = U=

2(1+b)° 2(1+b)

Case 6: Suppose ¢3 € (¢1, €g). Then Lemma 4(i) demonstrates R* = % in
(A19), Lemma 5(i) shows R" = (21(_133)))2 in (A46), and Lemma 6(i) displays R/ =
(1761)[1“(12112)?*(ZH’)CQ} in (A52). As in Case 5, we have R* > R* by ¢3 < ¢y < ¢éo.
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It remains to compare R* and R’. Define My = g&fg; — (=e)ll ((12?}2)01 (24b)ea]  Gince
OMy _ [—1—(14b)c1+(2+b)ca] 02Mg OM. [“1=(14b)cri+(2+b)¢a] _
G = e and Gt = gy > 0, we have Gt < ERga g
—(2-b)(1-c1) (1="¢5)?  (I—en)[I+(14b)ci—(24)E's] _ (8+8b+b")(1—c1)’
ooy < 0 and My S5 BN CFTAE ® = Smwenz - >0

These imply R* > R/. Thus, the port authority will choose the unit-fee scheme with

in u 102 uw _ (1—cg)?
r , 0 51 and R" = S1h)

In sum, Cases 4-6, Cases 2-3, and Case 1 show Proposition 1(i), Proposition 1(ii),

and Proposition 1(iii), respectively. O

Proof of Proposition 2: Denote R} = (21(1313 Ry = [(3721’1?3552))(621:{522?)02]2, and RY =
(c2—c1)[(2—b)+bci —2¢2]

(2-0)

port authority’s equilibrium fee revenues in Lemma 5(i), Lemma

5(ii), and Lemma 5(iii), respectively. In addition, denote R} = (24(631T2222 and R =

[ 2(2—b)+(243b)c1 —(6+b)ca
2(2-0)(3+2b)

Lemma 4(i) and Lemma 4(ii), respectively. Note that R® = R} by (24) and R® = R}

]? + r*[%] port authority’s equilibrium fee revenues in
by (25). Recall that ¢; < ¢y < ¢y < €9 < &9 < & < é. First, for ¢o € (¢4, ¢é2), Lemma
4(i) and Proposition 1(i) show R} > Ry = R and R} > Rf, and thus R} > R
Second, for ¢y € [é2, ¢é2), Lemma 4(ii) and Proposition 1(i) show R} > R} = R.
Third, for ¢o € [¢9, ¢3), Lemma 4(ii) and Proposition 1(ii) show Ry > R = R.
Fourth, for ¢y € [¢2, &), no optimal two-part tariff contract exists by Lemma 4, and
Proposition 1(ii) shows Ry > RY. Finally, for ¢y € [¢2, ¢2], no optimal two-part tariff
contract exists by Lemma 4, and R§ = R is the optimal concession contract by
Proposition 1(iii). In sum, for cs € (c¢1, ¢é), the port authority will be better off by
imposing the minimum throughput requirements on operators, while it will have the
same equilibrium fee revenues in both scenarios if c3 € [é2, Co]. These prove Proposition

2. 0O

Proof of Lemma 7. The proofs are straightforward, and thus omitted. O

Lemma 8. Given two-part tariff scheme (r, f) and minimum throughput guarantee

0, optimal behaviors of the two operators are as follows.
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(i) For & € [0, 6] with 6y = —o" 4 [?017(24)2)62] both operators’ equilibrium

A+b)(2—b) 1-09)(4—b2)
service prices are ph = FAT + 222 > 0 and pp, = 550+ KRR > 0, and

the equilibrium cargo-handling amounts are g, = i +11;)7(£—b) + ?i:g?@lfz% > 0p1 and

@y = 0p1. The equilibrium profit of operator i is m) = (1 — b*)(qy)* — f for i =1,2.

(ii) For & € (0p1, Opa] with Oy = (11@;%, both operators’ equilibrium service prices
are py = (1_b2)(;:23)+01+r and pyy = [(1_b)(2+b)_(22(_1b§§72)5+b01+br] > 0, their equilibrium
cargo-handling amounts are gy = % and quy =0, and their equilibrium profits
are i = (L —=0*)(¢,)* — f and my = ﬁ[(l —b)(2+b)(1—7)—2(1 —b%)0 + bey —
(2= b)) = f-

(i) For & € (8p2, 153), operators’ equilibrium service prices are py = phy =1 — (1 +
b)o > 0, their equilibrium cargo-handling amounts are Gy = Gy = 0, and operator i’s

equilibrium profit is 7 = 0[1 — (1 +b)0 — 7 —¢;] — f for i =1,2.

Proof of Lemma 8 Denote L; and L, the respective Lagrange functions of operators

1 and 2 in problem (30) with

1 D1 bpa 1 p1 bpa

L, = e — _ _ _ _

= mmamnl g ot Tt e e Y end
1 Do bpy P2 bp

Ly = (pp—ca—r) + St el g et 0

1+b 1-b2 1-0
where A; and A\ are the Lagrange multipliers associated with the operators. Then, the

Kuhn-Tucker conditions for operator 1 are

gf;ll - [1—1H)_ T 1?21)2]_ (p11_—01b2_r) - 1ilb2 =0 pl'% S
gii_lib_ﬁlbfrlljfzw_ézo’ Al'g_ill_o’ (462)

and for operator 2 are
g}l;j N [1~1H;_ e ﬁlbz]_ (p21_—02b2_r) - 1i2b2 =0 p2'g_§2220’ (463)
gizzlib—lbeQﬂleflb?—éZO,)\Q'Z—ijzo. (A64)
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According to the values of A\ and As, there are four cases as follows.

Case 1: Suppose Aj =0 and A5 = 0. Then (A61) and (A63) become

1 bpa (p1—c1—7)
[1+b 2+ e — P =0 and

[ 1 P2 bp1 ] _ (P21—_022—’“) = 0.

1-b+r + 2c1+bea > (0 and p;2 _ l-btr + bc1+2ca > 0.

Solving these equations yields p;; = 5> T 57 i

1—r b (2—b%) —
ey T omas and ¢ =

Substituting pr; and pj, into (27)-(28) yields ¢, =

r bC J—
(1+2)(2 T (11 bg)(4 1)22) To guarantee g, > 0 and gy, > 4, condition 0 < § < 4y =
1—7r ber— (2 b )02

e T e = G 18 needed. Substituting pj, and pj, into (29) yields 7, =
(1 =b*)(gy)* — f for i = 1,2. These prove Lemma 8(i).

Case 2: Suppose A} =0 and A5 > 0. Then (A61), (A63), and (A64) suggest

[ 1 _ o py bpa ] _ (pri—a-r) 0

TR g - i g i Y
1 _p bpr 1 (p2—co—1) _
[1+b e ) —5° - b2 0, and

1 P2+bP1 _520

b~ 1-02 T 152
Solving these equations yields A\ = (1_b2)(3_22)(6_51), = (1_b2)gé_2g§+cl+r and pp, =
2)6+be r d—c1—T
[(A-5)2+b) 22(_1 )otbertbr] Qubstituting Py and py, into (27)-(28) yields g5, = %

and ¢y, = 0. To guarantee A3 > 0, conditions 6 > 9,1, r < 7y, and ¢y < Cpp are

l—ci1—r

needed; and condition 0 < d,0 = (ED e

is needed to guarantee g, > 0. Thus, the

(1-b2)(1—b3)+c1+r
(2-0%)

plausible range for § is § € (dp1, dp2]. Under the circumstance, p;; =
[(1*5)(2+b)72(1;b2)6+bc1+br] S 0if6 < 6

>

Pry = . Substituting py, and pj, into (29) gives
pl = (1- b2)(qp1) —fand 7Tp2 = bQ) [(1=0)(2+40)(1—7)—2(1—0%)0+bc1— (2—0%) o] — f.

These prove Lemma 8(ii).

Case 3: Suppose A} > 0 and A} = 0. Then (A61)-(A63) suggest

R | _|_bp2 _6:07

1+b 1-b2 1—-b2
[ 1 m + bp2 ] _ (pr—ci-r) _ 0 and
1+b 1-b2 1-b2 1-b2 1— b2

1 _p2 bpr 1 (p2—co—1) _
[1+b 1-b2 + 1—b2] 1-b2 =0.
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[(1—b)(24-b)—2(1—b2)5+-bcy +br] w«  _ (1=2)(1—b8)+catr
2—b2) v Pp2 = 252 ,

32\(4 12 _r c
and \} = (1 bQE(; b )[5— (1+11;)(2—b) ?12 bg)(4 ) 5] Substituting py; and py, into (27)-(28)

Solving these equations yields py;, =

(1—b0—co—r)

yields g5 = ¢ and g5, = o

. To guarantee A} > 0, condition § > m +

bea—(20)e1 s peeded. On the other hand, gy, > ¢ is guaranteed if § < F72"

(1—b2)(4—b2) (1+b)(2=b) "
However, these two conditions are incompatible with each other because % —
ca—(2—b%)c —(2—b%)(ca—c . . . :

g +117)_(;_b) — ?12—1;&?( 41)_1))23 = ((12_;2))((431)2)1) < 0. Thus, no solution exists in this case.

Case 4: Suppose A} > 0 and A > 0. Then (A61)-(A64) suggest

1 _ m + bp2 _(5:0’

T+6 ~ 1-62 T 1-b2
ﬁ_ otz —0=0,
It — 2 + 2] — B — 2 = 0, and
[ﬁb 1— b2 + 1bp11;2] B (m;fZ;T) B 1i2b2 =0

Solving these equations yields p¥, = pyy = 1 —(140)d, A} = (1+0)(2—0)d—(1—¢; —7“)
and A5 = (1+0)(2—10)0 — (1 —co — 7). To guarantee p;, = py, > 0, condition § < 1+b
needed. To have A} > 0 and A\j > 0, conditions § > J,2 = M#”b and r < (1 —¢) are

— (1 b)(2+b)+bcl (2 b CQ
(1=b)(2+D)

Py = Py = 1 — (1 + )0 into (27)-(28) generates ¢, = ¢, = J, and into (29) gives
7 =0[1 = (14+b)0 —¢; — 7] — f for i = 1,2. These prove Lemma 8(iii). O

needed. Note that 7 < (1—¢;) is implied by r <7, = . Substituting

7T>$<

*5) in Lemma 8,

Lemma 9. Suppose conditions in (31) hold. Given (g1, G, Ty,

port authority’s optimal two-part tariff scheme and minimum throughout requirement

(5, fy5 0,) are as follows.

(1) If c2 € (c1, cpp) with ¢y = % then we have 1, = = [=0- g)(§1+b2 blea] , =
{Cc1—e)2U )+ (B-bjer —(T=8b)eal} g by = (2 ci-c2) - (). At the equilibrium, operator

8(1+b)(3—b)2 2(1+b)(3—b)

i’s cargo-handling amount is ¢ = 8% > 0 for i =1, 2, as in Lemma 8(ii), and port
authority’s fee revenue equals R = _4(214:)(3?2)1;) > 0.
(i) If e € (0502, Cpa] with ¢,y = BU= b)(ix)bt(;;?bfb?)cl]

2+ G b —  fy = 2 D) 3D (1-12) 212 and &% € [0

> 02, then we have 1, =

25



2(1—b)(2+b)+(2+3b—b?)c1 — (6+b—3b%)c2
2(2+0)(3-0)(1-02)
* 1—r% be —(2—b2)c * 1- T ber—(2— b2)C ) )
are qp = e T (12_1)2)(4_@ and gy, = iR (11 e b2§ as in Lemma 8(1),
and port authority’s fee revenue equals Ry = (1— b?)[20= ”)(2+”>(+2(f,;§f§ 2)2()101 b2()6+b_3b2)02]2+
2(1—ry)—(c1+c2)
ol a+o)2—b) ]

|. At the equilibrium, operators’ cargo-handling amounts

Lemma 10. Suppose conditions in (31) hold. Given (qy,qp, T, 7)) derived in
problem (32), port authority’s optimal unit-fee scheme and minimum throughout re-
quirement (ry, 0,) are as follows.

. . . . 6—b—b%)+(2+b)c1]—24/ (3+b)(1—2c1 4¢3
(1) If c2 € (0, ép) with épn = I S+ (18}71)2) Gro—2at 1), then we have 1, =

(1=ca) 62) >0 and 0, = Qhﬁ; > 0. At the equilibrium, operator i’s cargo-handling amount
(1—c2)?

2(1+b)

is qp; =0, >0 for 1 =1, 2, and port authority’s fee revenue equals R, =

.. . - . ~ —b b b b+b?)c
(ii) If cp € (cp2= C;DQ] with  Cp = S )(Q&J)rfbtzs);g(—z;g? o

[(34+b)—c1—(2+b)c2] and 5u _ (A=b)2+b) (1—rp)+ber —(2=b%)c2

and Cp < Cpa, then we

have r¥ = . At the equilibrium,

P 2(3+0) = 21-57)
operators’ cargo-handling amounts are g, = (1_17(62—;21)” and gy, = 0,, and port
authority’s fee revenue equals R = KH?(Ifb;(gzﬁl;)”P
ves ~ _ . _ — C m _ — c1—(2— 2 c
(iii) If co € (Cp2, Cpo| with Cpo = %, then we have ) =7, = a b)(2(+11)3$l221+b()2 b)es

> 0 and 9, = 0. At the equilibrium, operators’ cargo-handling amounts are gy, =

(c2—c1)
(1-b)(2+b)

b)(2+ D) + bey — (2 — b?)eg).

and gy = 0, and port authority’s fee revenue equals R, = %[(1 —

Lemma 11. Suppose conditions in (31) hold. Then, given (qpl,qp2, ;J;l, p2) derived

in problem (33) and cy € (c1, Cpo| with Cp = %, we have optimal fixed

fee f[{ = (1’21’2)[ a +b)1(2_b) + ?ii;g;ﬁggj? and optimal minimum throughput guarantee

67 € |0, (1+b)1(27b) + l(’il:bg(;lfggi] At the equilibrium, operators’ cargo-handling amounts

I _ 1 bea—(2—b3)c f 1 be1—(2—b2)ca L
are Gy = ey T e Y G = Tre s T amae . @nd port authority’s

1 ber—(2—b2)ca
(1+b)(2—-b) + (11 b2)(4— bz)]

fee revenue equals RI = (1 — b?)]

Proof of Lemmas 9-11 and Proposition 3: Denote L the following problem

max 2f +r(qy + q)

T»f:
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1 — * * : * *
st.0<d < T 0<7r <7y my >0, my >0, and 0 < f <min{m,;, 7y} (A65)

Moreover, denote Ly, Lo, and L3 the problems given in (34), (35), and (36), respec-
tively. Let S be the set of (r, f, J) satisfying all constraints in problem L, and Sy,
the set of (r, f, §) satisfying all constraints in problem L;. Similarly, Sy, is the set of
(r, d) satisfying all constraints in problem Lo, and Sp, is the set of (f, J) satisfying all

constraints in problem Ls.

First, since g, = g,; for all (r, f, d), we have

v < T with equality held at

J =0, and 7;; > 0 will hold if operators handle nonzero cargo amounts for i = 1, 2.
Thus, we have S, C Sp, and the maximum fee revenue in problem L is not less
than that in problem L;. Second, we have % = (m,; — f) for all (r, f, &) because

@y = qp; for i = 1, 2. Thus, for any (r, J) with 7; > 0, we have 7, = (7, — f) >

Ty —min{my,, mr} = my—min{ (7 —f), (m,—f)} > f > 0by0 < f <min{r),, 7,}.
These imply S, C Sr. On the other hand, we have 2f +r(q;; + q5,) > (g + q5y) for
any given (r, f, 0). Thus, the maximum fee revenue in problem L is not less than that
in problem Ly. They will be equal if the solutions in problem L have f* = 0. Third,
for any solution (r*, f*, 6*) of problem L with r* = 0, it must also be the solution
of problem L. However, if r* > 0, then the solution of problem L will have higher
value than that of problem Ls. Thus, the maximum fee revenue in problem L is not
less than that in problem L3 as well. In sum, deriving optimal concession contracts is
equivalent to solving problem L in (A65). If the associated solution (r*, f*, ¢*) has
nonzero (r*, f*), then the two-part tariff scheme is port authority’s best choice, the

unit-fee scheme is the best if f* = 0, and the fixed-fee scheme is the best if * = 0.

Thus, all the solutions of problem L are derived below.

Case 1: Suppose ¢ € [0, dp1]. Then, Lemma 8(i) implies 7y, > 7y, and f) = 77, =
(1 —10%)3(g},)? > 0. Thus, the problem in (A65) becomes

max, rs 2f+ T[Q;1 + Q;z]

s.t. 0<0<9, and 0 <r <7
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Its Lagrange function is
L= (1= b")(g2)* +7lap + dpo] + (01 — ) + Xa(7, — 1),

where \; and Ay are the Lagrange multipliers associated with the inequality constraints

of this problem. The Kuhn-Tucker conditions are

O — a1y, 2 O gy en 2, <0, 02—, (a66)
%:—Algo,ag—gzo, (A67)
g_i:pl_azo,Al-g—izo, and (A68)
g—i:rp—rzo,A2-g—i:0. (A69)

Based on the values of A\; and \g, there are four cases as follows.

Case la: Suppose A7 = 0 and A5 = 0. Then (A66) becomes
[2(24+0) —2(2+b)(3 —b)r — (4 +2b— b?*)c; — bcy)

=0.
(1+0)(2—-0)(4—0?)
Solving this equation yields 7} = 35 — % > 0. It remains to check

whether 7, < 7, holds. By some calculations, we have r; < 7, iff c < ¢ =

2(1-b)(2+b)+(2+3b—b%)c \y . . " .
2 )((z+)bt(3;§) )il In addition, (A68) implies 6% € [0, 0,1] with 6,1 = m

2(1=b)(2+b) + (24 3b—b*)er — (6 + b — 3b?)co] and f* = 1(1 — b?)-

[2(1—b)(2+b)+(2+3b—62)01—(6+b—3b2)cz ]2
2(2+b)(3-b)(1-12)

> 0. Accordingly, port authority’s equilibrium fee

revenue equals
2(1 — 7“;) — (e1 4+ )

=2 e )

! (A70)

(1=b)(2+b)+be1 —(2—b2) s
(1—b)(2+b)

by (A69) and \j = 2D Lt @0-0al iy (AGG). Note that rj > 0 iff

02<Ep25%, Ay > 0 iff o > ¢po, f;:O,and(S;:Oduetoéplz

Case 1b: Suppose A} = 0 and A5 > 0. Then we have T, =Tp =

1-r% bcl—(2—b2)cg

ey T aomase) — 0. At the equilibrium, port authority’s fee revenue equals

(2 — e)[(1 = b)(24b) + bey — (2 — b?)eg)
(1 —10)%(2 +b)?

Ry =Tpqy = . (A71)
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Case lc: Suppose A} > 0 and A3 = 0. Then, (A68) suggests o5 = d,1 > 0. This in
turn implies A7 = 0 by (A67). It is a contradiction. Thus, no solution exists in this

case.

Case 1d: Suppose A} > 0 and A3 > 0. As in Case 1b, we have f; =0, r, =7, 05 =

% o« co—c 1—8)(24b)+bc1 —(2—b2)c
0, and Rp = TpQp1 = (eaen)l( (1)_(13)2(;4_1))% ( ) 2].
Case 2: Suppose § € (dp1, 0p2]. Then, Lemma 8(ii) implies 75 > 7, and f; =
— —r)—2(1-b? c1—(2—b%)c . * . — —7)4bcy —(2—b%)c
D@20t Ra] ity f2 > 0 iff § < CDEDUD =GP g
1-b)(2+b)+bc1 —(2—b%)c ‘s 1-b)(24b) (1—7)+bcy —(2—b%)c .
r< U= <+1_)Z>(zl+b() )2 In addition, {=2EF )(2(1_);) 1—2=0)er > (<) O iff r < (>
)[(1_b)+i1__b(2_b)02]. Thus, we have two sub-cases.

Case 2a: Suppose 1 < Kl*b)“lg@*b)c?]. Then the problem in (A65) becomes
1{11]‘515(% 2f +rlay + gl

St 61 <6< byand0<y< (L) +1cl__b (2= b)ea] (A72)

Its Lagrange function is

L = ﬁ[(l —b)(2+b)(1—7)—2(1 = b*)5 + bey — (2 — b*)cy)
+T[1 s b;(i;;b) —a -] + A1(6 = 0p1) + Aa(0p2 — 9)
sl ! (=) + e~ (2~ bes] — 7}

Then, the Kuhn-Tucker conditions are

8L (1 —2r — Cl) )\1 )\2 8L
_— = — — < - —_— =
Ir T Tarne—n atne-p wShrE =0 AP
oL 1 ) , oL
i - —4(1— —(2- A <0, 622 =
55 = 5 (1= D2FE) —4(1=b")d+ber = (2=b%)er] + A= Ao <0, 05 =0, (AT4)
OL OL
i S S V95
8)\1 1) 5p1 = 0, A a)\l 07 (A75)
OL oL
=6 > C9E
Os D2 0> 0, A2 ONg 0, and (A76)
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oL 1 oL
— = — (1 — — —r >
a>\3 1-1b ( b) +c1 — (2 b)CQ] r 0 )\3 8)\3

where A\, Ay and A3 are the Lagrange multipliers associated with the inequality con-

=0, (AT7)

straints in (A72). Constraint 0,1 < 0 suggests A} = 0 by (A75). If \j = 0, we have

% —b b)+be b * b2 c —b)e
o = GBI B0 by (AT4). Note that (3, — ;) = SR Igat@tal > g

iff ¢g > (1(217);“)61 However, since r < [ b)+cl (2 b)ey] <0if ey > (1(21’):)“ it is a contra-

diction. Thus, we have A5 > 0. Based on the values of A3, there are two sub-cases.

Case 2a-1: Suppose Aj = 0. Then (A73), (A74), and (A76) suggest 15 2r o) _

(1+b))‘(2 5 =0, [A=b)(2+b)- 4(12 bz)‘HbCl @bl _ ), =0, and (0p2 — 0) = 0. Solvmg these
equations yields r; = [2=(- b)(?t)gQ bea - ), oy = 0pp = % > 0, and \j =
(1+b)(2712;[91);(1;2)1;;(H)CQ]‘ Since 0= bHib(z b)ca] —rr = (2-b)[2(1 2b()+(l§))(§)f;) (T=ea] > () iff
cy < %, we have r; < Kl_b)“ll__b@_b)cﬂ if ¢y < % On the other
hand, A3 > 0 iff ¢; < U525 Since U5bar — 200t LDERC0) > 0, the
equilibrium exists with fee revenue

(2 —c1 — 9)?

I, = A1+0)(3—0)

(AT8)

. 2(1-b)+(5—b)c1
if Co S T ——

Case 2a-2: Suppose A3 > 0. Then (A76) and (A77) suggest ry = [(A=b)te1—@=bey]

1-b

and 6, = 0pp = % > 0. Moreover, (A74) implies \j = [(1_b)(2+b)+(24j§)61_(6_62)02},

and (A73) implies A3 = [72(17b)(;(5b;(bl)ilb§)(773b)cﬂ. By some calculations, we get d; =

dp2 > Op1, r* > 0 iff o < @ 2b)2—c1’ Ay > 0 iff ¢ < (- b)(igb)bt)(ﬂb 2 oand A5 > 0

iff ¢ > W with 2= b%fgi ber (1_1))(2(23)5)(4%)61 < (1_212:61. Thus, under

condition % < e < (kb)(z(gf);)(“b)cl, the equilibrium exists with fee revenue
o 2(ca —c)[(1=0)+¢1 — (2= b)ey] (A79)

(14+0)(1 —0b)?

Case 2b: Suppose r > Kl_bHcll__b(Q_b)CQ]. Then the problem in (A65) becomes

max 2f + gy + ¢y

raf:
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1 —b)2+b)1—r)+bey — (2—b)es - [(1—b)+e1— (2— b)es]

s.t. dp1 <0 < E) and T3 <r < Tp.
(A80)
Its Lagrange function is
I - S(1=0)2+b)(1—7)—2(1 =b%)6 + bey — (2 — b?)cy)
(2—-0%)
rll+(1—=0)(2+0)0—c, —r
Lt ()2(_b2)) ! ]+A1(5—5p1)
(1=0)2+D)(L=7)+ber = (2=0)ey
o 2(1 — 1?) J
(1—b)+61—(2—b)02 _
+>\3[T (1 _ b) ] + )‘4(Tp T)'
Then, the associated Kuhn-Tucker conditions are
— = — -\ < -— =0, (A81
or 21 (1+h)2-b) 2(1 — b?) Fla= A0, m50 =0, (481
oL 1 9 9 oL
- = — — — — — — — < _— =
L L
g—)\lzé—(SplZO,)\l-g—)\l:O, (A83)
OL  (1=0)(2+b)(1—71)+bc; — (2 —b*)cy oL
— -5 > — = A84
D 20— 1) 020, X5 =0, (439
— —(2— L
g_i () +1cl_ b(2 ber] - A3.% — 0, and (A85)
L L
S—M:TP—TZO,Agl'g—M:O. (A86)

We have A\] = A = 0 due to the strict inequalities in (A80), (A83), and (AS85).

Thus, there are four sub-cases as follows.

Case 2b-1: Suppose A; > 0 and A} = 0. Then, (A81), (A82), and (A84) suggest

1-2r—c; _ (1-b)(24b) Ny =0

212 2(1-67)
7z [(1=0)(24b) —4(1 =)0 + bey — (2 — b?)co] — Ay = 0, and
2(1ib2) [(1 - b)(2 + b)(l — 7“) -+ bCl — (2 — b2)02] —6=0.
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Solving these equations yields 5 = [(B+b)—c1=@4b)es]  gx _ (1=OEHHU-T))+ber = (2o

2(3+b) » “p 2(1-0%) ’

* 2(14-b)(ca—c . % 1—b)+c1—(2—b)c —(3—2b—b%)—(7+b)c1 +(10—b—b?)c

and \} = —Ei’»—tb;E;—bQ;) > 0. Since [ry — I )+11_b( Jeal] — = )2(2:217)_1(;)( )Je2
- £\ _ [(1=b)(2+4b)+bc1 —(2—b2)ca] [(3+b)—c1—(2+b)ca] __ 1

and (7, — ;) = e 6T = saspemem (L~ D2+

D)(3+ D) + (2450 +b%)e; — (8 + 4b — 367 — b%)cy, we have s > [1=0ta-Cbal 4 o,

(3—2b—b%)+(7+b)c1 JE (1=b)(2+b) (3+b)+(24+5b+b%)c1 . (3+b)—c1
oz Tp = Tpiff e < (8+4b—3b2—b3) ; and 1y > 0/ff ¢ < =g

with (3_2?1_0b_21):g;rb)51 < (l_b)(2?%bifbtlg;(_2;§,§b+b2)cl < (3(262;)61. Moreover, we have d% > 6,1
.o - i, —2b—b? b —b)(2+b)(3+b b+b2
by ry < 7. Thus, under condition (3 2(10_1):1(;;r Jor ¢y < U )(zgﬁb{;;;(f;;;’ e the

equilibrium exists with fee revenue

B — (34 0) —c1 — (24 b)e)?
v 8(1+b)(3+b)

(AS8T)

Case 2b-2: Suppose A5 > 0 and A} > 0. Then, r; = 7, is implied by (A86), and

— —r} c1—(2—b%)c . _
Oy = L b)(2+b)(12(1’1);;) e by (A84). However, since 0, = 0 at r; = 7,, we

have ¢; = d,1 = 0, which contradicts § > d,1. Thus, no solution exists in this case.

Case 2b-3: Suppose A\; = 0 and X} = 0. Then, (A81) and (A82) suggest 1 = 152 >
0 and 5; _ (1—b)(2+b)+bc1—(2—b2)cz‘ Note that (1=0)(2+b)(1—r})+bc1 —(2=b%)ca  (1-b)(2+b)+ber —(2—b%)ca

1(1-57) 2(1-57) 1(1-67)
= % < 0, which contradicts 6 < (1_b)(2+b)(;(_1r_)g)cl_(2_b2)02 required by (A80).

Thus, no solution exists in this case.

Case 2b-4: Suppose A3 = 0 and A} > 0. Then, r; = 7, is implied by (A86), and 0, =

(1=b)(24b)+be1 —(2=b%)c : (1=0)2+b)(1=rp)+ber—(2=b%)c2 oy —(1=b)(2+b)—be1+(2—-b?)c
4(1_b12) 2 by (A82). Since ) ! —0r = 4(1_b21) 2
< 0 due to c2 < G = %, which contradicts 0 < 2(1—;2)[(1 —b)(2+0b)(1—

r) + bep — (2 — b?)eg). Thus, no solution exists in this case.
Case 3: Suppose 0 € (02, 1i5). Then, Lemma 8(iii) implies 75, > 7%,
[oQeb)ozea =3 with fr>0iff 6 < =2 and 7 < (1 — ¢). Note that r < (1 —¢y) is

2 (1+0)
[(1—b)(2+b)+be1 —(2
(1-b)(2+b)

* ___ *
and [ = m;, =

implied by r <7, = —Pea], Accordingly, the problem in (A65) becomes

max Sl—(1+b)d—co—1]+2rd

(1—co—1)

.t. <
s.t (Sp2<(5_ (1—|—b)

and 0 <7r <7, (A88)
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Its Lagrange function associated with the problem in (A88) is

1— ¢ —
L=0[1—(14+b)5—cy—r]+ 20+ M (0 — 0,0) + Ag[((lc—jb)” — 8]+ Ns(Fp — 7).
Then, the Kuhn-Tucker conditions are
oL A1 Ao oL
R — = A
ot arne—n 1xp =0T =0 (489)
oL oL
71 — < = =
25 1—-2(14b)d0—co+r+A —X<0,90- 53 0, (A90)
oL oL
=0—10,0>0, A A91
a)\l 0 1° 8)\1 07 ( 9 )
oL 1l—cy—1r oL
= —0>0, A = d A92
e (xp) 020 Mgy, =0 an (492)
oL oL
_— =7 A ) A
D Tp—1 >0, A3 8)\3 =0 (A93)

Since § > 0,2, we have A} = 0 by (A91). According to the values of A} and A}, there

are four sub-cases.

Case 3a: Suppose A5 > 0 and A\ = 0. Then, (A89), (A90) and (A92) suggest
— 22 =0, 1-2(14b)8—cs+r— A =0, and L=2" 5 = (. Solving these

1+b (1+b)
equations yields r; = (12—02) >0, 0, = 2%14(3;) > 0, and A3 = (1 +b)d, > 0. Some
calculations yield (7, —77) = [(kb)(QgL)Z)léﬂ()%bQ)cﬂ - (1582) = Klfb)(2+b2);§2,b,,c)1(;(+15b)(24))62]
and (5 — 0p2) = 2%3;% — (11;5)1(;?;1)) = (l—l;)(irizl)(—z(;%b—)b)@. Thus, we have ry < 7, iff ¢ <
U2 and 6, < 0 iff ¢ < Ughe with U . (o Under
condition ¢y < %, the equilibrium exists with fee revenue
1—cy)?
R = —(2 a +2b)) : (A94)

Case 3b: Suppose A5 > 0 and A\; > 0. Then we have r; = 7, by (A93), and 5 =
Jfgiﬁ > 0 by r; = 7, and (A92). However, we have (0; — dp2) = (;fé;% < 0,

which contradicts d > d,,. Thus, no solution exists in this case.
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Case 3c: Suppose A\; = 0 and A\; = 0. Then we have §; < 0 by (A89), which

contradicts 0 > d,2 > 0. Thus, no solution exists in this case.

Case 3d: Suppose A3 = 0 and A3 > 0. Then (A90) and (A93) suggest r; = 7, and

2(1—b)(4—b%)+(4+2b—3b%)c1 —(2—b%)(4—b)co

oy = 1;?;) Some calculations yield (4 — §p2) = 5007 (52 >0
[2(1=b)(4—b%)+(4+2b—3b%)c1] (1—co—ry %1 _ l—co—7 1+7 1
iff ¢y < (2—02)(4-b) =, and | 1+0) —o,] = (1ib)p_2(1+2) = 2(1-02)(2+0) [—2(2—

b—0?) — 3bc; + (2 + 2b — b?)cy] > 0 iff ¢y > > 220 W)isber which contradicts ¢ <

(2+20—b2)
20— b)(4(2b2£;g((j+§)b 3b%)cy derived above. Thus, no solution exists in this case.

Finally, by comparing port authority’s equilibrium fee revenues in Cases 1-3, we

can derive the best concession contracts. Before doing this, we need to know relative
2(1—b)(2+b)+(24+3b—b?)cy

sizes of the critical points in Cases 1-3, including ¢y, = (e and ¢y =

(1—b)§2_4;l2>)+bcl in Case 1, & = 2(1——b;+$_b) and ¢y = (l_b)(igb)bg)(zl%)cl in Case 2a, ¢y =
_oh_p2 c ~ ?)e c

8 22)101)_,):1()?1)) Land ¢y = G b)(QELSbﬁ’bH’g);;(Q;?Hb ) in Case 2b- 1, and c” =0 (Sb)_Jg)Q !

) . 14b)(1—b)2(1—c 1-b)*(1—c

in Case 3a. Since (022 — Cp) = % > 0, (%’2 - 0272) = (3(_17)()10(_17—11;)2) >

1-b)(1—c ~ 1—b)(2+b)(6—b+b2)(1—c ~ ~
0, (2 = G) = 534732645; >0, (G =) = ( )((6jb2))((6+bt3132() L >0, (Cpo — Cpa) =

(14b)(1-b)2(2+b)2(1—c1) - ~ _2(1-b%)(2+b)(1—c1)
(814b—362—5?) = >0, and (Gpp — Gp2) = (2—b2)(8+4b—3b2—l173)

= /
> 0, we have ¢ < ¢y <

o < Cry < Cpa < Cpo < Cpp, and seven cases as follows.

Case A: For ¢y € (c1, Cpl, an equilibrium exists in Case la with Ry = 2f +
*«12(1—=r*)—(c1+c . * 44-2b—b?) e +b3c *
TP[W] in (A70), where 7 = 745 — % and fr = 3(1—b?)

2(1—b)(24+b)+(2+3b—b?)c1 — (6+b—3b%)c2 12 (2—c1—c2)?
[ 2(2+b)(3-b)(1-?) ] 4(1+b)(3 b)

(A78), and an equilibrium in Case 3a with R} = 1(13_217) in (A94). Define M; = (1(lffg)2

. (1—rp)—(citea)y _
2fr—r «[2 Ty ) = e (8 — 80— 60% +46° +2b%) + (8 — 4b — 4b%)e; +

(—24+200+16b>—8b3 —4b*) co+ (12b+6b% —2b3) ¢y ey — (4+4b+b% —b3) 2+ (12— 16b—110%+

an equilibrium in Case 2a-1 with R} = in

<1 OM —12+106+8b%—4b3 —2b*)+(6b+3b% —b>)c1 +(12—16b— 1162 +5b% +2b4
5b°+-2b) 3] with G = ( )2(5 o b)()QC-ls-b)(Q )22 By some
oM _ —(3-b-b?)(1—c OM . 1
C&lCUl&thHS we get cl co=c1 — W < 0, ng co=Cp2 — (3=b)(1+b)(2+b)2(7—3b)

[—(30 45 — 130> = 36° + b*)(1 — c1)] < 0, Mieyme, = G720555 > 0, and My |e,—s,, =

1—b)(52+40b—9b% —4b3+b4)(1—c1)?
( %53:2)(1%)(2%) z; ;)2)2 1> > 0. Thus, we have M; > max{Mi|e,—c;, Mile,—z,,} > 0,

1—c 2(1—r%)—(c1+e2)
which implies (1+213 >2f, 4+ [W]
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Next, define M, = (1(Ifl3)2 . i?ffé)zgfi);) _ 2(17b)+4c174(1(112(;)2)(32%)@ c2+(5—2b)c3 _ Since
e = ey and G = gy > 0, wehave i < —Egrgi
A < 0 Moroover since My > Ufal? — il — (o0 impiid
by 5 BMQ < 0 and ¢y < €2, we have gafg; > (?1 f;)(:?)b Thus, the port authority will
choose the optimal unit-fee contract in Case 3a with r; = (1= 62 , 0, = 2(1+b I, =0,
and R} = 21(13_22)2
Case B: For ¢y € (G2, ¢y, an equilibrium exists in Case la with Ry = 2f> +
ro PO in (AT70), where 1 = gby — GE2Edate ang fr = 1(1 - 1),

)

[2(1_b)(2+b2éfg?;:g;gfi;z(erb_gbZ)62]2, an equilibrium in Case 2a-2 with R = m

{2(c2 —e1)[(1=0) +c1 — (2—b)ep]} in (A79), and an equilibrium in Case 3a with R =

(1—c2)? : : M _ —(84+44b—25b%—20b3 —3b%)(1—c1)
Sy i (A94). Asin Case A, some calculations show Gt c,—r, = DB D05
_ (1-b)(188+280b+133b%+31b3+7b*+b5) (1— c)
< 0 and M1|02:Cr = 107555 10210 5 12)? > 0. Thus7 we have M; >
max{Mi|c,—z,5, Mi|ey=c! ¢ ,} >0, and hence (1(13-21)) >2fr+r, [%] Moreover,
we have (21(1213) — Aeam Cl)([ﬁbi)fr_cgyw bea] _ [(A= g)(ﬁil)(l(_?’b)g)”] > 0. Accordingly, the port
authority will choose the optimal unit-fee contract in Case 3a with r; = 1 52, 0y =
(1—c2) o % (l—c )2
1+i), J, =0, and R} (1+2b) .
Case C: For ¢y € (cy, ), an equilibrium exists in Case la with Ry = 2fr +
2(1—rp)—(c14c2) 1 (4+2b=bP)ert+bie 2
Tp[—(ler) ) ] in (A70), where r; = ) 2(2+b)(31 ) 2 and fy = (1 — b?).

(2
[2(1—b)(2+b)+(2+3b—b2)c1—(6+b—3b2)cz ] 2 1
2(2+b)(3—b) (1—b2) (1+b)(1—b)2

{2(ca — 1)[(1 = b) + c1 — (2 — b)eo]} in (AT79), an equilibrium in Case 2b-1 with

, an equilibrium in Case 2a-2 with R} =

Ry = [(3+b)(1j1b)((3ﬁ?6212 (A87), and an equilibrium in Case 3a with Ry = (21(1313)2 in
(A94). Asin Case A, some calculations yield 22 o — Z@HI09 5 e) ) apd

ca=cpy 2(1+4b)(3—b)2(2+b)2
Ml|62:Cg2 _ (1=0)(A24+2064 762 +6%) (1 —c1)? Thus, we have M; > max{M|.,—¢ =c, 2 Mileo= =Cha }

4(1+b)(2+b) (B-b)°
(1—c 2(1—7%)—(c1+e2) (1—c2)? 1
> 0, and hence (1+2b) > 2fr 4 [W] Moreover, we have 2(1+2b) DL

{2(cs — e1)[(1 = b) + ¢; — (2 — b)ey]} from Case B. Next, define Mz = 4=

>

2(1+b)
[(34+b)—c1—(2+b)c2]® . OMs _ —(6—b—b%)—(2+b)c1+(8—b3)c 92Ms (8—b2)
8(1+1b)(3+b) == with 522 = 4(1+b)(3+1b) * and = 1wem 0 Ac-
. OM: —(6=b—b*)—(2+b)e1+(8=b%)cyy  —(1—cy)(10—b—b?) (1=cpp)?
cordingly, 5t < A(1+0)(3+D) == e - < 00 Ms STl
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(1—cpp)? [(3+b)—c1—(2+4b)cpr]”

[(3+b)—c1—(2+D)co]> (1-b)2(1—c;)?
= > 0, and My > S — B(1+0)(3+D)

8(14b)(3+b) 2(145) (10—b—b?)

% < 0. Since M3 can be positive or negative for c; € (¢,

Cpa)> there must
exist some ¢p With ¢y < ¢ < ¢y 50 that Mz =0 at ¢ = ¢ = (S_ng){[(G —b—b)+

(2 +b)c1] = 24/(3+b)(1 — 2¢1 + 2)}. Accordingly, we have (e [B+h)—c1—@4bca)’

2014b) = 8(1+b)(3+D)
(1—c2)? [(34b) —c1—(24b)ca]?
and 2(1+2b) < 8(1+1b)(3+b) :

for 1 € (¢, 2, for ey € (¢p2, < ).

Thus, if ¢; € (¢, Cpo), there are two sub-cases. For ¢y € (¢, ¢, the port author-

Cp2:
ity will choose the unit-fee contract in Case 3a with r) = = (=e) 02 , Jp =00, = %hfig
and Ry = a 1ffb in (A94). For ¢y € (ép2, ¢jy), the port authority will choose the unit-fee
contract in Case 2b-1 with r; = = [B+h)- (3+b)2+b c2] 0y = (1= b)(2+b)(12(k);;wl G- b2)c2, Iy =
0, and Ry = (B0 eibel 4 (Ag7).

Case D: For c; € [cy, ¢3), an equilibrium exists in Case la with Ry = 2fr +
ro PO in (AT70), where 1 = gby — GE2Edate ang fr— 1(1 - 1),

[2(1_b)(2+b2)(;f$?§:s)2()fi;2()6+b—3b2)CZ]2, an equilibrium in Case 2a-2 with R = m-

{2(ca—c1)[(1— b) +c1—(2—0b)es]} in (AT9), and an equilibrium in Case 2b-1 with Ry =

[(3+b)—c1—(2+b)ca]? _ [B4b)—c1—(24b)c 12 2(1—rj)—(c1tca)y
8(1+b)(3+b) - in (A87). Define M, (1+1b)(3+b = —2f - p[(lfjb)w] =

8(1_b)(2+1b)2(9_b2)[(12—8b—13b2+3b3+5b4+b5) +(—24+16b+ 140 — 4b* — 2b*) c; + (120> —
26% —8b* —2b°) ¢y + (48 +32b— 16b% —2b° +2b%) ¢y o+ (— 12— 24b+b2 +3b%) 2+ (— 24— 16b+
20° 420 +-3b" +0°)c3]. Since Gt = qpapry [(60° —b* —4b" —b%) + (244160 —8b* —
b3+b4)c1+(—24—16b+2b2+2b3+3b4+b5)c2] and s — —CH 8P < 0, we
Gt < sy (607 —0° —4b" %) +(24+160—8b> b +b*)cy + (—24— 16D+
2P+ 2%+ 3b1 %) ] =~ L i a) < 0, and My > o (12—
8b—13b+3b3+5b* +b°) +(—24+16b+14b* — 40> — 2b* ) 1 + (120% — 203 — 8b* — 2b°) ¢+ (48 +
32b—16b*—2b3+-2b")cyco+ (—12—24b+ 1% +3b) 3+ (— 24— 16b+2b* + 203 + 30 +b°) 3] =
(1=b)(42410b+b%+b%) (1—c1)? > 0. These imply [(3+b)—c1—(2+b)ca)? > 2f . [ 2(1 r;;)—(cl+cQ)].

<

have

4(9-b2)(6-b2)? 8(1+b)(3+b) (1+b)(2-b)
[(3+b)—c1—(2+b)ca]® _ 2(cz—c1)[(1-b)+e1—(2—b)ea] __ [(3—2b—b*)+(7+b)c1 —(10—b—b)ca]?
Moreover, ==5armmrn™ T (=02 : samEaz > 0

Thus, the port authority will choose the unit-fee contract in Case 2b-1 with 7 =

[(3+b)—cl—(2+bcg] f* _ 0 5* o (1— b)(2+b)(1 r )+b01 (2— b2 )CQ nd R* _ [(3+b)—01—(2+b)(32}2

2(3+0) 2(1-67) 8(110)(3+D) in
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(A87).

Case E: For ¢y € [y, ), an equilibrium exists in Case la with Ry = 2f> +
2(1—ry)—(c1+c2) 1 (4+2b=bP)erit+bie 2
Tp[—(ler)( ) | in (A70), where r* = ) 2(2+b)(31 ) 2 and fy = (1 — b?).

[2(1_b)(2+b)(2f;;?§ Z)Q()fl b2()6+b_3b2)62]2, and an equilibrium in Case 2b-1 with R} = 8(1+b—§(3+b)
(34 b) —c1 — (24 b)c2)? in (A87). Since %Aci“ < 0 by the results of Case D, we have
My > gpaiprem (12— 80— 130 +3b% +5b* +5%) + (—24+ 160+ 14b° — 4b° — 2b%) e, +
(12b% — 2b% — 8b* — 20°)¢,0 + (48 + 320 — 160 — 203 + 2b* ) ¢y 6y + (—12 — 240+ % 4 30 3 +

(=24 — 16b + 2% + 2b° + 30" 4 b°) 2] = (ng((;;g))(zéiﬁ);b(;);q)2 > 0. Thus, the port au-

— [B4b)—c1=(2+4b)eo] £

thority will choose the unit-fee contract in Case 2b-1 with r

2(340)
w _ (1=b)(24+b)(A—rp)+ber—(2-b7 )02 « _ [(34+b)—c1—(2+b)ca]?
0, 0, = 2(1-57) and R = S =5apare in (A87).
Case F: For ¢ € [¢, ), an equilibrium exists in Case 1b with Ry = 7,q; =

(Cz_cl)[(1_(?(i;;gf;c)é_@_b%ﬂ in (A71), and an equilibrium in Case 2b-1 with Ry =

[(34+b)—c1—(2+b)ca]? [(3+b)—c1—(2+b)ca]® 1
8(1+b)(3+b) 8(1+b)(3+b) (1—b)2(2+b)2

6—b—4b%—b3)+(2+4+5b+b2)c1 —(84+4b—3b% —b3)ca]?
{(es = e)l(1 = D)2 +D) +bey — (2 = BP)cp]} = (At Gedbder ottt e,

in (A87). By some calculations, we have

0. Thus, the best choice for the port authority is the unit-fee contract with r, =

[(3+b)—c1—(24b)ca]  cx _ (1=b)(2+4b)(1—r%)+ber—(2—b)ca . % _ [(34+b)—c1—(2+b)ca2)?
(3+b) =, 0, S0 f, =0, and R} = 8(1+1b)(3+b) -

(AST).

Case G: For ¢y € (G2, Gp2), only the equilibrium in Case 1b exists with R = 7,q5, =

(Cz_cl)[(l_(f)fiig?%iijé @=t?)ea] 4 n (A71). Thus, the best choice for the port authority is

the unit-fee contract with 5 = 7, = (kb)(zzrlb);r)b(czﬁ()%w)@, o, = 0, f; =0, and
« = % _ (co—c1)[(1=b)(24b)+bc1 —(2—b2)c ]
Ry = Tpdp = =12 = in (A71). O

Proof of Corollary 4: By some calculations, we have ¢y < ¢, G > (<) & ifb< (>

) 0.830504, Gpp < Go, Cpp < Ca, Ga < (>) G iff b < (=) 0.807374, and &y > (<) &

if b < (>) 0.830504. According to relative sizes of ¢, ¢, €2, Cpa, C2, Cp2, and Ca, We

can prove Corollary 4 by the ensuing Lemmas A, B, C and D.

Lemma A. Suppose b < 0.807374. Then we have the following.
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(i) For co € (c1, €y, terminal operators’ best choices and port authority’s optimal

contracts under both competition modes are the same.

(i) For ¢y € (épa, ¢2], operators will rent terminals under both competition modes, but
operator 2’s equilibrium profit equals zero. Moreover, we have R; > R", my = 7y =
0, my <7 for ¢y € (épo, v], Ty > 7Y for co € (v, & if b>0.226985, and 7 < 7}

for co € (¢, Ea] if b < 0.226985, where v is defined in the proofs below.

(iii) For cy € (2, Gpo), we have R} > R", 7w =7y =0, 7y > 7wt for ¢y € (&, 1]
and ) < 7y for cy € (t, Ep] if 0.391041 < b < 0.45193, 7y > 7f for ¢ € (C2, Cpo
if b>0.45193 and my) < 7} for cy € (éz, Cpol if b < 0.391041, where t is defined in

the proofs below.

(iv) For cy € (Cp2, C2), operator 2 will not rent terminals under price competition, but
operator 1 will always rent them. Accordingly, we have R; > R" for cy € (Cp2, C2)
if b < 0.643333, R} > R" for ¢y € (G, y] and R} < R" for cy € (y, &) if
b>0.643333, 1, = 1y =0, Ty > 7Y for ¢y € (G, C2) if b>0.45193, myy < wy for
ca € (Cpa, k] and 7y > 7 for ¢y € (k, &) if b < 0.45193,wherey and k are defined

in the proofs below.

(v) Forcy € [C2, €p2), operator 2 will not rent terminals under both competition modes,
but operator 1 will always rent them. Accordingly, we have R; < R" for c; € (G2, Cpa)
if b > 0.643333, Ry > R" for cy € [éa, w) and Ry < R" for ¢ € [w, Cp) if

b <0.643333, myj, = my =0, and 7, > 7y, where w is defined in the proofs below.

Proof. For b < 0.807374, we have ¢; < ¢pa < ¢y < Cpa < G2 < Cp2 < Ca. Then, there are

five sub-cases.

(i) For ¢y € (cl, ¢pa), Lemma 2(iii), Lemma 5(i), Lemma 8(iii), and Lemma 10(i) imply

U uiuilcg U u7(1€2) _ u _ l—co U U
TP =T 5 0 1+b)7 R =R 1+b)’ sz Qz — 2(1+b) ppz' =D =
14co u _ u _ (I—c2)(ca—c1) _ o o

T Tl =T = oty ,and m, =7y =0 fori=1, 2.
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(1—c2)? u o
2(1+0) > "1 =

(ii) For ¢o € (¢p2, ¢2), by Lemma 2(iii) and Lemma 5(i), we have R* =

(=e)lescer) and 7% = 0. Moreover, Lemma 8(ii) and Lemma 10(ii) suggest Ry =

2(1+b)
[(3+b)—c1—(2+b)ca)? _ [=(3=2b=b)+(5+3b)c1 — (245b+b2)ca] _
saEbery 0 T = 1601-0%)(3.1D)2 =, and mj, = 0. Thus, we can
2 2
get K“?@ﬂigﬁ?”} > (Qlafb)) if co > ¢pp. This means Ry > R". On the other hand,
(my — 7Y) = [—(3—217—*’21)&?_;3;’2;5)(3*5b+b2)02] — (1_22()1%)_ ) is a convex function of ¢
82 U U .
because (ﬂgig ) _ 76_8%?:})%;’?; fé’;’;“ > 0. By some calculations, we have 7, = 7{ at
2

co = u and ¢y = v, where

[(30 — 23b — 1162 + 3% + b*) + (46 + 19b — b¥)ey] — 2(1 — ¢1)/2(3 + b)*(1 — b)?

‘= (76 — 4b — 1102 + 2b° 1 bY)
and
o 1(30 = 23D — 1167 + 35 + b1) + (46 + 196 — b)e] +2(1 — 1) /203 + P (L = B

(76 — 4b — 1102 + 203 + bY)

with v > u. Then, we can know relative sizes of m;; and 7' by comparing ¢z, 2, u, and

: 02 (i —m') A =) —(1—b)(2+4b)(7T+b)(1—
v. Since gig = >0, —H— = (8(1)+(b)(31(b)(3)+(b)261) < 0atcy = cy, and (7 —7}') =
SDARAAR < 0 at ¢ = ¢} with ¢ < & < ¢, where ¢ = GZIHEA 4ng

77 (1—b)+2c1 .

=gy we have (7, — 7}') < 0 at ¢ = ¢ and hence u < ¢ < v. Then, we can
show (v — &) = g iratrrar | — (216 + 84b — 3602 — 620% — 155" + 46 + 1) +

2(8—3b%)/2(3 + b)3(1 — b)3 + (76 — 4b— 116>+ 20> +b*)\/2(6 + 2b — 7b% — b3 + 2b%) >
(<) 0iff b < (>) 0.226985. Accordingly, u < ép < é < v if b < 0.226985, and
u < ¢y < v < G if b > 0.226985. These suggest my; < 7' if b < 0.226985, and 7 < 7y’

for ¢y € (¢, v] and myy > 7 for ¢ € (v, & if b > 0.226985.

(iii) For ¢y € (éa, ¢p2], Lemma 2(ii) and Lemma 5(ii) imply R* = [(3_217)41??&;2))?21:1522)_17)02]27

T = [(3_5b+2b2)_i(53:22”5§?2)i1;g§22+3b_3b2)02]2, and 7% = 0. Moreover, Lemma 8(ii) and
. " 3+b)—c1—(2+b)ca]? ” —(3—2b—b2)+(5+3b)c1 — (2+5b+b%)c
Lemma 10(ii) suggest Rp =L *8)(1;,)((3;)) 2 » Tp1 = = 1)52§_J22)233rb)(2+ — 2]7 and
_ [(3+b)—ci—(2+b)ca]*  [(3=2b)—(1—=b)c1—(2—b)c2]?

7, = 0. By some calculations, we have (R —R") =

2(RY—R")  —p2(44+8b—3b2—2b3)
D2 = 4(1+b) (3+b)(3—2b) (2—b2)

8(1+b)(3+b) 4(3—2b)(2—b?)
with 9

< 0. That is, (R; — R") is a concave function

- b2 (1—b)(72+48b—44b2—16b3+3b% +b5) (1—c1)?
of cp. In addition, we can get (R, — R") = a {4((2:“1)2)(3_%)(8i4bf3b2fb3))2( <) > 0 at

[(3+b)7017(2+b)62]2 (1702)2
S+ (310) 2(1+0)

Ca = Cp2, and R; > R" at ¢ = ¢y because > for co > ¢po
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—c 2 — —(1=b)c1—(2—b)c 2 . u u . ~
and (21(1+213) -6 2b)4(£2£))(214§22) beal” ot Cg = Cp. Thus, Rj > R" for ¢z € (é2, €po] by

(R4 —R")

3 < 0, and RZ > R at ¢y = Cpo and ¢y = Cs.

On the other hand, we have (7, —}) = 16(1—b2)gﬁ)()%((:;),—c;b)ﬁ(z—bzﬁ , where H (b, ¢1, ¢3)
= (8162 —2160>+ 1620 +12b° — 4700 +4b"+4b%) + (72— 168b—238b* +554b% — 660 —210b° +
3209+ 24b7)¢; + (— 72+ 168b+ 762 — 122b% — 258b* + 186 + 6206 — 3267 — 8b%)c, + (168 —
88b — 524b* — 158b° 4 504b* + 1060° — 11285 — 2407 )¢y o + (—120 + 128b + 381H* — 198b% —
2196145207 +40b°) 2+ (—48 —40b+224b> 41400 — 123b* — 146b° +2505 42807 +4b%) c2 with

(b crca) — 9p2( 48— 40b+ 224b% + 1406 — 123b* — 1465 + 2565+ 2867 +4b°) < (=) 0

2
Ocs

iff b < (>) 0.53173. This implies that H(b, ¢1, ¢3) is a concave (convex) function of
e if b < (>) 0.53173. In addition, H(b, c1, ¢3) =0 at ¢ = s and ¢ = t, where

1
(—48 — 40D + 22462 + 14065 — 123b% — 14665 + 2506 + 2867 + 4b°) |
—38b* + 61b° 4 1296 — 93b° — 316° + 16b" + 4b%) + (—84 + 44b + 262b* + 796> — 252b*

(36 — 84b

—53b% + 5665 + 1207 )y + 2(1 — 1)/ (1 +b)(1 — b)5(18 — 6b — 1362 + 3b3 + 2b4)?],

and

|
= 36 — 84b
(215 — 400+ 22417 1 14007 — 12307 — 14607 + 250° T 285 7 45 < L

—38b% + 61b° + 1296" — 93b° — 316° + 165" + 4b%) + (—84 + 44b + 262b* + T96° — 2525

—53b% + 5665 + 1207 )y + 2(1 — 1)/ (1 + b)(1 — b)5(18 — 6b — 1362 + 3b3 + 2b%)2],

and s < (>) tiff b < (>) 0.53173. Under the circumstance, (s —é) = (1 —¢1)(s1 +

§2 + 53) X (8—3b2)(—48—40b+224b2+140b31—123b4—146b5+25b6+28b7+4b8)’ where s; = —(3 —2b)(2 —
b2) (207 — 356 —90b° — 133b* + 2187+ 278b*+16b—96) < (=) 0iffb > (<) 0.506603, 55 =
2(8 — 3b?)\/(1L +b)(1 — b)>(18 — 6b — 13b2 + 3b3 + 2b%)2 > 0, and s3 = (—48 — 40b +
224b% + 1406% — 123b% — 146b° + 25b° + 2867 + 46%)/2(6 + 2b — 752 — b + 2b%) < (>
) 0iff b < (>) 0.53173. By some calculations, we can show (s; + so + s3) > 0 if

b < 0.53173, and (s; + s2 + s3) < 0 if b > 0.53173. Thus, ¢é; > s. On the other

Ao — t1+to
hand, we have (¢, —t) = (31 4b—3b2—b3) (— 48406+ 22462+ 140b3 — 12367 — 14665+ 25601 2857 + 465

t; = 2(8 +4b—3b* — b¥)\/(1 + b)(1 — b)>(18 — 6b — 13b2 + 3b3 + 2b4)2 > 0, and t, =

L where
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4(1—0%)(3+b)?(4b° 4 116° — 38b* — 100> + 370* +20b—16) < (>) 0iff b < (>) 0.4991.
Some calculations can show (t; +1t5) < 0if b < 0.45193 and (¢ +t2) > 0 if b > 0.45193.
That is, ¢ > t if b < 0.45193, ¢,e < t if 0.45193 < b < 0.53173, and ¢, > t if
b > 0.53173. Accordingly, if b < 0.45193, then s <t, s < ¢, t < Cp2, and H(b, ¢1, c2)
is a concave function of cy. If 0.45193 < b < 0.53173, we have s < ¢ < Gy < t; and we

have t < s < é < €y and H(b, ¢1, ¢2) is a convex function of ¢y if b > 0.53173.

Next, we compare ¢; and t as b < 0.45193. By some calculations, we have (t—¢éy) =

(1—c1)(s1—s2+s3)
(8—3b2)(—48—4Ob+224b2+140b3—123b4— 146b5+25b6 +28b7 +4b8

b < 0.45193. We can show ¢ < ¢y if b < 0.391041 and ¢ > ¢ if 0.391041 < b < 0.45193.

)With81>0, s > 0, and s3 < 0 if

Thus, if b < 0.53173, then H (b, ¢, ¢3) is a convex function of c3. Moreover, s < t <
Cy < Cpa, ﬂ;jl < i for ¢y € (éo, 6p2] if b < 0.391041; s < é <t < Cpa, 71';;1 > 7i for
¢y € (¢, t] and 7 < 7Y for ¢y € (t, Gl if 0.391041 < b < 0.45193; 5 < & < Gy <
t, T > T for ¢y € (é, o) if 045193 < b < 0.53173. As b > 0.53173, H(b, c1, ) is

. . N u u .
a convex function of ¢y, t < 5 < ¢y < G, and Ty > T for co € (é2, o).

(iv) For ¢3 € (Cpa, Ca), Lemma 2(ii) and Lemma 5(ii) suggest R* = [(3_%)4?;:2))?21:1522)_ Beal”

T = [(3_5b+2b2)_4((5’3__221’5;’20_1;5)(?31’_31’2)CZ]Q, and 7§ = 0. On the other hand, Lemma 8(i)

see) s u co—cC —b b)+be1 —(2—b2)c u b)(ca—c1)?
and Lemma 10(iii) imply R} = ()|l (1)7(5;();,)); e pl = %7 and
w ) wy _ (ca—c)[(1=b)(24b)+bc1 —(2—b)ca]  [(3—2b)—(1—b)c1 —(2—b)c2]?
7y = 0. Thus, we have (R, — R") = ~=— (1—b)2(2+b)§ 2l — 4(3_2b)(§_b2) 2
2 U__ pu
with 2 (%C%R ) — _(642_(62‘8’1)_2?‘?;’2_235(1’13:;}5)24(;ig;’; ) < 0, and (R, — R") is a strictly concave

function of ¢y. In addition, Rg = R" at ¢co = x and ¢y = y, where

1 2 3 4 5
T = (6A—6ab — 4007 + 4307 £ 501 — 1007 1 po) < (48— 800+ 207+ ATHT 1267 7

+2b%) + (16 + 16b — 42b% + b* + 17b* — 3b° — b%)c; — 2b(1 — b)(6 — b — 2b%)
V(L =0)(2=82)(1 = 1),
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and

1
= 48 — 80b + 20% + 470 — 120* — 7V°
Y = (60— 64b— 4007 + 4865 + 507 — 10 1+ 59) | e

+20°) + (16 + 16b — 420 + b* + 176* — 3b° — b%¢; + 2b(1 — b)(6 — b — 2b%)
V(=02 =0)(1 - 1)

. 4b(1—b)(6—b—2b2)1/(1—b)(2—b2)(1—c1)? " u
with (y — x) = T 6 P AP T30 10 15~ 0. Thus, Ry > R"if v < ¢ <
y, Ry < R*if ¢ <z, and Ry < R" if ¢ > y. By some calculations, we can ob-
; u wy _ b2(1—b)(72+48b—44b%—16b3+3b*+b5) (1—c1)? - O(Ry—RY)
tain (R — R") = -G - > 0at o = & —po— =
—b2(44+2b—5b2+b%)(1—c1) u wy _ b2(3—2b)(4—8b+3b2—b3+b%)(1—cy)?
(1—b)2(2+b)2(8—4b—b% < 0, and (Ry — R") = (1-b)2(210)2(8—4b_b2)2 =< ()0

iff b > (<) 0.643333 at co = ¢&. These suggest © < ¢ < y, & < y it b <
0.643333, and & > y if b > 0.643333. Accordingly, R, > R" for ¢y € (G, C2) if

b < 0.643333, Ry > R" for c; € (€2, Y], and Ry < R" for ¢; € (y, ) if b > 0.643333.
(14b)(ca—c1)?  [(3—5b+2b%)—(5—2b—b?)c1+(2+3b—3b2)ca)?
(1-b)(24+b)2 4(3—2b)2(2—b2)2

. 02 (n¥ —m) 2 3 4 5 6 7 .
p1=T1) _ 128—96b—248b24224b3+131b* —133b° —2366+25b
with ac2 - 2(1-0)(2+b)2(3—2b)2 (2—b2)2 > 0. That is, (

On the other hand, we have (7, —7{') =

vo— i) is a

Tp

strictly convex function of ¢y. Moreover, T =T at e =] and ¢y = k, where

1
= 24 — 4bh — 981>
J (128 — 96b — 248b2 + 2243 + 131b* — 133b5 — 23b6 4 25b7) < I(

+81b% + 37b* — 43b° — 3b° + 6b7) + (104 — 92b — 1506* + 143b° + 94b* — 90b°

—2005 + 1967)e; — 2(1 — b)(2 + b)(2 — b*)(3 — 2b)% /(1 — b2)(1 — ¢;)?]

and

1
k= 24 — 4bh — 981>
(128 — 96b — 248b% 4 224b3 + 131b6* — 133b5 — 23b6 4 25b7) x(

+81b% + 37b* — 43b° — 3b° + 6b7) + (104 — 92b — 1506% + 143b° + 94b* — 90b°

—2005 + 1967)ey 4 2(1 — b)(2 + b)(2 — b*)(3 — 20)% /(1 — b2)(1 — ¢1)2]

with & > j. Then, m; < 7{ if j < ca < k, and mp; > 7} if ca < j or 2 > k.

. O(mpy —7t) (288—240b—492b%+436b3+338b* —231565—1296%+43b7 +195%)

pl 1 _ u

Since —5— = 2(2+5)(3—2b)%(2—b2)2 (8 4b—3b2—13) > 0, (mp
b2 (1—b)(—144+120b+544b2 —44b% —4216* —2565 48165 +1707) (1—c1)? .

A(3—2b)2(2—b2)2 (3+4b—3b2—b7)2 < (2) 0iff b < (=) 0.45193

2b3(3—2b)2(1—c1)?

1—b)(24b)2(8—4b—b2)

- ) =

at

Co = Cpo, and (7 —7}') = ( > > 0at ¢y = Cp; wecaninfer &, > k, ¢ < k
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if b < 0.45193, and ¢, > k if b > 0.45193. Thus, 74 > 7w for co € (Gp, C2) if

pl
b > 0.45193, mp < 7y for ¢y € (Cpo, k|, and 7y > 7 for ¢ € (k, &) if b < 0.45193.

co2—cC1 ) [(27b)+bcl 72C2}

(v) For ¢y € [¢2, Gp2), Lemma 2(i) and Lemma 5(iii) suggest R" = (

(2—b)2 7
7 = (%=2)?, and 75 = 0. On the other hand, Lemma 8(i) and Lemma 10(iii) imply
c2—c — c1 —(2—b%)c u ca—c1)? U
Ry = loalll i Cblal qu — Lol and 7%, = 0. Thus, we have
u wy _ B2[(A—4b—b2+b3)+b(4—2b—b2)c; —(4—3b2)ca)(ca—c1) _+p1. OP(RY—RY)  _2b2(4—3b2)
(R, — R") = (1—b)2(4—b21) = with apcg = =p)2a—5) < 0.

These mean that (R} — R") is a strictly concave function of ¢y. In addition, Ry = R"

at cg = ¢; and

(4—4b— 1+ %) + b(4 — 2b — b?*)ey
(4 —3b?)

Co = w,

(4—4b—b%+b%)(1—cy)
(4—312)

b < 0.643333, and w < & < G if b > 0.643333. Thus, Ry < R" for ¢y € [Cy, Gp) if

b > 0.643333, Ry > R" for ¢ € [63, w), and Ry < R" for ¢ € [w, ¢2) if b < 0.643333.

3 Cco—c 2
We also have (7, —7{') = %

with (w — ¢;) = > 0. Then, we can infer ¢; < ¢ < w < Gy if

>0.0
Lemma B. Suppose 0.807374 < b < 0.830504. Then we have the following.
(i) For ¢y € (c1, ¢y, the results are the same as those in Lemma A(i).

(ii) For cy € (ép, Cof, we have Ry > R", myy = my =0, my < 7 for ¢y € (&, v,

and Ty > my for ¢y € (v, .

(iii) For cy € (&2, Gpl, we have Ry > R", myj, = 75 = 0, and m,

U
2 b > T for

Cy € (527 6p2].

(iv) For ¢y € (Gpa, Gpa), operator 2 will not rent terminals under both competition
modes, bul operator 1 will always rent them. Accordingly, we have Rj; > R" for

co € (G2, Yl and Ry < R" for ¢ € (y, &), mp = 75 = 0, and m,

u
2 = bl > T for

Cy € (61,2, Epg).

Proof. For 0.807374 < b < 0.830504, we have ¢; < ¢ < ¢ < G < Cp2 < €2 < Co.
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Then, there are four sub-cases.

; ; u _— u — l—ca u _— Su _— _l—co U Pu
(i) For ¢y € (c1, ép), we have ry = 1% = 52, 50 = ¢ = sy By = RY =
(1-c2)® _u _ _u _ (1=c2)(ca—c1) u o u

2 Tt = T = oy o and mp =my = 0.

(ii) For ¢z € (¢p2, ¢2], the proofs are the same as those in Lemma A(ii).

(ili) For ¢y € (&2, €po], the proofs are the same as those in Lemma A(iii).

[(3—2b)—(1—b)c1 —(2—b)ca]?
4(3—2b)(2—b?) ’

(iv) For ¢2 € (€2, Cp2), Lemma 2(ii) and Lemma 5(ii) imply R* =

T = [(3*51’*%2)’4(?3:2;532?;)(?3}’*31’2)62]2, and 7% = 0. On the other hand, Lemma 8(i)

(c2—c1)[(1=b)(2+b)+bc1 —(2—b2)ca] uw _ (14b)(ca—c1)?
B (=L 5 T = e and

my, = 0. We have R > R" for ¢, € (Gp2, y] and Ry < R* for ¢y € (y, ¢2), because

O*(Ry—R"“) _ —(64—64b—40b>+48b3+5b* —106°+b°) u_ pu) 1 2
27— = — e marey <0 (B-R) = meameraseee 07 (1-

b)(72 + 48b — 44b* — 160° + 3b* + b°)(1 — 1)?] > 0 at ¢; = G, and (RY — RY) =

42&;52’;??3?;55 1’ <0 at Cg = Cpp. As shown in the proof of Lemma A(iv), we have 7, >

u 82(7";;1*7"%) 6(7";1*“?) u u\ __ 1
Ty by — oz >0, —%5,— >0, and (mpy — 1) = 4(3-20)%(2—0)2 (8+4b—3b2—b3)2 [b*(1 ~
b)(—144 + 120b + 544b* — 44b% — 421b* — 25b6° + 810° + 1707)(1 — ¢1)?] > 0 at ¢ = o

when 0.807374 < b < 0.830504. O

and Lemma 10(iii) suggest R, =

Lemma C. Suppose 0.830504 < b < 0.918708. Then we have the following.
(i) For ¢y € (c1, €y, the results are the same as those in Lemma A(i).

(ii) For cy € (ép2, Cpa), we have Ry > R", myy =y =0, my < @y for ca € (¢, V],

and 7y > my for cy € (v, pl.

(ili) For co € (Epa, Co], operator 2 will not rent terminals under both competition modes,
but operator 1 will always rent them. Accordingly, we have Rj > R* for cy € (Cpo, éa|
if b < 0872981, Ry > R" for cy € (G, g] and Ry < R" for cy € (g, Cof if

b > 0.872981, m,; > w{', and wy = my =0, where g is defined in the proofs below.

(iv) For cy € (E2, Cp2), we have Ry < R" for cy € (¢, Gp2) if b > 0.872981, R} > R"
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for co € (Ga, y|l and Ry < R" for cy € (y, &) if b < 0.872981, mp, > nf for

Cy € (62, Epg) and 7T;"2 = 7T§l' =0.

Proof. For 0.830504 < b < 0.918708, we have ¢; < ¢po < Cpa < Ca < Cpp < €2 < Ca.

Then, there are four sub-cases.

i) For ¢y € (¢1, ¢,0], the proofs are the same as those in Lemma A(i).
P

(ii) For ¢o € (ép2, Cpo), Lemma 2(iii) and Lemma 5(i) suggest R* = %, Ty =
%, and 75 = 0. On the other hand, Lemma 8(ii) and Lemma 10(ii) imply
oy = OSEEREt, mh = O, and m = 0. Thus, we
can get (R) — R") = KSJF?(Ifb)_(gﬁI;)CQ]Q — (21(_13)))2 > 0 from Lemma B(i). On the other
hand, () —7}') = [7(372b7biﬁgﬁtg;’ggggﬁbMQ)82] — (lfgi)ﬁi; “) is a convex function of
cy because o ngg_ ) 76_8%?:;??; f£;2+b4 > 0. By some calculations, we have m,; = 7{'

at co = v and ¢y = v, where

[(30 — 23b — 110% + 3% + b*) + (46 + 196 — b%)c1] — 2(1 — ¢1)4/2(3 + b)3(1 — b)3

‘= (76 — 4b — 1102 + 2b° + bY)
and
. [(30 — 23b — 116% + 3b% + b*) + (46 + 190 — b*)cy] + 2(1 — ¢1)/2(3 + b)3(1 — b)?

(76 — 4b — 1162 + 203 + bY)

with v > w. Then, it remains to compare ¢z, Cp2, u, and v, which will decide relative

- u uoQ 0% (my — ) O(my, —7) —(1-b)(2+b)(T+b) (1—c
sizes of 7y and 7{. Since # 0, —5— = (8(13r(b)(3)_(b)(33r(b)2 1)

" u —(34b)(1-b)2(1—c1)?
Co = 0/2,7 and (ﬂ—pl - 7T-1) - g(;;i()(lozb(,lﬁ);)

< 0 at

< 0 at o = ¢, with ¢, < ¢ < ¢, where

—ob—b? - .

dy =G QE’lol:gth;rb)Cl and ¢’ = (l(z?f:)%l; we have (73, — 7{') < 0 at ¢z = ¢pp. It means
. (myy =) 6-+b+b2)(1—

u < ¢ < v. Thus, we have —5—= = 2(11,))(8%2(_3,,?_)173) > 0 and (my, — 7)) =

(1b) (3+b)(242b4-362+5%) (1—c1)?
2(1+b) (8+4b—3b2—b3)2

> (0 at ca = ¢p2. These suggest ¢, > v, and we can obtain

U < Cpy < U < Epp. Accordingly, T < it for ey € (62, v] and myy > 7Y for ¢ € (v, Epl.

(1—02)2 u

iii) For ¢y € (Cp2, C2], Lemma 2(iii) and Lemma 5(i) suggest R* = , T =
2 2(1+b)
%, and 7y = 0, while Lemma 8(i) and Lemma 10(iii) imply R} = WK@_

c))[(1 = b)(2+b) +bey — (2 — )], 74 = % and 7% = 0. Thus, (R —
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RY) = (c2—c1)[(1=b)(24b)+be1—(2=b%)ca] _ (1—c2)(c2—c1)
- (1—b)2(2+b)? 2(1+b)

2 U_ puU
9 (%”CQR ) — (H_l)()?fz:;g?b)g < 0. In addition, R;j = R" at ¢o = e and ¢y, = g, where
2

[(6—3b—5b+ b3+ bY) + (2+3b— 1)y — /(1 +0)(2+b)2(1 — b)3(1 — ¢1)]

is a strictly concave function of ¢y by

‘= (8 — 502 + bA) ’
and
_[(6—=3b—5b* + b +b*) + (2430 — b*)er + /(14 D) (24 )2(1 — b)3(1 — ¢1)]
7= (83— 5b2 + b1)
with g > e. By some calculations, we have e < ¢ < g by 82(1?053“) < 0 and

" w\ _ (1=b)(8+10b+7b2+b3)(1—c1)? 1
(Ry—R") = 2(1+b) (8+4b—362—b3) : 8—-3b%)(8—5b°+b*) I

36%) /(1 +0)(2+ b)2(1 — b)3 — b(1 +b)(4 — b?)(4 — b — b*) + (8 — B5b* + b*) x
V2(6+20— 70 — 03 +2b4)] > (<) 0iff b < (>) 0.872981. Then, we can get

>Oat02:ép2,and (g—Cg):( 8—

e < Gy < G < gif b < 0872981 and e < ¢ < g < ¢ if b > 0.872981. Thus,
Ry > R for ¢ € (Cpa, @9 if b < 0.872981, Ry > R* for ¢; € (¢p2, g], and
Ry < R" for ¢y € (g, é) if b > 0.872981. On the other hand, we have (7, —

pl
—(4—3b%—b3)—(2+4b+2b2)c1 +(6+4b—b%2—b>)épo
2(1-b2)(2+b)2

—(4—3b%—b%)— (24+4b+2b%)c1 +(6+4b—b%—b°)ca
2(1—b2)(2-+b)2
(1=b)(34b)(2+2b+3b24b3) (1—c1)? >0

2(14b)(8+4b—3b2—13) :

) = >

[(3—2b)—(1—b)c1 —(2—b)c2]?
4(3=2b)(2—b?) )

(iv) For ¢3 € (é2, €p2), Lemma 2(ii) and Lemma 5(ii) imply R" =

T = [(3_5b+2b2)_i(53:22blj_)520_1;§)(§+3b_3b2)02}2, and 7y = 0, while Lemma 8(i) and Lemma
Co—c _ c1—(9—b2)e u co—c1)2 "

10(iii) suggest Ry = (e (f)fi;l(’;f;)é (2= )es] Ty = %, and 7, = 0. Thus,
(R, — R*) = (02_01)[(1_(?_(5;;!(’;12‘;;_(2_62)62] — [(3—21;)43:3))2:21:1522)—13)@]2 is a strictly concave

: P (Ry—R") __ —(64—64b—400%+48b3+5b* —10b54b%) " v pu
function of ¢y by apcg = 5355 (3= 20) (1D 15)° < 0. In addition, Ry = R

. 2(1— _ 2 3 4 5 —c 2

at co = v and ¢; = y. Since (R} — R") = il bl((722_+b42§123:1‘2“;)(816:b_+;;2j:3))2(1 - > 0 at
C2 = Cpa, and (R;f —R") = _(24_(32,32;;7?2%(1)12;; 2 <0 at cy = Cpo; We have x < ¢y < ¢ and
Cp2 > Y- Moreover, we can obtain (y — é;) = (8—3b2)(64—(614;31)(%223517_311531;4—10b5+b6) > ()0

iff b < (>) 0.872981, where y, = 2b(3 — 2b)(2 — b2) (4 — b2) (4 — b— b%) > 0, yo = 2b(1 —
b)(8—3b?)(6—b—2b%)/(1 — b)(2 — b2) > 0, and y3 = (64—64b—40b>+48b3+5b*—10b°+
b9)\/2(6 + 2b — b2 — b3 + 2b*). Some calculations can show (y2 +y3)? — (y1)* > (<) 0

iff b < (>) 0.872981. Thus, x < é& <y < G if b < 0.872981 and = < y < & < Cpe
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if b > 0.872981. We have Ry < R* for ¢y € (&2, ¢p2) if b > 0.872981, Ry, > R" for
cy € (6, y], and R < R* for ¢y € (y, Cpo) if b < 0.872981. As in the proofs of Lemma

A(iv) and Lemma B(iv), we also have 7, > 7 by ¢ > 3 for ¢p € (&o, Gp2). O
Lemma D. Suppose b > 0.918708. Then we have the following.

(1) For co € (c1, épl, the results are the same as those in Lemma A(i).

(i) For co € (¢pa, €], the results are the same as those in Lemma C(i1).

(iii) For co € (Cpa, Cp2), the results are the same as those in Lemma B(iv).

Proof. For b > 0.918708, we have ¢; < ¢pa < o < Cpa < €2 < €2 < Ca. Then, there are

three sub-cases.

(i) For ¢y € (1, ép], the proofs are the same as those in Lemma A(i).

(ii) For ¢o € (¢pa, Gp2), the proofs are the same as those in Lemma C(ii).
(ili) For ¢y € (2, Gp2), the proofs are the same as those in Lemma B(iv). O

In sum, Lemmas A-D imply that operator 2 will always earn zero profit. However,

we can have either R} > R" or R < R", and similarly either 7, > 7} or m; < m". O

Lemma 12. Given two-part tariff scheme (r, f) and minimum throughput guarantee
J, terminal operators’ optimal behaviors are given below. Define oy = (1 + Id(—ll) and

Qo = (1"‘%)

(i) Suppose a; < as.

(ia) For 6 € [0, 001] with 0. = (20“_1’)4(1(1}:;);?21_2“102, both operators’ equilibrium cargo-

handling amounts are

200 = b)(1 —71) — 2 b 2000 — b)(1 — bcy — 2

o _ 2oz —b)1-7) ey tbes s i g = (2a; — b)(1 —7) + o = 20y
(40&1@2 —-b ) (40[1(1/2 —-b )

the equilibrium service prices are pl; = c¢; +r+ (1 + %)qiZ > 0, and their equilibrium

- 6017

profits are w5 = a;(q)* — f for i=1, 2.
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(ib) For 6 € (0c1, Oco] with 0. = 12;‘315:;, both operators’ equilibrium cargo-handling

amounts are

(1—=05—cy—1) .
@ = Sa; and ¢y =0,
the equilibrium prices are p; = [(2a1_1)(21;1b5)+01+ﬂ > 0and piy = [(2a1—b)—(2‘121a—1b2)5+b01+b7“]

> 0, and their equilibrium profits are w1y = a1(q5)* — f and w}y = %[(2&1 —b)(1 —
r) — (2109 — b%)0 + bey — 2a00] — f.
(ic) For & € (8ca, 1i3), both operators’ equilibrium cargo-handling amounts are

¢q =0 and g5 =9,

the equilibrium service prices are pi = piy =1 — (1 +b)6 > 0, and their equilibrium

profits are 7} = 0[1 — (a; +b)0 —r —¢;] — f for i =1,2.

2(a17a2)+(2a2+b)017(2a1+b)02

(or—oa) . Then operators’ optimal

(ii) Suppose ay > ag and r > rig =

behaviors are the same as those in part (i).

(iii) Suppose ay > g and 1 < ris.

(ilia) For § € [0, 84 with 8!y = (zarb)fl;;);l;fzr?%cl, both operators’ equilibrium cargo-

handling amounts are

. (ag=b)(1—71)—2ac; +bcy and o — (200 = b)(1 —7) + bey —2a300
de1 = (4&1012—62) — Vel Qoo = (40410(2—62) cl»

the equilibrium service prices are p; = ¢; +1r + (1 + %)qé‘i > 0, and their equilibrium

profits are 7 = a;(¢;)* — f fori=1, 2.

(iiib) For ¢ € (0!

" O] with 8y = 2= both operators’ equilibrium cargo-handling

20i0+b

amounts are

(1 =00 —cy—)
=0 and g =
dc1 e 2042 )
geg . % 2090 —b)—(20i9—b2)d+-bea+br % 2000—1)(1—b0)+co+r
the equilibrium prices are ply = (202 -b)—( 22&2 Jotbeatbr] - 0 gnd Diy = (202 )(2(12 Jep-tr]

> 0, and their equilibrium profits are 7% = 5—{8[(2a2 — b)(1 — 1) — (2a105 — b?)§ +

20
bey — 2a9c1]} — f and 78y = an(qly)? — f.
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(ilic) For § € (¢

9 1+b) both operators’ equilibrium cargo-handling amounts are

¢ =0 and g5 =9,

the equilibrium service prices are pi; = piy = 1 — (1 +b)6 > 0, and their equilibrium

mh=01—(a;+b)0 —r—c]—f for i=1,2.

ci

profits are

Proof of Lemma 12: Denote L; and L, the Lagrange functions of operators 1 and 2,

respectively, in problem (39) with

dy
L, = [1—q1—bq2—cl—r—?6h](h [+ X(q —6)and
1
do
Ly, = [1_Q2_bQI_02_T_?QQ]QZ_f‘f‘)\Q((h_(S);
2

where A\; and Ay are their associated Lagrange multipliers. Then, the Kuhn-Tucker

conditions for operator 1 are

2211 —1—2(1+%)Q1—b%—01—7”+)\1<0 qi - 8821 =0 and (A95)
%ZQl_(SZO’AI'%:O’ (A96)

and for operator 2 are
88522 1-2(1+ ?{2)2—bq1—cg—r+)\2<0 Q- gsjzcmnd (A97)
g—ij:q?—(SZO’A?‘g_Z:O' (A98)

Based on the values of A\; and \q, there are four cases as follows.

Case 1: Suppose A} = 0 and A5 = 0. Then (A95) and (A97) become
1—2a00q1 —bgs —cy —r = 0 and
1—2a9q —bgy —co—1r = 0

(2a2—b)(1—r)—2a2c1 +bca (201 —=b)(1—r)+bc1— 2a102

Solving these equations yields ¢}, = and gz, =

4oy g —b? 4o —b?
Then we have (¢% — ¢&) = [Q(QQ70‘1)(lfﬁgiio;ﬁg))cl+(2al+b)c2} > 0iff a; < g, or o > ay
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and r > 2(a1 —a2)+(2a2+b)c1 — (21 +b)ea =

o —oug) r12, and (g% — ¢ly) < 0 iff oy > a9 and r < 7p9.

Based on relative sizes of ¢}; and ¢, there are three sub-cases as follows.

Case la: Suppose o < an. To guarantee ¢¥ > ¢ and ¢, > ¢, condition 0 < § <

= (21 —b)(1—7)+be1 —2a1 ¢
cl =

Tara,— 17 = ¢, is needed because ¢; < ¢y implies ¢}y > ¢, and ¢l > 0

implies ¢ > 4. Substituting ¢}, and g%, into (1)-(2) yields p¥;, = ¢;+r+(1+ 2;(11)(]; > 0,

and into (38) yields 7%, = a;(q’)? — f for i = 1,2. To guarantee ¢%, > 0 and ¢, > 0,

[(2a17b)+bcl —2ai1c9 _ (20&17())4»1)61

I and Cy < Cop = are needed. That is

conditions r < 7, =

2001 —b 201
because r < 7. and ¢y < e imply ¢ > 0, and r < [(20‘2_2:5?;2”0” implies g%, > 0
with [(20‘2_b%;fi2b_20‘261] — T, = (4(02“0(01‘2__1);’2&‘;2__51) > 0. These prove Lemma 12(ia).

Case 1b: Suppose a; > ag and r > rio. Then, g% > ¢, and the analyses are the
same as those in Case la. To guarantee ¢}; > ¢ and ¢% > 9, condition 0 < 6 < §4
is needed. Under the circumstance, we have pf, = ¢; + 7 + (1 + %)q; > 0 and

75 = ai(q;)? — f for i = 1,2. These prove Lemma 12(iia).

Case 1c: Suppose a3 > g and r < r12. Then, ¢}, > ¢};. To guarantee ¢¥; > ¢ and

¢y > 9, condition 0 < § <, = (20‘2_17)&:2)2__215261%62 = ¢’ is needed. That is because

ap > g and r < ry9 imply ¢, > ¢, and ¢} > 6 implies g%, > 4. Substituting ¢ and

¢, into (1)-(2) yields pf; = ¢;+r+(1+ i?)q; > 0, and into (38) yields 7%, = a;(q%)* — f

for i = 1,2. These prove Lemma 12(iiia).
Case 2: Suppose Aj =0 and A5 > 0. Then (A95), (A97) and (A98) suggest
1—=201q1 —bgo —c1 —1r =0, 1 —202q2 —bgy —co — 7+ Ay =0, and g — 6 = 0.

Solving these equations yields ¢ = %, ¢, =9, and \j = W. To

guarantee \; > 0 and d.,; > 0, conditions 6 > 0., r < 7, and ¢y < Ceo are needed.

On the other hand, to have ¢} > 0, condition § < 6.5 = 12;011;1)’“ should be imposed,

where (562—(501> = 2a1[2(042faEégljg)ziztfi;rf);l;r(?al+b)C2] >0 iff Qe S Qc2, O Qg1 > Q2 and

r > rio. Insum, if a; < an, or ay > ap and r > rqy, the plausible range for § is (0.1, O

[(2():1—1)(21—b6)+01+T] > 0 and
al

Accordingly, substituting ¢, and ¢, into (1)-(2) gives pf; =
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pr, = [Goazb)- (20‘210[1&[’2)5%01%7"] > 0 if 6 < b, and into (41) yields 7% = ay(g}y)? — f and
2, = ACazbor- (22531‘2_172)6%61_2&102] — f. These prove Lemma 12(ib) and Lemma

12(ii).
Case 3: Suppose A} > 0 and A5 = 0. Then (A95)-(A97) suggest

G —0=0, (1—=2a1q1 —bga —c1 —r+ A1) =0, and (1 — 2a2qs — bq; — co — 1) = 0.

(1- bg c2—T) 7 and )\* (4o oy —b? )(5—‘%1)' To
Qs 202

Solving these equations yields ¢¥; =9, ¢f =
guarantee A} > 0, condition § > 0/, is needed. On the other hand, ¢, > § is implied by

5/ ) 2a2[2(a1 ag)(l 7‘) (2a1+b)62+(2a2+b)61}
cl

assuming § < ¢’, = L-2=" However, we have (0, (02 10)(daran—b7)

€2 = 2as+b -
> 0 iff a; > as and r < ry5. Thus, if a3 > as and r < 719, the plausible range for

_ (2 1)(1—bd)+ca+r]
= 20 = > O

> 01if 0 < 9, and into (38) gives 7} = E(S[(QO‘? -

d is (0., d.5]. Substituting ¢ and ¢, into (1)-(2) yields pf, =

[(202—b) — (202 —b?) §+bea+br
200

and py, —
b)(1—7)— (2100 — b?)d + beg — 2a¢1] — f and 7%y = aa(qly)* — f. These prove Lemma
12(iiib).

Case 4: Suppose A} > 0 and A5 > 0. Then (A95)-(A98) suggest

G =@o=06, A\ =—142a1+b)d+c;+r, and \; = =1+ (200 + b)0 + co + 1.

o e — _ 1l—co—
To have A7 > 0 and A3 > 0, conditions & > 02 = G055, 0 > 0y = 5.2, and

r < (1 — ¢y) are needed. Note that r < (1 — ¢2) is implied by r < 7.. In addition,

we have (0.2 — 6y) = [2(az—an) (2a)lf§)o(‘§;rjfg)+(2al+b)c2] >0 iff oy < ag, or a; > ap and
7 > 7112, and (0.2 — 0%y) < 0 iff ay > ay and r < ry9. Thus, if a3 < ag, or a3 > @ and

r > rig, the conditions needed are § > 6.0 = 12_‘31;;

and r < 7.. Then, substituting

@ =q =0 1into (1)-(2) gives pi; = pls =1 —(14+0)d > 01if 6 < and into (38)

1+b’
gives 7, = 6[1 — (a; +b)0 —r —¢;] — f for i = 1,2. These prove Lemma 12(ic) and
12(ii). By contrast, if a1 > a5 and r < 72, condition & > ¢, is needed. Substituting

¢ = q = 0 into (1)-(2) generates pi; = ply =1 —(1+b)0 >0if § < and into

T
(38) gives 7% = O[1 — (o + b)d — 1 — ¢;] — f for i = 1,2. These prove Lemma 12(iiic).

O
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Lemma 13. Suppose the conditions in (40) hold. Then we have the following.

(i) Suppose i < . Then, for c; € (c1, Ce2) With ¢ = (4a1+8a1ai o bz)[(404% +

4oy g — 6bary — 2baiy +2b%) + (dap iy + 2bay +2baiy — 3% )¢y ], port authority’s optimal two-

part tariff contract and minimum throughput requirement are (v, fZ, &%) with r} =
[(2cc2—b) (4dag a2 +2ba1 —2b%) — (8o a2 —4b% cp +b3) 1 +b2 (201 —b) ez f _ as [(2041 b)(1—r} )+bcl—20¢102]2 and
2(8a1a§+4a%a2 —4bai g —3b2ain— 2b2a1+2b3) ’ - 4oy cep—b? )

* (201 =b)(1—r¥)+be1 —2a1¢2
50 € [07 4o g —b?
(2a2—b)(1—7})—2a2ci +beo

4oy g —b?

|. At the equilibrium, operators’ cargo-handling amounts

(200 — b)(1 — 1) + bey — 2069

are qy = and q, =

(4a1a2 b?)
as in Lemma 12(ia), and port authority’s equilibrium fee revenue equals R} = 2fF +

T*[Z(al—‘roag—b)(l r¥)—(2a2—b)c1 — (21 — b)cz]
c 4oy o —b?

(ii) Suppose ¢ < ai < ay.

2(20{1 a2)+(2a1+3a2+4b
(6&1 “+ag +4b)

(ila) If co € (c1, Cea) with (o = , then port authority’s optimal

two-part tariff contract and minimum throughput requirement are (v, f, &%) with

% 2(ae+b)—(2a01 +2a5+3b)c 2ai1+b)e *
Tc = ( 2t ) ( 2(124(;1_~_20j;+;b1)+( 1t ) 27 fc = 8(20[14,_;2_’_2[))2{(2 — Cl - 62)[2(2061 - OéQ) +
(2010 4+ 3ag + 4b)ey — (6 + ag + 4b)es]}, and §F = ﬁ At the equilibrium,

operators’ cargo-handling amounts are g}, = 6} for i =1, 2, as in Lemma 12(ia), and

(2—01—02)2

port authority’s fee revenue equals R} = Moo ot 2)"

(iib) If cg € [Ce2, Ce2), then port authority’s optimal two-part tariff contract and mini-

mum throughput requirement are the same as those in Lemma 13(i).

(iii) Suppose as < a; < 2as.

2(041 7&2)4»(3042 +2b)61

(iila) If co € (1, Ce2) with o = (21 +az+2b)

, then port authority’s optimal two-

part tariff contract and minimum throughput requirement are (r¥, fr, 0%) with r¥ =

[2(a1+b)+(2a2+b)cl (2a1+2a2+3b 02] f* (2= cl—cg)[2(2&1—a2)+(2a1+3a2—|—4b)cl—(6a1+a2+4b)(32} (md
2(a1+2a2+2b) ) (2a1+a2+2b)2 )

* 2—c1—c2 %

or = o1 1200120 At the equilibrium, operators’ cargo-handling amounts are ¢ = 0}

for i =1, 2, as in Lemma 12(iiib), and port authority’s fee revenue equals R: =

(2—c1—c2)?
4(&1 +2as +2b) .
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(iiib) If ¢o € [ée, Ce2), then port authority’s optimal two-part tariff contract and

minimum throughput requirement are the same as those in Lemma 13(iia).

(ilic) If ¢y € [Cea, Ce2), then port authority’s optimal two-part tariff contract and

minimum throughput requirement are the same as those in Lemma 13(1).

(iv) Suppose oy > 2as.

(iva) If ¢y € (¢, ] with )y = ml*hijﬁaﬁb)cl, then port authority’s optimal

two-part tariff contract and minimum throughput requirement are (rk, f*, 0F) with

— 200 —b—2 b — 2000 —b)+bco—2
* 1 027 f* _ (2o agc1tbez)(ca 01)’ and 5: _ (22 —b)+bca —2ascy

Ty =52, fi = S2a1az—b) S, ) At the equilibrium,

1-b6}—co—r,

. * .
operators’ cargo-handling amounts are ¢ = 0% and gy = 50, 0s in Lemma

12(iiib), and port authority’s fee revenue equals R = (a1 + 209 — 2b) —

1
4(2a1 a2 —b?)
2(2c0 — b)ey — 2(ay — b)ey — 2bey ey + 20007 + i),

(ivb) If ¢ € (cy, ¢e2), then port authority’s optimal two-part tariff contract and

minimum throughput requirement are the same as those in Lemma 13(iiia).

(ive) Suppose ¢up < g and ¢y € [Cea, Cea). Then port authority’s optimal two-part
tariff contract and minimum throughput requirement are the same as those in Lemma

13(iia).

(ivd) If max{é., ¢u} < ¢y < éw, then port authority’s optimal two-part tariff contract

and minimum throughput requirement are the same as those in Lemma 13(i).

Proof of Lemma 13: Based on the values of a; and as, we have three cases as follows.

Case 1: Suppose a1 < ap. Then, there are two sub-cases.

Case 1(1): Suppose 0 € [0, 0s]. Lemma 12(ia) implies 7% > 7% and ff = 7%, =

2as(g,)? > 0. Thus, the problem in (43) becomes

max,, 5,5 2f 4+ (g + qly)

s.t. 0<§<dqand0<r <r,.
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Denote L its Lagrange function with L = aq(q%)* +7(q); + @) + M1 (01 — ) + Ao (Fe— 1),
where \; and A\, are the Lagrange multipliers associated with the constraints. Then,

the Kuhn-Tucker conditions are

I8 — o0, 202 Py P2y ey e 2 a <00 2 20, (a00)
%:_Mgo’g.%za (A100)

g_fl:d—azo, Al-g—i:o, and (A101)

g_i:fc_rza A2.§_ALQ:0. (A102)

Constraint r < 7. suggests A5 = 0 by (A102). Based on the values of A\, we have two

situations.

Case 1(1)a: Suppose Aj = 0. Then (A99) becomes m[@ag — b)(daray +
20y — 2b%) — (8ayad — 4b% iy + %) ey + b (201 — b) ey — [161 a3 + (8at — 8bay — 6% ) vy —

1
8a1a§ +4a%a2 —4ba g —3b2a2—2b% o +263)

(20 — b)(4agan + 20y — 2b%) — (8aad — 4b%as + b3)ey + b?(2a; — b)co]. It remains

4b*(ay — b)]r] = 0. Solving this equation yields r* = o

to check whether 77 < 7. holds. By some calculations, we have 7} < 7. iff co <

N — (405%—}-4&10&2—61)&1—2ba2+262)+(4a1a2+2ba1+2ba2—3b2)(31 oy . .
Cor = (107 Sa10s—1ba1 —t7) . In addition, (A101) implies both

. 2011 —b) (1—7¥)+be1 —2 _ 201 —b)(1—7%)+bcy —2
57 € [0, 0] with 0y = GuNGraltha o ppg fr - e[Cabiilrbo tue)? 5 ()

Thus, at the equilibrium, port authority’s fee revenue equals

2(a1 + ag = b)(1 —7r¥) — (2a2 — b)cr — (2a1 — b)ea

(201 =b)(1 — 1) + ber — 2a102}2 .
40[1042 - b2

R: = 042[ +Tc[

] =R
(A103)

4041042 - b2

Case 1(1)b: Suppose Aj > 0. Then, (A101) suggests 6; = d, > 0. This in turn

implies A} = 0 by (A100). It is a contradiction. Thus, no solution exists in this case.

Case 1(2): Suppose 0 € (dc1, Oc2]. Then, Lemma 12(ib) implies 7%, > 7%, and fF =

* 5[(2&17b)(177‘)7(2a1a27b2)6+b61720[162]' We have f* S 0iff § < (2a1 —b)(1—7)+be1 —2a1ca

) 4o (20102—b?) -
oo and 7 < T, = [(2“_8:5?520‘102]. Moreover, if (201 — a) > 0, we have 6, > (<) 0,
iff r < (>) [(20”_0‘2)+E§;j_l’)0(021)_(20‘1+b)02] = 7., and if (205 — @) < 0, we have e < o
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Also, (7, — 7.) = ((220210‘3;)((’;)05;:‘;1)) > (<) 0iff (201 — ag) > (<) 0. Thus, we have two

sub-cases below.
Case 1(2)-1: Suppose (2a; — ap) > 0. Then, there are two situations.
Case 1(2)-1a: Suppose r < 7. Then the problem in (43) becomes
max 2 +7(¢c + o)
st 01 <9<y and 0 <r < 7. (A104)

Denote L its Lagrange function with L = %[(2&1 —b)(1—71)— (29 — b*)d + bey —
201 ¢o] + ﬁ[l + (2a1 —b)d — 1 — 7] + M (0 — 1) + Aa(0e2 — 6) 4+ A3[Fe — r]. Then, the

Kuhn-Tucker conditions are

g—§ = %«1[(2@1 —b) —2(2a100 — b*)3 + bey — 2063 + A — Ay <0, - g—? =0, (A106)
g—i:(s—édzo,Al.g—izo, (A107)

g—i:CQ—éZO, >\2~§—){;:O, and (A108)

g—i:fc—rzo, Ag-g—izo, (A109)

where A\, A9, and A3 are the Lagrange multipliers associated with the constraints in
(A104). Constraints 6, < ¢ and r < 7 suggest A} = A\j = 0 by (A107) and (A109). If
A5 =0, we have 1} = 152 and §; = BeL7HRas2ue by (A106) and (A107). We have

% —(2a1—asg)— b 2001 +b . 2001 — b
(02 = 07) = BEEHGRIRRa TR el > 0 iff o > Bamgiroi

. 2001 — b .. . . . . . .
iff ¢ > B 04220)4:&0;# )% This is a contradiction. Thus, no solution exists in this case.

,and 7. <0 <7l

If A5 >0, (A105), (A106), and (A108) suggest

(1—=2r—c) 1 [(2a1 — b) — 2(2a1a3 — b*)d + bey — 2164
- )\2 = 07
201 2001 + b 20

and (6.2 —d) = 0.

—>\2:0,
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_ [2(a2+b)— (201 +200+3b)c1 +(2a1 +b)cs] >0, 5* _ 2-ci—co
2(2a1 +aa+2b) 2(2a1 +a2+2b)?

Solving these equations yields r;

* 2011+b)[(20&1—042)+(O¢2+b)cl—(20£1+b)62}
a‘nd )\2 - 2a1(2a1+a2+2b)
2001 [2(0[27(11)7(a1+2a2+2b)cl+(3a1+2b)02} * .

(a1 o 19h) (daran—07) > 0, and A\ > 0 iff ¢o <
(T* . 7; ) _ (2a1+b)[—2(2a1—ag)—(2a1+3a2+4b)01+(6a1+a2+4b)02]
c c) 2(2a1 —a2)(2a1 +a2+2b)

. By some calculations, we have (6} — d0.1) =

(201 —a2)+(aa+b)cr

ot Since

. L
, we have r; < 7 iff o <

2201 —a2)+ (2001 +32 +4b)cl _
(61 +a2+4b)

(2041 —ocg)—&—(ozz-‘rb)cl _ 1
(2a1+b) (2a1+b) (61 +aa+4b)

= (eo. In addition, we have ¢o—
[—(2a1 — a2)(2a3 + a2 + 2b)(1 — ¢1)] < 0. Thus, an equilibrium exists when ¢y < ¢

with fee revenue
o (2—c1 —y)?
© 4200 + ay + 2b)

= R (A110)

Case 1(2)-1b: Suppose r > 7. = (a1 —ay)t(aztbler=QGaatbleal ey the problem in

(201 —a2)
(43) becomes

Hl?X 2f + T(ch + ch)

st. 0y <0 <0, and 7o <71 < T, (A111)
Denote L its Lagrange function with L = %[(2041 —b)(1—7)— (210 — b*)d + bey —
2041C2] + ﬁ[l + (20&1 — b)(5 —C1 — T’] -+ )\1((5 - 501) + )\Q(SC - 6) + A3(T - fc) + /\4(77(: — ’I“).

Then, the Kuhn-Tucker conditions are

Z—f -4 _22;_ ) | foil();f);l - gzoila;f)gj F A=A <0, 7 g—f =0, (A112)
Z_g = %“1[(2041 —b) — 220102 — b*) + bey — 20105 + A1 — A <0, 8- g—([; =0, (A113)
N

g—i =0c—02>0, Ay gi 0, (A114)
g—)l\; — 7. >0, Ag- gl; 0, and (A115)
88_AL4 —Fe—1 >0, A - gi 0.

We have A} = A\ = A\ = 0 by the three strict inequalities in (A111). If A = 0, we have

rt = 1*2—‘31 and 0} = (20‘12(212;Lab‘;1 bg;”” by (A112) and (A113). Some calculations show
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x5\ _ (2a1—b)+bc1—2a;c (2a1—=b)(1—7r})+bc1—2a1c2 _ ai(ca—ci) s .
(0F —d.) = Tomas ) T e = megtn > 0- It is impossible to

meet the requirement of 6% < Oe. Thus, no solution exists in this case.

[(201 —a2)+(aa+b)c1 — (21 +b)co] 5

By contrast, if A\; > 0, we have r} = 7, = (Bo1—a)

(2ac1 —b)+be1 —2a c2 and A; _ (21 —a2)+(2a1 +aa+2b)c1 —2(2a1 +-b) 2 by <A112) (A113) and (A115)

2(2a1 g —b2?) 201 (2a1 —a2)

Note that A\; > 0 iff o < (20‘1_0‘2)2?“2(5?j$)0‘2+2b)01. On the other hand, (A114) re-

quires (3. — %) > 0. Some calculations show (4, — &%) = 2(2011_0(2)%20610(2_1)2)[—(2041 -

)21 — b) — (dajas + 2bay — bay — 2b%)ey + 2(aran + 202 — b)ey] > 0 iff ¢ >
(2al—a2)(2a1—b)+(4a1a2+2ba1—ba2—2b2)cl (2al—a2)+(2a1+a2+2b)cl de—
2(a1az+2af—b?) 2(201+b)

(2041—042)(2041—17)+(4041042+2b041—ba2—2b2)01 . (2a1—a2)+(2a1+a2+2b)01 o
2(a1az+2a7—b2) 2(2cc1+b) -

, which contradicts ¢y <

rived above because

a1(2aq fa2)2(1fc1)

5Gar ) (arast2al 1) = 0. Thus, no solution exists in this case.

Case 1(2)-2: Suppose (201 — ) < 0, we have §, < .. Then the problem in (43)

becomes
maxy, 1,5 2f +7(q + )
s.t. 501<5<56and0<r<7*c.
Solving this problem yields r} = 5% and 6} = (QQEZ;iTabzl__l)g?lcz’, the same as those in

Case 1(2)-1b. Some calculations yield (6;‘—56) = (2‘“2(2’2;1’21_ —bg)alcz _ (2a1—b)((21071122)ir£26)1—2a1CQ

_ ai(ez—c1)

= e > 0, which contradicts §f < O. Thus, no solution exists in this case.

Case 1(3): Suppose § € (2, %er]

fr=mly=13[1— (a2 +b)§ — co — r]d with f;>0iﬂ§<ﬁandr<(1—c2).Note

that 7 < (1 — ¢3) is implied by r < 7, = [Go=bltba 20 A eordingly, the problem in

201 —b
(43) becomes

Then, Lemma 12(ic) implies 7¥, > 7, and

max Ol — (g +b)0 —cg — 7] + 216

l—co—7r
(&2 + b)
Denote L its Lagrange function with L = §[1 — (ag 4+ b)0 — co — 7]+ 2rd + A1 (8 — d2) +

st 0 <0 < and 0 < r < 7. (A116)
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Ao[3=2=L — §] + A3(F, — 7). Then, the Kuhn-Tucker conditions are

(@2 tD)
g_f:‘wza?zrb_a;ib_&éo’T'g_fzo’ T
g_i:a—dcgzo, Al'g_)izo’
oL oL

ZFC—T’EO,Ag 0.

s Ny
Since all constraints in (A116) are strict inequalities, we must have A\j = A5 = \j = 0.
However, some calculations show 7% = 0 by 6 > 0 and (A117), which contradicts r; > 0.

Thus, no solution exists in this case.

Case 2: Suppose a; > ag and r > rig = 2(a1*O‘QH(;(‘;Qf_IZ?)*(QO‘ﬁb)CQ

. Then, there are

three sub-cases as follows.
Case 2(1): Suppose 0 € [0, d.1]. Lemma 12(iia) implies 7¥, > 7}, and f = 7%, =
92 (gx,)? > 0. Then, the problem in (43) becomes
max 2f +7(¢c + o)
st. 0< 0 <6, and rip <71 < 7o (A118)

Its Lagrange function is L = a(q’)2 +7(q + @) + A1 (0e1 — ) + Ao (r —7r12) + A3(T. — 1),
where A1, A9, and A3 are the Lagrange multipliers for the inequality constraints in

problem (A118). Then, the Kuhn-Tucker conditions are

oL O, 94z | 0¢z, * . x 9o, oL
or 20(2 c2 or +T< or or )+(qcl+qc2>+>\1 or +)\2 /\3 = O? r or 07 (Allg)
oL oL
5= M 0,050, (A120)
oL oL
i 5> = Al21
W 01 — 0 >0, Ny W 0, ( )
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oL oL

_8)\2 =7 —"7riy > 0, Ao - a—/\2 = O, and <A122)
oL L
— > - — = 0. A12
W Te—1 >0, A3 O 0 (A123)

Constraint r < 7. suggests A\ = 0 by (A123). If A\ > 0, then (A121) suggests
0% = 0o > 0. This in turn implies \j = 0 by (A120). It is a contradiction. Thus,

we must have A} = 0. According to the values of A, there are two situations.

Case 2(1)a: Suppose A3 = 0. Then (A119) becomes m[(%@ —b)(darag +
20 — 2b%) — (8ayad — 4b% iy + %) ¢y + b*(20 — b) ey — [16; a3 + (8 — 8bay — 6% ) vy —

1
(8a a% +4o¢%a2 —4bag ag—3b% g —2b%a; +2b3)

[(2a — b) (4o + 2bay — 20%) — (8aa3 — 4b%an + b%)ey + b?(2a — b)cy). Tt remains

4b*(cy — b)]r] = 0. Solving this equation yields r} = 5

to check whether r15 < ri < 7. holds. By some calculations, we have 7} < 7,

(402 +4a1 an —6ba1 —2ba+2b2)+(4a1 as+2bai +2bag —3b%) ey
(402 +8ay g —4ba1 —b2)

iff o < Cp = ,and rl > g iff ¢ >

2(a1fag)(a1+a27b)+(4a1a2+ba1+2a%72b2)01 with 2(a17(12)(a1+a27b)+(4a1a2+boz1+2a372b2)c1 < ¢
(4a1a2+20¢%—ba1+2ba2—2b2) (4a1a2+2a%—bo¢1+2bo¢2—2b2) c2-
L. . . . 2001 —b)(1—7r)+bc1 —2a1 co

In addition, (A121) implies both &% € [0, 0u] with 6 = < )(40{1;2)4)2 and f¥ =

as [ (2a1—=b)(1—7})+bc1 —2ac2
2 4oy o —b?

]2 > 0. Thus, under condition

1
(412 +2a§ —ba +2baa—2b2) [2 (al

—ag) (g + g —b) + (dayag +bay +2a3 —2b%)¢;| < ¢y < ée, port authority’s equilibrium
fee revenue equals

(21 = b)(1 —7%) + bey — 2a102}2 2(an + ag = b)(1 —7r¥) — (2a2 — b)cr — (2a1 — b)ea

R; = as| (daras — 02) +rel (daras — b2) | =Ry
(A124)
Case 2(1)b: Suppose A5 > 0. Then, (A122) suggests r}: = 12 and \j = (al—ag)(ialag—lﬂ)

[2(a1 — o) (a1 + a9 — b) + (dajas + bay + 203 — 2b%)c; — (4daas + 203 — bay + 2bay —

* . 2(o; —a2) (a1 +a2—b)+ (4o as+boy +2a2—2b2)c
26%)cs] by (A119). Note that Ay > 0 iff ¢, < Hu=eatoehrCaosion o 2o,

On the other hand, (7. — ri3) = (;1?210‘_2;;)2()2(221__21)) > 0. In addition, (A121) implies

_ 2 .
both &7 € [0, da] with 6 = z%=%5 and fr = $22=4% > 0. Thus, if ¢, <
2(04170(2)(al+O{27b)+(40110(2+ba1+2a%72b2)01
(4o¢1a2+2a%—ba1+2ba2—2b2)

, port authority’s equilibrium fee revenue equals

g ez o)l —as) + 4(?512 + Z;? L Rl ) L) S R DY
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Case 2(2): Suppose § € (01, 0c2). Then, Lemma 12(iib) implies 7% > 7, and f¥ =

7T* — 5[(20&1—b)(l—’r‘)—(2a1az—b2)§+bcl—204162}' We have fc* > O lﬂ' (5 < (2041—6)(1—T)+b01—204162 —

c2 4o (20102—0?) -
b and r < 7, = [Gabber2mal 1y qdition, 6, > (<) de iff 7 < (>) Grtar (200 —
az) — (ag + b)ey — (204 + b)cs] = 7. By some calculations, we have (7. — ry3) =

(412 —b?)(ca—c1)
2(a1—a2)(2a1—b)

a1 > g, and (0 —0.1) = (2a1+b)?j§1a2_b2) 2(ag—aq)(1—r)—(2a2+b)c1 + (205 +b)cs] > 0

dnce b Neamt) 0, (Fo—r1z) = Guaertboslaza) g jff

=y (
>0, (TC_TC) T (201-b)(2a1—a2) 2(a1—a2)(2a1—az)

iff » > r15. Accordingly, there are another two sub-cases as follows.

Case 2(2)-1a: Suppose 113 < 7 < 7. Then the problem in (43) becomes

max, 55 2f+7(q +qk)

s.t. 01 <0 <0 and ris <r <r..

Since this problem is similar to that in (A104), we just need to check whether 5 < r

holds at the equilibria of (A104). Since (r:—r2) = _2(0“_O‘gga_l(fg)z(o;zzz;gg’m+2b)c2 >0

2(20117042)+(2011+3012+4b)01 — C
(6a1+o¢2+4b) = G2,

2(0[2+

a1 70{2)4»(0(1 +2a0 +2b)61 a:[1d 2(&1 70(2)4»(011 +2a2+2b)01
(3041+2b) ? (3041 +2b)

a1 —az)+(a1+2a2+2b)cy
(3041 +2b)

iﬁC2> X <

an equilibrium exists when 2 <oy < withry = g

1
2a1 s +2b) [

b) — (2a1 + 2a2 + 3b)cy + (204 + b)cs] > 0, 6) = m, and port authority’s fee

revenue
(2 —C1 — 62)2
= = R, Al2
e 4(201 + ay + 2b) 1 (4126)

Case 2(2)-1b: Suppose r > 7, = [@o1—ag)H(aatbla=Catbles]  Thep the problem in

(20(1—0(2)

(43) becomes

max,, 5 2f +7(q; + qk)

s.t. 01 <0 < b, and 7o <1 < T

This problem is the same as that in (A111). Thus, no solution exists in this case.

Case 2(3): Suppose ¢ € (. ). Then, Lemma 12(iic) implies 7% > (<) 7, iff

1
2y T+b

d < (>) 2= Thus, there are two situations.
a1 —as
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Case 2(3)-1: Suppose § < 2=2-. Then we have f; = m;, = 6[1_(a2+§)5_62_ﬂ with
fF>0iff § < = Tasigy and r < (1 - 02). Note that r < (1 — ¢) is implied by r < 7. =

(200 —b) ther = 20‘102]. Accordingly, the problem in (43) becomes

2a1—b
max O[1 — (g +b)0 —cg — 1] + 216
1 _ _
S.t. 0y <0 < ﬁ and rip <7 < 7. (A127)
Its Lagrange function is L = §[1 — (ag + b)d — cg — 1] + 210 + A\ (0 — de2) + Ag[lacib)” —
0] + A3(r — r12) + Ag(7. — r). Then, the Kuhn-Tucker conditions are
oL A1 Ag oL
e - < — = Al2
5 = S Ty T M S0 5o =0 (4128)
oL oL
%:1—2(042"’17)6—02‘{’7"")\1 )\2<0 0 - %:0,
oL OL
=0—00>0, A ,
o\ 220, g =0
OL 1—cy—r oL
= —0>0, Ay =—=0
8)\2 (O./Q + b) - 2 8/\2 '
oL OL
8_)\3 =T —T12 Z 0, )\3 : 8_)\3 = O, and (A129>
OL oL
_ —F A .
oy e g =0

Since the three constraints in (A127) are strict inequalities, we must have \j = \5 =
A5 = 0. Suppose A} = 0. Then, we obtain r} = 0 by 6 > 0 and (A128), which contradicts
the requirement of r; > 0. Thus, we must have A > 0. Under the circumstance,
T =1rg = 2(a1_a2)+(22&21+23 Qortbles 1,0 (A129) and 9L = § 4+ A3 = 0 due to (A128).

In addition, 0} < 0 implied by g—f = 0 + A3 = 0, which contradicts 07 > 0. Thus, no

solution exists in this case.

Case 2(3)-2: Suppose 6 > % Then we have f =¥ = 5[1_(a1+§)5_01_r] with

fr>0iff § < 1acib;) and r < (1 — ¢;). As in Case 1(3), there exists no solution

because (A128) does not hold.
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2(a1 —a2)+(2a2+b)c1 —(2a1+b)ca
2(0&1 —042)

Case 3: Suppose a1 > a9 and 7 < 119 = . Since (7, —
o (4a1a2—b2)(cz—c1)

r12) = o) 2ar=b) > 0, r < rio implies r < 7.. Accordingly, there are three sub-

cases as follows.

Case 3(1): Suppose ¢ € [0, 0/,]. Lemma 12(iiia) implies 7}, > 7% and [ = 7} =

ta1(g})? > 0. Then the problem in (43) becomes
mjéﬁg 2f +r(g: + a2»)
st. 0< <6, and r < rpg. (A130)

Its Lagrange function is L = aq(q)? + (g + @) + M (6L — 0) + Aa(r1a — r) with the

Lagrange multipliers A\; and \;. Then, the Kuhn-Tucker conditions are

g—f = 2a2q:2% +r(a§1 + 8552) + (g5 +q) + Alag;l — A <0, 7 g—f =0, (A131)
%:—Also, 5-2—?:0, (A132)

g—i:(ﬁl—ézo, /\1~§—>i:(), and (A133)

g_i:m_TZQ A2.§_AL2:(). (A134)

Constraint r < 712 in (A130) suggests A3 = 0 by (A134). Based on the values of Ay,

there are two situations below.
Case 3(1)a: Suppose A} = 0. Then (A131) becomes m[@al —b)(daras +
20y — 2b%) + 0% (20 — b)c; — (82 iy — 4b% vy + 1) ey — 2(8at g + 4y a2 — dbay vy — 3b% g —

1
2(804%042 +4a1a§ —4bai g —3b2 a1 —2b% aip+2063)

207y +2b%)r] = 0. Solving this equation yields r} =
[(2a1 — b)(4dayag + 2bag — 2b2) + b*(2ce — b) ey — (8atay — 4b%ay + b?)cy). It remains to
check whether r} < r15 holds. By some calculations, we have 7% < ryy iff ¢y <

2(a1 —a2) (a1 +ags—b)+(4dag as+2bat —bas+2a2 —2b%)c . . %
2lon—az)(on (Zal)oegg—&;%j—bag—;b?) 2t205-207)e1] Moreover, (A133) implies both 67 € [0, d%,]

. 2c0—b)(1—r})—2 b 200—b)(1—r})—2 b
with 8], = Cer=tlGeri et anq fr = g (@t faeatien > 0. Thus, at the

equilibrium, port authority’s fee revenue equals

2(a1 +az —b)(1 —7%) — (202 — b)ey — (201 — b)ea

(200 — b)(1 — %) — 2a3¢1 + bCQ]2 .
40[10&2 — b2

R: = aq] +ri]

C

40410(2 — b2
(A135)
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Case 3(1)b: Suppose A} > 0. Then, (A133) suggests 6 = ¢/, > 0. This in turn

implies A = 0 by (A132). It is a contradiction. Thus, no solution exists in this case.

Case 3(2): Suppose 0 € (0.1, d.5]. Then, Lemma 12(iiib) implies 7}, > 7% and fF =

L= 5[(20&2—b)(1—7")—(22;5;2—172)5—{-1)62—20(281]. We have f: >0 iff 6 < (20{2—b2§i¥:;)2—_2b(;)261+b62 =

2a5-b)—2asc1+bcy <11 (200—b)—2asc1+b _ :
and r < Qoezb)Zoseitber ) Gaeh)dasertber o 5 Noreover, if (200 — ay) > 0
200 —b 2a00—b ) ’

we have gc > () 8, iff r < (>) Ceeze)Coiatatbe] = 7 By contrast, if

(2a2—a1)

(201 —a) < 0, we have gc < (>) 8, iffr < (>) 7. Since (rig—7e) =

e
Oc

—a (2a2 +b) (02761)
2(a1—a2)(2a2—ai)

. o ol —o —r ag+b)c1—(2a1+b)e
(<) 0ff (205 — a1) < (>) 0, and (3], — 8l) = 2e2lleeeioj oo Gu el 5 g

iff r < rya, we have gc > §ly if (202 — aq) > 0, and gc < (>) 0 if (20 —aq) < 0.

Thus, we have the following two situations.
Case 3(2)-1: Suppose (2aa — ay) > 0. Then the problem in (43) becomes
max 2f +7(¢c1 + o)
st. 0, <0 <0,and 0<r<rp. (A136)

Its Lagrange function is L = %[(20@ —b)(1 — 1) — (20103 — b*)6 + beg — 2a9¢] +
7’[1+(2a22;l’2)5_02_ﬂ + A (0 = 0Ly) + A0y — O) + Ag[ria — ], where A\j, Ao, and A are

the Lagrange multipliers for the three constraints in (A136). Then, the Kuhn-Tucker

conditions are

B e ) ey NS0 T g =0 (a9
g_f; = 27;[(2(12 —b) —2(20105 — b*)6 + bey — 2a¢1] + A — A <0, 5+ g—? =0, (A138)
g_i:a—a;lzo,Al-g—izo, (A139)

g—izégz—azo, Ag-g—izo, and (A140)

g_izm—rzo, Ag-g—izﬂ (A141)

Constraints 0, < 0 and r < 715 suggest A} = A\ = 0 by (A139) and (A141). If
Xy = 0, we have 1 = U2 and gr = Qo2 bitbea_daza o (A137) and (A138). Since

2(2a1 a2 —b?)
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(80— 0F) = ag[—(2a9—0n)—(a1+b)ca+(205+b)

o 15) 210 12) al < 0, it is impossible to meet the requirement

of 6% < d.,. Thus, no solution exists in this case.

By contrast, if A5 > 0, then (A137), (A138), and (A140) suggest

(1—2r—ca) DY N 0 [(2a2—b)—2(201 g —b2) 5 +bea —2aacq ] =0
2an 2a9+b — 200 2 — Y,

and (0., — d) = 0.

(a1+b)+(2a2+b)c17(2a1+2a2+3b)02} 5* _ 5/ . (2761762)
» Ye T Ye2 T 2(

. . : .2
Solving these equations yields r} = [ 5(on+203-+20) a1 F205+2b)

and A\ = %[(20@ — a1) — (2a + b)ey + (g + b)) > 0. By some cal-
(2a2+b)[2(0&1—0(2)—}-(3042-}—21))61—(2a1+a2+2b)cg] > O
2(a1—ag) (a1 +2a2+2b)

Aon o)t Bagtdbler px o () jff ¢y < HotbEQ@oatbler o) (55— § ) > 0 iff rF < 1.

iff Cy <

culations, we have (rjy — r}) =

(201 +2+2b) (201+2a2+3b)
In addition, we have 2(a1(2221)++§a+3§>2b)“ < Z(O&Zi’gfj‘jyycl Thus, an equilibrium exists
when ¢y < 2(6“1(_2(;21&;2’12252@01 with port authority’s fee revenue
2—c —cy)?
g 2oazel R:. (A142)

¢ 4(0[1 + 2042 + 2[))

Case 3(2)-2: Suppose (2as — ay) < 0, we have F. < r13. Then there are two

situations below.

Case 3(2)-2a: Suppose r < [(20‘2_al)_Egg;fi)lc)l+(o‘l+b)cz] = r,. Then, the problem in
(43) becomes

max 2f + T(QZH + qZ‘z)

T J,

st. 0, << gc and 7 < 7. (A143)

Its Lagrange function is L = %[(2042 —b)(1 —71) — 2oy — b?)0 + bey — 2aeq] +
it @az=b)ozea=r] L N (§—8!,)+ Aa(0.— ) + A3 (Fe—7). Then, the Kuhn-Tucker conditions

20
are
OL (1 —2r —cy) (200 — 1) (200 — b) oL
7 A — Ay — A3 < — = Al44
or 2009 + (doray — b?) ! (20109 — b?) 2= A s 07 or 0, ( )
oL 1 oL
% = E[@ag — b) — 2(20[10&2 - 62)5+ b02 — 20&201] + )\1 - )\2 S O, 0- % = O, <A145)
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oL oL

58, >0, A =

a)\l c1—07 1 a>\1 07

oL z oL
Oy 0 —0>0, Ay W 0, and

oL - oL

i >0, Ay = =0, Al4
o Te—1 >0, A3 Y 0 (A146)

where Aj, Ay, and A3 are the Lagrange multipliers for the three constraints in (A143).
We have A} = Aj = 0 by the three strict inequalities in (A143). According to the values

of Aj, there are two sub-cases as follows.

Case 3(2)-2a-1: Suppose A5 = 0. Then 7’;“~: O_TCQ) and §F = (20‘22&1)0);5;2__!3)0‘201 by

(A144) and (A145). Some calculations yields (5, — 67) = 22l2=¢1) ~ ( and (67 — 0',)

201 e —b?

asla (200 —b)—b%c1 —(2a1 g —bay —b?) o] . a1 (2as—b)—b%cy
(2a1a2—b?) (41 az—b?) > 0iff ey < (21 g —bag —b?)

[(2042—011)—2(202+b)01+(a1+20¢2+2())CQ] > 0 lﬁ‘ Co < (a1 —2a2)4+2(2a2+b)cr

= *\
. Moreover, we have (7.—r}) =

due to (2as — ay) <

2(2(12—0(1) (a1+2a2+2b)
(a1 —2a2)+2(2a2+b)c1 . a1(2a2—b)—b2c1 o —(8a1oz§—b2oc1—2b2o¢2)(1—cl)
0. Also, (o1 4+20i242b) (2ana2—bai1—b%) (a1+2a2+2b)(2a1 aa —ba —b?) < 0. Thus, an

(011 72012)4»2(20(2 +b)01
(a1 +2a +2b)

equilibrium exists when ¢y < with port authority’s fee revenue

ay + 20 — 2b) — 2(2a — b)ey — 2(a — b)cg — 2bcy ey + 296t + i3
4(20&1@2 - 62)

Rz:( = R

(A147)

Case 3(2)-2a-2: Suppose A > 0. Then, r* = 7, = (o) _Gootbetlatble] - 5x

(2a2—a1)

200 —b)+bco—2as¢ * —(a1—209)—2(2a2+b)c a1+2a0+2b)e
(g Diiheaf0201 and Ny = —lausfer)=2feetbio ot i by (A144)-(A146). Note

* . (a1—2a2)+2(2a2+b)01 * . (a1 —2a2)+(2a2+b)cy
that \; > 0 iff ¢ > arzantar o oand g > 0 iff e < P . On

the other hand, condition &', < 6* < 4. is needed. Some calculations yield (4, — 8%) =

—(a1—2a2) (202 —b)—2(a1 aa+2a2 —b?)c1 +(4ag ag —baq +2bas —2b%)co S 0iffco > (a1 —2a2) (202 —b+2(cg an+202 —b%)cq
2(&172&2)(2&1&271)2) 2 (4a1a27ba1+2ba272b2) )
(5* Y ) _ (2oo=b)+bca—2apc1 (2araz—b%)(cz—c1) __ A+Bci—He > 0 iff
[ cl - 2(2a1a2—b2) (4a1a2—b2)(a1—2a2) - 2(2a1a2—b2)(4a1a2—b2)(a1—2a2)

cy < %7 where A = (203 — b)(daray — b?) (a1 — 2as) > 0, B = [2(2a109 — 0?)? —

209 (4o — b?) (o — 2a0)] > 0, and H = 220 — b*)? — b(dayay — b?)(ap — 2a9) > 0.

(al —2a2)+(2a2 +b)01
a1+b
(a1—2a2)+2(2a2+b)01 < (a1—2a2)+(2a2+b

< A+Becy and (a1—2a2)(2a2—b)+2(a1a2+2a%—b2)cl

Moreover, we have T (da1cs—bar +2bas —267)

)er because (a1 —202)4+2(2a2+b)c1 (oq—2a2)(2ag—b)+2(a1a2+20¢§—b2)cl

a1 +2a0+2b a1+b a1 +2a0+2b (4a1a2—ba1+2ba2—2b2)
o 2a2(a1—2a2)2(1—cl) > 0 (a1—2a2)+(2a2+b)c1 o (a1—2a2)+2(2a2+b)01 o (a1—2a2)(2a2+b)(1—cl)
T (11+2a2+2b) (4ag az —bag +2bas —2b?) ’ a1+b a1+2a9+2b T (a1+b) (a1 +2a2+2b)

A+Bcy _ (ca—2a3)+(2az+b)er b2 (a1 —2a2)(2a1a2—b%)(1—c1)
> 0, and =7 o = o th) > 0.
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Thus f(a1 202)+2(20i2+b)cy <y < (a1 —2a2)+(2a2+b)cy

PR P P , an equilibrium exists with port

authority’s fee revenue

5* *
R = 22 [(2a0—b)(1—1")— (201 09— b?)5? +bey — 200261 ]+~ [1+ (200 —b) 5" —co—1"] = R:.
209 200
(A148)
Case 3(2)-2b: Suppose r > 7. Then the problem in (43) becomes
max 2f + 7(ga + deo)
st 0l <0< 8, and 7, <1 < 1. (A149)
Its Lagrange function is L = [(20@ —b)(1—7) = (20100 = b?)d +bey — 2q9¢1 | + 501+

(2@2 — b>6 — Cy — 7’] —+ )\1((5 — 5(/31) -+ /\2(522 — (5) —+ )\3(7" — ;c) -+ )\4(7"12 — 7”). Then, the

Kuhn-Tucker conditions are

g_g _ [(2a2—b) — 2(2a1a22a—2 b?)6 + bey — 2as¢4 ] A A <0, Z_g 0, (A151)
g_i:é_gélzo,Al.g_i:o, (A152)
88_)%2:522_520’)\2.3_)@:0’ (A153)

g—i:r—ﬁzo, A3 - g)i—() and (A154)
P =20 A S =0, (A155)

where A1, A2, Az, and Ay are the Lagrange multipliers for the problem in (A149).
Constraints 6., < § and 7. < 7 < r15 suggest A\i = A5 = X5 = 0 by (A152), (A154), and

(A155). According to the sign of Ay, we have two situations below.

Case 3(2)-2b-1: Suppose A5 = 0. Then, we have r} = @ and 0 = (2a22z2b£)¥j£;:z_—b§<)xm

by (A150) and (A151). It remains to find the conditions under which 0., < §* < 4., and

a9 [(O{l 720{2)4»(2&2 +b)cl - (a1 +b)82}
(2042 +b)(2a1 0(271)2)

Te <71 < 113 hold. By some calculations, we have (6l,—07) =
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o (6% o * a2 | a2—0)— 26 — (219 —0Cx1 — 2 C 3
> 0iff ¢, < (1=2eiCari (50 _ g ) — aslaaCayt) o Casan b el g jff ¢, <

a1(2a2—b)—b201 (: —r ) - [(Oq—2a2)+2(2a2+b)01—(a1+20¢2+2b)(32}
(2&1&2—6&1—b2) ? - 2(a1—2a2)
(o1 —a2)+(2a2+b)c1 — (a1 +as+b)co
2(041—042)
(a172a2)+(2a2+b)c1 a1(2a2 b) b2 c1
(a1+b) (2011042 b — b2 because (2&1&2 ba— b2) (a1+b)
2&2(2&1&2—1}2)(1—61) (0{1 20{2) (2a2+b)cl (051 a2)+(2a2+b c1 (011—&2)4—(20(24—())61
(o1 +h) @aran—bor =3 = U5 (0130) < T aidenin  due to ==
(o1 —2a3)+(2as+b)er _ az(2a2+b)(1—c1) >~ 0. and (a1 —2a2)+(2a2+b)c1 > (a1—2a2)4+2(2a2+b)c1
(a1 +b) (a1+b) (a1 +a2+b) ) (a1+b) (a14+2a24-2b) )

(a1 —2a2)+2(2a2+b)c1
(a1+2a2+2b) ?

: (o1 —a2)+(2a2+b)cy ‘s

> 0iff ¢p < (ortonth) In addition,

a1(2a27b)7b201 o (a172a2)+(2a2+b)01 _

< 0iff ¢y >

and (rig —1}) =

we have

Thus f(oq 2a2)+2(2a2+b)c1 < s < (a1 2042)+(2a2+b)01

(a1 +20212b) D) , an equilibrium exists with port

authority’s fee revenue

(a1 + 209 — 2b) — 2200 — b)cy — 2(p — b)cg — 2bcyca + 2963 + i3
4(20&10[2 — b2)

R = = R;.

(A156)

Case 3(2)—2b—2: Suppose A; > 0. Then (A150), (A151), and (A153) suggest —(1 2r—cy)
=0, 7=[(2a0—b) —2(2a1000 — b*)d +bey — 2a¢1] — Ay = 0, and (8, — ) = 0. Solv-

2a2+b ) 2a

(a14+b)+(2a2+b)c1 — (21 +2a2+-3b) Cz] 5* 5 2—c1—c2
=04 = —

: 2
ing these equations yields 7 = 2(or+202+2b) a1 +202120)

x _ (2a24b)[(2az—a1)—(2a2+b)c1+(a1+b)ca]
and )\2 - : 22042(10514—20;—1—21))1 : :

(2a2+b)[2(a1 —o2)+(3aa+2b)c1 — (20 +aa+2b) 2] .

2(a1 —a2) (a1 +2a2+2b) > 0 iff ¢

(20i24b)[—2(v1 —20r2) — (1 +602+4b) c1 + (31 +202+4b) c2]
2(a1—2a2) (o1 +202+2b)

> O lff Co > (a1—2a2)+(2a2+b)01

. By some calculations, we have (rjy —r}) =

2(0{170{2)4»(30424»2[))01 * = o
(2a1taz+26) (re —7e) =

2(&1 2a2)+(a1+6a2+4b c1 A*
(3a1+2a2+4b)

5 <

>01HCQ>

, and (65 — 02,) > 0 iff 7 < ri5. Moreover, we have

(a1+b)
(a1—2a2)+(2a2+b)c1 > 2(a1 2a2)+(a1+6a2+4b &1 because (a1—2a2)+(2a2+b)c1 _2(&1—2a2)+(a1+6a2+4b)01
(a1+b) (30&1+20¢2+4b) (a1+b) (3a1+2a2+4b)
_ (a1—2a2)(a1+2a2+2b)(1—cq) 2(a1—a2)+(3az+2b)cy (a1 —2a2)+(2a2+b)er
ot G reontany > 0 and ==y > (c11D) due to
2(a; —a2)+(3a2+2b)cy _ (a1 —2a2)+(2a2+b)c1 _ as(a1+2a2+2b)(1—c1) >0
(2a1+a2+2b) (a1+b) - (cx1+b)(2a1+a2+2b) :
Thus, an equilibrium exists when (al_zafo):ﬁ?ﬁb)cl <y < 2(%(_2?1):0&2’1225%)61 with
port authority’s fee revenue
2— C1 — Cy 2
Jr S R (A157)

4(0&1 —|— 20[2 + Qb) o 5

Case 3(3): Suppose 9 € (0!

12, 113)- Then, Lemma 12(iiic) implies 7}y > (<) m, iff

d< (>) (ﬁ—fj Thus, we have two sub-cases below.

67



Case 3(3)-1: Suppose 6 > gf%cl) and fr =7} = 5[1_(a1+2b)6_61_r] with f* > 0 iff

@2

(1—c1—r1)
(a1+b)

d < and r < (1 —¢;). Note that r < (1 —¢y) is implied by r < rj5. Accordingly,

the problem in (43) becomes

max d[1 — (a; +b)0 — ¢y — 7]+ 210

r, 8
(I—=c1—1)
s.t. 522 < ) < W and 0 < r < T12. (A158)
Its Lagrange function is L = 0[1 — (a1 +b)0 — ¢y — r] +2rd + A (6 — 0.5) + Ag[lacirb)” -
0] + A3(r12 — 7). Then, the Kuhn-Tucker conditions are
oL A oL
— =9 - A 0, r-— =0 A159
o 0 it ms S0 =0 (A4159)
oL oL
%:1—2(a1+b)5—01+7“+)\1 )\2<0 - %:0,
oL oL
=—9 A -=—— =0
oM 220 gy =0
oL 1—c¢—r oL
= —6>0, A =0, and
8>\2 (Oél + b) = 8 2 o
oL oL
=rig—1r>0, A\
PV N W

where Aj, Ay, and A3 are the Lagrange multipliers. Since all constraints in (A158) are
strict inequalities, we must have A\] = A5 = A3 = 0. However, by some calculations,
we obtain 7} = 0 by 6 > 0 and (A159), which contradicts the requirement of ¥ > 0.

Thus, no solution exists in this case.

Case 3(3)-2: Suppose § < (acf%l) and f* =7k, = 6[17(”@)57027’1 with f* > 0 iff

a2

1 —co—r)
a2+b)

does not hold.

§ < {

and r < (1 — ¢2). As in Case 1(3), no solution exists here because (A159)

Based on the above and the values of a; and «s, we can obtain optimal two-part

tariff contracts as follows.

Case (i): Suppose a; < . The proofs are the same as those of Case (ii) below. They

verify Lemma 13(3).
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2(2a1 —a2)+(2a1 +3aa+4b)cy
(61 +ao+4b)

Case (ii): Suppose % < a1 < ay. Since & = < ¢9, we have two

cases as follows.

First, if ¢a € (c1, éw2), then equilibria of R} in (A103) of Case 1(1)a and Rj

in (A110) of Case 1(2)-la exist. Define M; = (Rj — R}). Some calculations show
92M; _ —(4a‘;’+8a%a2+8ba1a2+2b2a2—2b2a1) <0. M, =
0c2 T (2on+a2+2b)(8arai+4aFas—4boy o —3b2ap —2b2 i +2b3) ) 1=
(204%+304104270%7217041)(0427041)(1701)2
(2a1+a2+2b)(8041043—&-404%042—4ba1a2—3b2a2—2b2a1+2b3)
o (74a‘11+12a?a2+11a%a%+2a1ag+4ba1a%78b2a1a272ba370/21)(1701)2
260[1) >0 by a S Qg < 20[1, and Ml - (6a1+a2+4b)2(8a1a§+4a%a274ba1a273b2a272b2a1+2b3)

> 0 at ¢y = ¢y due to (—4a]+12a3as+ 110302 +2ar a3 +4bay i —8b% iy — 2bas —aig) >

> 0 at ¢y = ¢; due to (202 + 3o — a3 —

(—4af +12af + 11adal + 2a1a3 + 4bayal — 8b%agan — 2bai — 4a2a3) = (8af + Talai +

20105 + 4ba a3 — 8b*ayap — 2bais) > 0. These imply R > Rj.

Thus, for c3 € (¢1, ée), port authority’s optimal two-part tariff contract and mini-

2(aa+b)—(2a14+2a2+43b)c1+(2a1+b)ca

mum throughput guarantee are those in Casel(2)-1la with % =

2(2cc1 +a2+2b) )
5* _ (2761762) f* o (2701702)[2(2041fa2)+(2a1+3a2+4b)cl7(6a1+a2+4b)02] and R* _ (2761762)2
¢ 2(2a1+a2+2b)’ Je T 8(2a1 +aa+2b)? ’ ¢ 4Q2ai1+az+2b)”

For ¢y € [ér, Ce2), a unique solution in Case 1(1)a exists. Thus, port authority’s

optimal two-part tariff contract and minimum throughput guarantee are those in Case

. % (2a2—b)(doqas+2bas —2b%)—(8a a2 —4b%as+b3)c1 +b2 (201 —b)ca % (2001 =b)(1—r¥%)+bc1 —2a1¢2
1(1)a with r. = 2(804105%—1—40(%042—4ba1a2—3b2a2—2b2a1+2b3) ) 50 € [0, doyan—b? ]7

f* . %[(20&17b)(177‘2)+b8172a102]27 and RZ — 2fc* _|_ T:[2(011+a27b)(177“*)7(2a27b)017(2a17b)02]'

c 2 4o g —b? 41 o —b2

Then, Lemma 13(ii) is proved.

Case (iii): Suppose as < a; < 2a3. We need to know relative sizes of critical points

1 — 2(a1—az)(a1+as—b)+(4ajas+bag +2a3—2b%)cy - 1 2 _
Ce2 = (4o iz +202 —boy +2bay —2b2) and ¢y = (402 +8a1 g —4ba1 —b2?) [(40&1 +dara
2 2 : 12 _ 2(a1—as)+ (a1 +2a242b)e;
6ba; —2bain+20% )+ (4o ain+2bay +2bas—3b%) 1] in Case 2(1)a, cf5 = Bar 120)
R 2(2a1—a2)+(2a1+3a2+4b)01- t3 1 _
and ¢ = ey in Case 2(2)-1a, ¢ = PR Ty 2(ag—a2)(a1+

2(0&1 —a2)+(3a2 +2b)61 .

(2a1+a2+2b) m
2(5a1a272a%+2ba2)(1701) . 1Y
(61 +ao+4b) (2a1 +2+2b) >0, (002_062) -
2(a1—a2)?(as—b)(1—c1) <> 0 (Ctl_ctg) _ 2b(a1 —an)? (a1 +as—b)(1—c1)
(2&1+a2+2b)(4a1a2+2a%7b011+2ba272b2) ) c2 c2 (4a1a2+2a%+ba272b2)(4a1a2+2a%7ba1+2ba272b2)

3 12\ _ 2(o1 —ap)?(on—b)(1—c1) 2 t3 t1
> 0, and (¢ — c'3) = Garas 207 +hos—208)Gar i) > O Thus, we get ¢35 < ¢ < ¢l <

g —b) + (4o g +2bay —bay +2a3 — 2b%) ¢y ] in Case 3(1)a, and ¢y =

Case 3(2)-1. Some calculations show (¢ —¢y) =
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Cea < Ceg < Ceo, and optimal two-part tariff contracts can be derived by the following

steps.

First, for co < 3, we need to comparing R} in (A135) of Case 3(1)a and R} in
(A142) of Case 3(2)-1. Define M, = (R — R;). Since 222 —

2
Jcs

< 0 and —%M2 =
C2

—2(05?—041 a%+2bo¢%+bo¢1a2 +b2ay +b2a2)
(a1+2a2+2b) (8&%&2 +4a1a§ —4ba g —3b2a1 —2b% g +263)
(Zai’ 74a%a2 —4an a%+2ba% —baian 72bo¢%+2b2a2)(1701)
(a1+2a2+2b) (804%042 +4o¢1a§ —4bayas—3b%2a1 —2b2aip+2b3)

a3 (a1 —az)?(1—c1)?
(a142a2+2b) (4ag oz +2a%+bo¢2 —2b2)

< 0 at ¢o = ¢q, we have %AC/[; < 0. More-

5 > 0at cp = ¢ we get R > R} when

over, since My =

co < 3.

Second, for ¢y < cf}, we need to comparing Rj in (A125) of Case 2(1)b and R: in

C

(A142) of Case 3(2)-1. Define My = (R Rj). Since 2Ms = Boizostboies oz 10bay 14

dcs 2(a1 +2a2+2b) (a1 —a2)?
_ (a1—az)(1—c1)?
0’ and M3 - (50@7o¢§+5o¢1a2+2ba2+10ba1+4b2) >0 at
(404%—204%—2041042—1—412041—4ba2)+(o¢%+oc%+7a1a2+6ba1+6ba2+4b2)01
(Sa%—a§+5a1a2+2ba2+10ba1+4b2)

Cy = , which is the solution of %—J‘fj =

(a1—a2)(1—c1)?
(504% —a3+5a1 ag+2bag+10bay +4b2)

0. Accordingly, the minimum value of Mj is > 0, and

R: > R; for all co.

2

. * « _ (2—c1—c2)? (2—c1—c2)? (a1—a2)(2—c1—c2)
Third, we always have (R5—Rj3) = 4(a1+§a2—21—2b)_4(2a1—|1—a2—2i—2b) = 4(a1+§a2i2b)(2§1+§2+2b) =

(2—c1 702)2

) 4(041 +2ai +2b) >

Fourth, we have R§ > R for ¢ € (¢4, , ) from Case (i). Moreover

(2—c1—c2)?

oo tant ) and ¢qo < Ceo. Thus, for ¢y < ¢, we have R > Rj.

In sum, for ¢y € (c1, ¢e2), the above results imply that the optimal two-part tariff

contract and the minimum throughput guarantee are those in Case 3(2)-1 with r =

[2(a1+b)+(2a2+b)cl7(2a1+2a2+3b)02] f* o (2761762)[2(2&27(11)7(0{1+6a2+4b)61+(3a1+2a2+4b)02] 6* o
2(a1+2a2+2b) ? c 8(a1+2a2+2b)2 ? c

%, and R* = %. For ¢y € [¢e2, ), the fourth result implies that

the optimal two-part tariff contract and the minimum throughput guarantee are those

. _ . x 2(a2+b)7(2a1+2a2+3b)c1+(2a1+b)02 x (2701702) *

in Case 2(2)-la with r} = S Ger T T20) , 0 = o teat ) 1

(2—01—02)[2(2a1—a2)+(2a1+3a2+4b)61—(6a1+a2+4b)02] * (2—01—02)2 .. ~
8o Ty 1277 , and R} = oo tast3s) For ¢y € [éa, Cea),

1
8a1a§ +4a%a2 —4ba g —3b2a2—2b% i +2b3)

a unique equilibrium exists in Case 2(1)a with ¥ = o
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(200 — b) (4 g + 20y — 2b%) — (8 a3 — 4b*ay + b3) ey + b*(2aq — b)co], 07

Cc

c [O, (2a1—b)(1—r:)+bc1—2a102] f _ aQ[(Zal b)(1—rk)+bci — 204102]2’ and R* = zf* 4o

4aiaip—b2 2 40¢10¢2 —b?
2(a14a2—b)(1—r%)—(2a2—b)c1 —(2a1 —b)ca
[ yrr— ]. These prove Lemma 13(iii).

Case (iv): Suppose a; > 2a3. We need to know relative sizes of critical points ¢y =

2(a1—a2)(a1+az—b)+(day as+bay +20¢§—2b2)01
(4arae +2af —ba +2baa —2b2)

20000+20)+ (4 g +2ba; +-2bciy—3b% ) ¢4 in Case 2(1)a, f3 = 2(a17a2)(3+,5?$1;2)a2+2b)01 and

- 2(200—a2)+ (201 +3a+4b)er - t3 — 1 .
Ce2 = (601 +-z 14b) in Case 2(2)-1&, Coo = (Aaraz 202+ bap 207 [2(0[1 O{g)(O&l +

A= 1 2 _ _
and Gy = T EE =y [(4a3 +40 an—6bay

4 (051 —2a )+2(2a2 +b)cl

ag —b) + (4o g + 2bay — bag + 203 — 2b?) 1] in Case 3(1)a, cls = and

(a1 +2a2+2b)
—2 2 b . .
) = (@ O‘QOZ:Ebaﬁ )% in Case 3(2)-2a-2. Some calculations yield ¢ > ¢4, (¢ —ctl) =
2(a1—an)?(az—b)(1—c1) > O ( Ct3> o 2b(a1 —a2)? (a1 +az—b)(1—c1)
(2041+a2+2b)(4a1a2+2a%—bo¢1+2ba2—2b2 Ce2 c2) (4a1a2+2a%+ba2—2b2)(4a1a2+2o¢f—ba1+2ba2—2b2)
_ 2 2(a1—a2)?(c1—b)(1—c1) t3 oy _ _oo(6arast+bar—2b%)(1—c1)
>0, ( Ce2 CCQ) (41 ap+203+baa —2b2) (31 +2b) >0 and( 2 CCQ) T (a1+b) (4o az+2a3+bag —2b2)

> 0. However, the relative size of ¢, and '3 is uncertain, and we are not sure whether
Ceo is larger than the values of cf2, ¢f3, ¢!}, and ¢w. Thus, optimal two-part tariff

contracts can be derived by the following steps.

], then equilibria of R} in (A126) of Case 2(2)-1a for c/3 <
cy, R; in (A135) of Case 3(1)a, Rj in (A125) of Case 2(1)b, R in (A147) of Case
3(2)-2a-1 and (A156) of Case 3(2)-2b-1, and R in (A148) of Case 3(2)-2a-2 may exist.

. . % . 02My 4a%a2+4a1a§—8a?—8ba%—4ba1a2—5b2a1—362a2
Define M4 - <R3 R4) Since Bcg - 2(2041+a2+2b)(8a%a2+4a1a§74ba1a273b2a172b2a2+2b3) <

First, if ¢; € (Cl,

0, My is a strictly concave function of cs, and has the maximum value of

—(a?—ajas—a?)(1—c1)? : . * *
O P, F F Y T ST T 0 if (2a — ) < 0. Thus, we have R < R}

for all ¢,.

: _ % % : 02Ms (201 g —ba; —b?)?
NeXt’ deﬁnlng M5 - (Rﬁ R4) Since 8cz T 2(2a102—b%)(8afant4ar a3 —4baias—3b2a; —2b2as+2b3)

> 0, Ms is a strictly convex function of ¢y, and has the minimum value 0 at c; =

_ _ b2
Raraz—boyber) iy Guraa—bar—bey) cly. Thus, Ry > R} for ¢ € (c1, ). Then, we

(2a1 g —bag —b?) (2a1 a2 —bag —b?)
— (R* — 92Ms _ (401 —an+2b) a : .
define Mg = (R — R3). Since 33 = Bar—a)? + Gmer ) > 0, Mg is a strictly con-
(a%—l—alaz—a%—2ba1a2+2ba2)(1—01)2
4(a?+6a an— a1a2+4ba1a2 —4b2aq +b2 g —2b3)
o 2 2(2 b 2 2b)ca]?
0. Thus, we get R > R; for all ¢;. In addition, (R;— Ry) = [(1=202)12(20s thie —(a) 120y £2h)co]

8as (a1 —2a2)?

vex function of ¢y, and has the minimum value >
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> 0. Therefore, for ¢y € (¢1, ], port authority’s optimal two-part tariff contract

and the minimum throughput guarantee are those in Case 3(2)-2a-1 and in Case
; * 1- * 2a3—b)+bca—2 * 209 —b—2 +b —
3(2)-2b-1 with r; = (52, 6y = Geggimergma, o = Gemiggmatiglenal and
R — (a14+2a2—2b)—2(2a2—b)c1 —2(a1—b)ca— 2bclcz+2agcl+a102
c 4(2a1 a2 —b2)

Second, for ¢o € (c, ¢e2), equilibria of R in (A124) of Case 2(1)a for ¢y €
(el ¢e), RS in (A125) of Case 2(1)b for ¢y < ¢!}, R% in (A126) of Case 2(1)-1a for
Co € [, ¢e), R in (A135) of Case 3(1)a for ¢y < ¢f3, and R: in (A157) of Case 3(2)-
2b-2 for ¢y € (cy, ¢e2) may exist. Since Rf > R}, Ri > R, R > R}, and R > R}
are shown by Case (iii), R is the best. Thus, port authority’s optimal two-part tariff

contract and the minimum throughput guarantee are those in Case 3(2)-2b-2 with r} =

[2(a1+b)+(2a2+b)cl (2a1+2a2+3b 62] f* o 2 01—02)[2(2a2—a1) (a1+6a2+4b)01+(3a1+2a2+4b CQ] (5* o
2(a1+2a2+2b) 8(a1+2a2+2b)
2

(2—c1—c2) x _ (2—c1—c2)
(Oc1+2052+2b)’ and R (a1+2a2+2b)

Third, suppose ¢e < éw. Then, for co € [¢, Ew), the outcomes in Case (iii)

show that port authority’s optimal two-part tariff contract and minimum throughput
2(a2+b)—(2a1+2a2+3b)cl+(2a1+b)cg (5* -
2(2a1 +aa+2b) ’ -

(2 c1— C2 f 2 Cl—CQ)[2(2041—0é2)+(2061+3062+4b)()1 (6011+Oc2+4b CQ] and R* _ 2 c1— Cg)
2(2a1+ag+2b)’ 8(2a1 +ag+2b)2 2a1 +as+2b)°

guarantee are those in Case 2(2)-la with r} =
2

Fourth, if ¢.o < ée and ¢y € [é, Ce2), a unique equilibrium exists in Case 2(1)a.

Thus, port authority’s optimal two-part tariff contract and minimum throughput guar-

: b 1
antee are those in Case 2(1)a with ¥ = 2(8a1a§+4a§a2—4ba1a2—3b2a2—2b2a1+2b3)[(2042 —

b) (4 g +2bay —20) — (8 a3 —4b% iy +b%) ey +0% (201 —b)cy), 87 € [0, Cer=tllraditbe aica)

401 g —b?

= az[@al b)(iaf:fsgl 204162] , and R :2f*+7ﬂ:[2(a1+a2*b)(1 2’210522@?) b1 — (201 — 5)02]

By contrast, if ¢ > ¢, then the outcomes in the third and fourth parts above
will change. For ¢y € [¢, €c2), the optimal contract is the unique solution in Case

2(1)a. These prove Lemma 13(iv). O

Lemma 14. Suppose the conditions in (40) hold. Then we have the following.
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(1) Suppose a; < .

(1a) ]f Cy € (Cl, 'é'CQ] with 'é'CQ = m[@am@ + 4&% — 26061 + bOéQ — 2b2> +

(2a1a9 +2bay —bag —b?) e — (1 —c1)y/2(az + b) (201 + aa — 2b) (2010 — b2)], then port

authority’s optimal unit-fee contract and minimum throughput requirement are (rt, &%)

with ! = 1—702 and 0 = ﬁ At the equilibrium, operators’ cargo-handling amounts
are q% =0t for v =1, 2, and port authority’s fee revenue equals R! = é};;i);)

_ (20{1 b)(2a1+ag 2b)+(2a1a2+2ba1+ba273b2)cl
(ib) If ¢y € ('Cra, Cea) with Gy = (T o 07— Thery 57 , then port au-

thority’s optimal unit-fee contract and minimum throughput requirement are (r¥, &%)

wlth Tg — (2a1+a2—2b)—(a2—b)c1 (2&1 b and (5u — 2&1—b)(1—rg)+b61—204102. At th;e equZhb‘

2(2a1 +aa—2b) (212 —b2?)
rium, operators’ cargo-handling amounts are ¢ = 171)6@;% and q¥% =¥, and port
authority’s fee revenue equals RY = [(20‘1+C(“22a12_€)a2(a22b)(l’gzllaihbg)b)CQ]Q
1c Co € (Cea, Cen) Wi Ceo = ~—5——=, then port authority’s optimal unit-
ic) I Ceny Cen) with Ga b, t authorit timal unit
fee contract and minimum throughput requirement are (r%, %) with r' = 7. =
(20 = b%::fclb 292 gnd 6 = 0. At the equilibrium, operators’ cargo-handling amounts are
@ = 525 and ¢ = 0, and port authority’s fee revenue equals Ry = (ca= cl)méglb);;bcl Zonca)],

(i) Suppose as < ay < 2.

(iia) If ¢y € (c1, MY) with ¢l = Boazea)tQantastey ypon o0t quthority’s optimal

(2a1+b)
unit-fee contract and minimum throughput requirement are (r¥, 6%) with r¥ = PTCI
and o) = 1 —CL< At the equilibrium, operators’ cargo-handling amounts are q* = 6%

a1+b)”
(1=c1)?
2(041+b) :

for i =1, 2, and port authority’s fee revenue equals RY =

(ib) If ¢ € [e4d), ¢42] with 42 = (@-02t20etha ypon e have two sub-cases as

(a1+a2+2b)
follows.
. 202 +5bag +4b> w .
(iib-1) Suppose «; > % For cy € [, ly) with ¢y = m[(Zal +b) —

(1 —e1)v/(2aq + b)(2aq + b)], port authority’s optimal unit-fee contract and minimum

throughput requirement are (r, 6*) with r* = 152 and &% = ﬁ At the equi-
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. - 1—bSY —co—r

librium, operators’ cargo-handling amounts are gy = 6; and qn = —52—=, and
. 1—c9)? .

port authority’s fee revenue equals Ry = 2((202321)). By contrast, if co € [cly, ¢4?],

then port authority’s optimal unit-fee contract and minimum throughput requirement

u U ; u _ l=c u _ _l-c 5 o ’
are (r¢, 0f) with ry = 5% and 0 = a5 Al the equilibrium, operators’ cargo-
1-b0}—c1—r

handling amounts are ¢ = e < and gy = 02, and port authority’s fee revenue

equals RY = 2((12;‘1”422).

2 2
%. If cy € [c99t, 2], then port authority’s optimal

(iib-2) Suppose oy <
unit-fee contract and minimum throughput requirement are the same as those in the

first part of Lemma 14 (iib-1).

(iic) If ¢y € (Y2, €|, then port authority’s optimal unit-fee contract and minimum

throughput requirement are the same as those in the first part of Lemma 14 (ia).

(iid) If co € (Ce2, Co], then port authority’s optimal unit-fee contract and minimum

throughput requirement are the same as those in Lemma 14 (ib).

(iie) If co € (Ce2, Ce2), then port authority’s optimal unit-fee contract and minimum

throughput requirement are the same as those in Lemma 14 (ic).
(iii) Suppose (2aca — ) < 0.
(iiia) If 3 € (c1, ¢4Y). Then we have two sub-cases.

(ilia-1) Suppose (a3 + 6bajag — 9bas — Tajas + 8b*ay — 6aiay — bal) < 0. For

co € (c1, ] with fy = m[(c@ + 2000 — by + 2bay — 20*) — (2000 —

bay + 2bas — b*)er — (1 — ¢1)v/2(eq + b) (a1 + 20 — 2b) (2a1a9 — b2)], port authority’s

optimal unit-fee contract and minimum throughput requirement are (r%, &%) with

c)

r

u o (a1+2a2—2b)—(2a2—b)cl—(Oq—b)cg (Lnd 5(1; — (QaQ—b)(l—Tg)—l-bCQ—Qanl. At th@ equlllbrlum,

[ 2(a1+2a2—2b) (2a1a2—b2%)
y . - _ 1-béf—co—r¥
operators’ cargo-handling amounts are ¢ = oY and q% = B Fea— and port
. ] u [(a1+20¢272b)7(2a275)817((1171))02}2
authority’s fee revenue equals R} = 01720 —25) 2o g —57) . By contrast, for

co € (), 1), port authority’s optimal unit-fee contract and minimum throughput
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requirement are the same as those in Lemma 14 (iia).

(iiia-2) Suppose (a3 + 6bajag — a3 — Tayas + 8bay — 6a3ay — ba?) > 0. Then,

for ¢y € (c1, ¢4Y), port authority’s optimal unit-fee contract and minimum throughput

requirement are the same as those in the first part of Lemma 14 (iiia-1).

(iiib) If ¢y € [¢%Y, ,c?], then the optimal unit-fee contract and minimum throughput

(1- 02)2 (1701)2

[(a1+2a272b)7(2a27b)clf(a17b)02]2
2000+b) 7 2(2c1+b) :

4(011 +2a9 —Zb) (2a1a2 —b2)

and

requirement depend on relative values of 5

If 212;2%) 15 the largest, then port authority’s optimal unit-fee contract and minimum

throughput requirement are the same as those in the first part of Lemma 14 (iib-1).

If 212 Cﬂrz) 1s the largest, then port authority’s optimal unit-fee contract and minimum

throughput requirement are the same as those in the second part of Lemma 14 (iib-1).

Finally, if (e1+202-2)—(as—bjer (a1 —bjea]”

o1 205 2b) @aras 59 1s the largest, then port authority’s optimal

unit-fee contract and minimum throughput requirement are the same as those in the

first part of Lemma 14 (iiia-1).

(ilic) If co € (Y42, €], then port authority’s optimal unit-fee contract and minimum

throughput requirement are the same as those in the first part of Lemma 14 (ia).

(iid) If ¢ € (Cea, Cea), then port authority’s optimal unit-fee contract and minimum

throughput requirement are the same as those in Lemma 14(ib).

(iiie) If co € (Cea, Ce2), then port authority’s the optimal unit-fee contract and minimum

throughput requirement are the same as those in Lemma 1/ (ic).

Proof of Lemma 14: The proofs are similar to those of Lemma 13, and thus omitted.

O
Lemma 15. Suppose the conditions in (40) hold. Then we have the following.
(1) Suppose ay < ag < 201 Then we have the following.

(ia) Suppose (402 — dajag + b?) > 0. Then there are two sub-cases.
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. 2
ia-1) If ¢y € (c1, ¢'3) with ¢/} = (dod—don 0z +b%)+ (don azt2ban —b7) , then port authority’s
c2 c2 201 (2a1+b) Y

optimal fived-fee contract and minimum throughput requirement are (ff, 67) with fI =

(1‘“)“2”_"322515?“ Qontbles] gnd §f =

2a L. At the equilibrium, operators’ cargo-

handling amounts are q’; = 8/ for i =1, 2, and port authority’s fee revenue equals

Rf o (1—61)[(2a1—a2)+(a2+b)cl—(2a1+b)02}
[ (2a1+b)? )

_ (2a1— b +becy

(ia-2) If ¢y € [cf;l , Ce2) With € = o, , then port authority’s optimal fized-fee
[(204176)4»1)617204162]2

161 (21 ey —b2)

contract and minimum throughput requirement are (ff, 67) with f/ =

and 5f — (20[17())44)0172(1102

G b2) . At the equilibrium, operators’ cargo-handling amounts are

1—cy—bst [(2a1 —b)+bc1 — 204102}

qicl = = and q62 = 67, and port authority’s fee revenue equals R} = Sor (20100 17)

(20&1 b) +bct

(ib) Suppose (4a? —4dajas+b*) < 0. Then, for cy € (c1, Cep) with ¢y = o

, port

authority’s optimal fived-fee contract and minimum throughput requirement are (f, &))

with ff — [2ai=b)+ber —2a1cy)? and 5f _ (200-b)+bc1 20109
C

T6a1 Qaras—52) a7 At the equilibrium, operators’

cargo-handling amounts are qfl = 1= 021&11’56 and %2 = 67, and port authority’s fee

(2a1 —b)+be1 —2a1 co)?
8a (2a1 a2 —b?)

revenue equals Rf = [

(2041 b)+b01
201

(i) Suppose (201 — ag) < 0. Then, for cy € (1, Cw) with G = , port

authority’s optimal fized-fee contract and minimum throughput requirement are (f, 67)
. _ [(2a1—b)+bes —2a; co)? _ (2a1—b)+bci —2aic
with [ = Sy~ and 0 = S

1—c1 7b6{f
2001

. At the equilibrium, operators’

cargo-handling amounts are qil = and qu = 0/, and port authority’s fee

[(20&1 —b)+b01 —2a1 62]2
8a1 (21 g —b?) :

revenue equals RI =

(iii) Suppose as < a1 < 2ay. Then there are four sub-cases as follows.

(daraa— 4a2 b2)+2a2 (2a2+b)er

(itia) If (4dayas—402—b2) > 0 and ¢y € (c1, cly] with ¢y = (Goraa T 2bas %) :

C

then port authority’s optimal fized-fee contract and minimum throughput requirement

. 2a5—b)—2asc1 +-bea]? 200 —b)—2aiac1+be 7.
are (ff, 60) with f/ = ‘ 1?)‘(1222@1521_22)2] and 0 = ( 2’2(2ila2fb§;r 2. At the equilib-

l—cg—bdf

v and port

rium, operators’ cargo-handling amounts are qfl =6/ and qZQ =

[(2&2 7b)720¢2 c1 +bcz]2
8az (2a1 g —b?)

authority’s fee revenue equals R =
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(iiib) If ¢ € (max{e, iy}, ¢f3) with I3 = 2(6”_0(‘;(&53;;2% then port authority’s

optimal fized-fee contract and minimum throughput requirement are (f1, 67) with ff =

(1-e)laz—0n)-Qasthiertarbel g §f =

5@y 10)? 2a —Z. At the equilibrium, operators’ cargo-

handling amounts are qfl = ch = 6/, and port authority’s fee revenue equals Rf =

(1—c2)[(2a2—a1)—(2a2+b)ci+ (a1 +b)cg]
(2c2+b)?2

(iiic) If c; € [¢f2, ¢/}) with of) = Yoi= 4a1a2+2b22r2§1a£‘)2+2ba1 )1 then port authority’s

optimal fived-fee contract and minimum throughput requirement are (f1, 67) with ff =

(=)@ an;CE?_iZF)b)CI Qaatber] ond 6 = ﬁ At the equilibrium, operators’ cargo-

handling amounts are qCl = qc2 = 6/, and port authority’s fee revenue equals R = 2f/.

(itid) If ¢ € [cly, Gw), then port authority’s optimal fized-fee contract and mini-

mum throughput requirement are (f, 67) with f{ = KZO{%;?;T;;E%;)%]Q and o —
(2001 —b)+bc1 —2a1 c2
2(2a1 a2 —b?)

% and ¢ly = 61, and port authority’s fee revenue equals Rf =

. At the equilibrium, operators’ cargo-handling amounts are qfl =

[(2a1 —b)+ber —2av c2]?
8a1(2a1a2—b?) :

(iv) Suppose (2aa — 1) < 0. Then there are four sub-cases as follows.

_ (daiag —4a% —b2)4+2a2(2a2+b)cy
(41 ez +2bae —b2) )

(iva) If (4ajas—4a2—0%) > 0 and ¢, € (¢, ¢y with ¢y
then port authority’s optimal fized-fee contract and minimum throughput requirement

are (fI, 67) with ff = [(20%;2;;10‘;;1;%62]2 and &/ = (20‘22(2215?2212%02 At the equilib-

1—co— b5

=, and port

rium, operators’ cargo-handling amounts are qfl =6/ and qu =

[(2&2 —b)—2a2c1 +b02]2
8 (2a1a2—b2) :

authority’s fee revenue equals RI =

(ivb) If ¢ € (cfy, ¢f3) with I3 = 2(0‘1’255?;2% then port authority’s opti-

mal fized-fee contract and minimum throughput requirement are (ff, 67) with ff =

(1—c2)[(2a2—a1)—(2a2+b)c1+(a1+b)c] _ 1-c
: — 1(20(2—‘3)) : : = and 5f T 2 —ib

At the equilibrium, operators’ cargo-

handling amounts are qc1 = qc2 = 6/, and port authority’s fee revenue equals RI =

(1762)[(2(12 —Q ) (2&2 +b)cl +(CM1 +b)02]
(2a2+b)

(4a% —4daq ag+b?)+(dag ag+2bay —b?)
201 (2041 —‘rb)

(ive) If 3 € [c 52, cg) with cc2 =

, then port authority’s
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optimal fived-fee contract and minimum throughput requirement are (ff, 67) with fI =

(1—c1)[(2a1 —a2)+(aa+b)c1 —(2a1 +b)c2] _ 11—
1 1— 2(2a1j_b)2 1— 1 2l and §f = 3o —:b

At the equilibrium, operators’ cargo-

handling amounts are qcl = qé; = 61, and port authority’s fee revenue equals R = 2f7.

(ivd) If ¢ € [cg, Ce2), then port authority’s optimal fized-fee contract and mini-

[(2al—b)+b81—2a162]2 a/nd (SZ

mum throughput requirement are (f7, 67) with fI = T6a1(2ares—52)

(2041 7b)+bcl —2a1 o
2(2a1a2 b2)

1—cq b5 _ Sf
Tc G/fld q62 5

. At the equilibrium, operators’ cargo-handling amounts are qfl =

[(2&1 7b)+bcl 72(1102]2
8a1 (21 a2 —b?)

c?

and port authority’s fee revenue equals RS =

Proof of Lemma 15: The proofs are similar to those of Lemma 13, and thus omitted.

|

Proof of Proposition 4: Note that max{cy, 0521} < Cog < Crg < Cog < Ceg < Cpa. In each

of the following four cases, we will first compare the two-part tariff scheme with the

unit-fee scheme, and then compare the better of these two with the fixed-fee scheme.
Case 1: Suppose a1 < ap < 2a;.

Comparing the two-part tariff scheme with the unit-fee scheme :

First, for ¢3 € (¢1, Ce), we have R = m by Lemma 13 (ia), and RY =

(%a;ib by Lemma 14 (ia). Define H; = (RY — R}). Since 8621 = 2(a2(i%)1(;33122)+2b) >

OH, 72(2a1+b)7(a2+b)cl+(4a1+a2+3b)02 72(2a1+b)7(a2+b)01+(4a1+a2+3b)écg o

0, we have F0 = 22 1b) (201 +a120) < 2(a215) (201 + a2 120) =
—(2a1+a2+2b)(1—01) (I—ECQ)Q (2—61—562)2 o (2&1—&2)2(1—61)2

(oa D) G tasrany < O and Hy > 5eoie — gome ool = 5laatb) o tapianz > 0- They

imply Ry > R:.

2(a14a2—b)(1—rk)—(2a2—b)c1 —(2a1 —b)ca ]
4o g —b?

Second, for ¢y € [é, ), we have R = 2fF+r¥|

by Lemma 13(ib), and RY = 1 )" by Lemma 14(ia), and RY = (2o +a=26) ~ (g —b)er ~ (2 —b)cg)®

(aa+b) 4(2a1+a2—2b)(2a1 g —b?)

: 1—c 201 +a2—2b)—(az—b)c1 —(2a1 —b)c
by Lemma 14(ib) with _‘fb) > (<) Gater o ho-Gu Vol if o) < (>) ¢o.

o [(2a1+o¢2 2b) (042 b)cl (2041—1))02}2 - * : 82H2 _
Define Hy = 10201 T3 —20) (2o o3 —1%) R?. Since o =
ag(78(1%(137404:13012+4ba%a2+4b2a§+7b2a1az74b3a17b4) < 0 and OHs
(2041+a2—2b)(2a1a2—b2)(8a1a§+4a%a2—4ba1a2—2b2a1—3b2a2+2b2) Oco
—62a2(2a1—b)(1—cl) _ OHo
2(2a1a27b2)(8a1a§+4a%a274ba1a272b2a173b2a2+2b2) < 0 at C2 = (1, W€ have Oco < 0 for
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a§(2a1 —b)*(1—c1)?
4(2a1 a2 —b2) (21 +a2—2b) (81 a2+4a%f4ba1 —b?)

2a1 +ag—2b)—(aa—b)cy —(2a1 —b)ea]? " A
(e 40(‘;!1 +L2(_O‘22b)(2)211a§_%12) Jeo” R for ¢y € [Ce2, Ce2). Thus, we

1—c9)? * . 201 +aa—2b) — (g —b)e1 —(2ae1 —b)eo]? *
get Ry = é(azj-)b) > R for ¢; € [Cep, €], and Ry = ! 1Z(§a1+)az(—22b)(2)allai—bl2) el > R;

¢y € [Ce2, Cea). Moreover, we have Hy = s > 0 at

Cy = Cep. These imply

for Co € ['é'627 écg>.

Third, for ¢ € [¢e2, Ce2), no equilibrium two-part tariff scheme exists. Thus, the

unit-fee scheme is the better one.

Comparing the better scheme above with the fixed-fee scheme :

First, for ¢; € (1, cly), we have R* = égﬁf) by Lemma 14(ia), and R =

(1_61)[(20‘1_O‘Z(Z(lof;)'f)cl_(mﬁb)”] by Lemma 15(ia). Define Hy = (R* — R/). Since

OH3 _ —(20a—az)—(az+b)ci+(2c1+b)ca . 9H3 —(2a1—ag)—(a2+b)cl+(2a1+b)c£21 .
des (02 +b) (201 +0) , We can obtain F* < (62 1b) (201 +0) =
—(2a1a2—b%)(1—c1) (1=c/)?  (—c)[@o1—a2)+(aa+b)er—(201+b)cly]
5on(aa D) Gortd) < 0s and Hy > S 2ar+0)? =
8a?a2+8ba2ag+4b%a2—4b? +bH)(1—c1)? 1 .

Lt &1;;%(a2fbl)(2ali2;2 JU=e)” 0 for ¢, € (c1, ¢'}). These imply RY > R/

Second, for ¢, € [c), o), we have RS = [(Zo‘g;b()gzblc;:;fﬁ by Lemma 15(ib),

" 1—cg)? . u 2a1 +aa—2b)—(az—b)e1 — (2001 —b)ca]?
R = (= by Lemma 14(ia), and Ry = [Zxeeth=(echo—@uzhal by epmp,

. . (1702)2 [(2a1+a272b)7(a27b)017(2041717)02]2 . _
14(ib) with i) = (<) 103 T a—29) (aarras %) iff ¢ < (>) €. Define Hy =
[(2a1+a2—2b)—(ag—=b)er —(2a1 —b)ea]®  [(2a1—b)+ber1 —2a1c2]® OHy _ __—(ca—c1)
1(20, +aa—26) (20, v —b2) Sa1(a10n—b?) . Since des = T tan ) < 0, we have
H > [(2a1+042—2b)—(042—b)61—(2041—1))5,32}2_[(2al—b)+bcl—2alécg]2 o (2041042—62)(1204%—&-8041042—12ba1—b2)(1—01)2
4 4(201 +a2—2b) (21 az—b?) 8a1 (21 g —b2) - 8ov (4da3 +4on oip —4bay —b2)2
[(2a1+a272b)7(a27b)cl7(2a17b)02}2 [(20117b)+b0172a1C2
> 07 and hence 4(2a1+a272b)(2a1a27b2) > 8041(20{10(271)2)

over, 4z > ()lCartorM-(erba—Cobal i o < (5)%,. Thus, we have

OH4 —(ca—c1)

2 ~
E for Cy < Cep. More-

) 2(a2+b) — 4(2&1 +a2—2b)(2a1a2—b2)
(1—02)2 [(2041—1))-}—1)01—204162]2 fl1 ... [(2a1+a2—2b)—(a2—b)01—(2al—b)cz]2
2(o¢2+b) > 8ar1 (2041042—1)2) fOI' C2 < [602 y € 62] ? and 4201 +a2—21))(2a1a2—b2) >

[(2a1 —b)+bc1 —2a c2]?
8ai (2a1 a2 —b?)

for ¢y € ('€ ra, Cca]. These suggest that the unit-fee scheme is optimal

for ¢, € [¢)y, éa).

Third, for ¢y € (Cea, Cc2), we have RY = (02_01)[(2(0‘21;117_);3251_20‘102] by Lemma 14(ic),

and R/ = [(2a§(;l’()22’12;_2;1)62}2 by Lemma 15(ib). Define H; = (02—01)[(2(042106—113_);;1501—20102] _

[(2a17b)+b0172alcg]2 . 0%Hs __ fa1(4a%+8a1a274ba173b2) OHs __ —(2a1—b)(1—c1)
8a1(2a1an—b2) - Since dcs (201 -b)2 (212 —b?) < Oand dca  2(4af+4agaz—4bai;—b?)
OHs [(2a1—b)+bc1 —20182]

< 0at ¢ = Gz, we have < 0 for ¢ € (Gea, Cun), and Hy > f2=c1)

Oca (2041 —b)2
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[(2041 7b)+bcl —2a1 ECQ]Q
8a1 (2a1 g —b?)

= 0. These imply R* > R/, and thus the unit-fee scheme is optimal.

Case 2: Suppose (2a; — az) < 0. As in Case 1, we can show that the unit-fee scheme

is port authority’s best choice.
Case 3: Suppose g < a1 < 2ap.

Comparing the two-part tariff scheme with the unit-fee scheme :

Lemma 14(ii) shows that R = (} Cib) for ¢y € (c1, ¢4t), RY = max{;mib), 212af1+b)}

1— [(2 2b b 201 —b)ca)?
for e € [etg?, c4?), Ry = S-S for e, € (2, ), Ry = [Bantor 2 leapo (o bles

c 2(a2+b) 4(2a1+a2—2b)(2a1 g —b?)
for ¢y € (€2, Cw), and RY = (c2— Cl)[(zéglli)ggcﬁmlcﬂ for co € (Ce2, Ce2). On the other
—c1—co)2 . 2
hand, Lemma 13(iii)shows that R = M—aﬁgb) for co € (c1, ¢w), R = ;alci—asiéb)

[2(a1+a27b)(17r) (2a2 b)er— (2041 —b)ca
dovp o —b2

] for cg € [Cea, Cea).

ull ul2

By some calculations, we have ¢ < %% < ¢ < Ca < Cea < g < Cea < Cea.

Thus, there are six intervals to be discussed.

First, for ¢y € (ci, ¢%'), we have R} = 4((5;2—;261)% and R = %acjrb Define
o _ (1—c1)? (2—c1—c2)? OHg (2—c1—c2)
H6 = (Rg - R:) = 2(a141rb) - 4(a1+;a212b Since 3026 = m > 0 we have
(1—c1)? (2—c1—c1)? _  (2az—ai)(l—c1)?
Hg > 2(a1ib) — 4(a1+;a2—1§—2b) = 2(a1jb)(;1+2a21+2b) > (. Thus, the unit-fee scheme is better

than the two-part tariff scheme.

ull ul2 [ (1 02)2 (1—c1 *
Second, for ¢y € [¢%!, ¢4?], we have RY = max{2(2a2+b) 5 2a1+b)} and R}
(2—61—62)2 o (2—61—62)2 _ (1—02)2 : 52 Hy (2a1+2a2+3b)
Ty 1202 1+20)° Define H7 = a1 1202126)  2(2az4b)° Since o2~ 2Qaxtb)(a1t2antah) 0
9H7 _ (2a102+2a3+3bay+5bas+4b2)(1—c1) w12 OH7
and = S Gm D) (e o) (e et T 0 at co = c%*, we have 5 > 0 for

u11)2 (1 Cu11)2

wll  ul2 (2—c1—cis 1
¢z € [y, ¢p7], and H7 > (a1 t2a0420)  2(2asib) 16(2a2+b)(a1+b)2(a1+2a2+2b)[<

203 + 10a3ay + 20103 + 22bagag — 3ba? — 3bai + 8b%as)(1 — ¢;)?] > 0, which imply

3
—203 —

(2—c1—c2)? (1—c _ (2—c1—c2)? (1—c1)? .
Tar ooy ion) > (2(122% On the other hand, define Hs = jZ=50n — o220, Since
OHg __ —(2—01 CQ) (2 c1— Cu212)2 (1 01)2 o

9es = 3 taaatony < U, we have Hg > gr=sieays — 550y =

(4a%a2+16b2a1+5b0€78b2a2711ba§+8a1a§+22ba1a274a§)(1701)2 .
(201 75) (o1 1202 1.95) (@1 L3 120)° > 0. Thus, the two-part tariff scheme
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is better than the unit-fee scheme for ¢, € [¢%!, ¢%?].

Third, for ¢, € (3%, ¢x2), we have RY = (Z;i);) and Rf = m Define
H9 = (Ru R*) = 201264231)2) o 4((04214204;:121)) Since 8(’290%[9 - 2((15?:;11);231%;3;12@ > 0 and
%—i? = (a;fbc)“g(; Z?fg;i%b) < 0 at cg = ¢e2, we have %—1529 < 0 for ¢3 € (c%?, ¢e), and
H, gl(;;fzj — 48::;12;&2:3);,,) = (53(%;3%2:?2;1;:;2) > 0. Thus, the unit-fee scheme is

better than the two-part tariff scheme for ¢y € (%92, ¢u).

Fourth, for ¢y € [¢e2, €e), we have RY = é};;j)b) and R} = ;Mi—aiw As in Case
u _ (1-c2)® x _ _(2-c1—c2)?
1, we have R} = i) > R = (201t 120"

Fifth, for ¢y € [ér, ¢c2), the unit-fee scheme is better than the two-part tariff

scheme as shown in Case 1.

Sixth, for ¢s € [Ce, Ce2), there exists no equilibrium two-part tariff scheme. Thus,

the unit-fee scheme is better.

The outcomes of the six parts above are summarized below. The unit-fee scheme

is better than the two-part tariff scheme for ¢y € (¢1, ') with RY = 1a er)b) The

two-part tariff scheme is better than the unit-fee scheme for ¢, € [c!, ¢?] with

R = % The unit-fee scheme is better than the two-part tariff scheme for

¢y € (c?, Ceo] with RY = éi;;j)b). The unit-fee scheme is better than the two-part

[(2(11 “+ag —2b) — (a2 —b)cl — (2&1 —b)02]2
4(20{1 +a9 —2b) (2&1042 —b2)

tariff scheme for ¢y € (Cu, €] with RY = . Finally,

the unit-fee scheme is better than the two-part tariff scheme for c¢o € (Geo, Ceo) with

U (02701)[(2(11 b)+bcl 2&162}
RC - (20{1 b)

Comparing the better scheme above with the fixed-fee scheme :

2a2—b)—2 bea]? 47 - 4
Lemma 15(iii) shows R/ = [ 0‘82(12()2&1?;1;)62] for ¢y € (c1, ¢y iff ¢y > ¢, RS =

1—c2)[(2aa—a 20i0+b)c1+ (a1 +b)ca] 4 (1—c1)[(201 —cx ag+b)c1 —(2a1+b)c
(1—c2)[(2a2 1()2a(2+5)+)1 (oa+b)ca] for ¢5 € (c 52’ C2) Rf D[(2on 2()22(14-21;)2)1 (201 +b)ca]

2a1—b)+bei —2 1 —
for C2 € [ 52? (32) and Rf : a81061()22100127£;1)62] for G2 € [0527 CCQ)'
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Some calculations show min{c*d!, ¢} < max{c/y, 42} < 3 < ) < ¢y <

Cez < Cez. Thus, we need to discuss the following five intervals.
(1—c1)?

2(0{1 +b)
[(20{2—1)) —2ai0c1 +b02]2

First, for c3 € (c1, ¢%'), one equilibrium unit-fee scheme exists with R% =

and two equilibrium fixed-fee schemes may exist with R/ = S (201055 or
_ (1=c2)[(2a2—a1)—(2a2+b)c1+ (a1 +b)ca] (1—c1)? [(2c2—b)—2azc1 +bez]? .
RS = 20202 1(2a2+b2)2 12l Define Hyy = 2(a1J1rb) 82a2(2a1a22_1b2) 2L Since
OHyg _ —b[(2aa—b)—2asc1+bes] _ (1—c1)? [(20i2—b) —2aia¢1 +bea]? (1—c1)?
86;0 — 4;22&1&2 21;21) 2l <« 07 we have H10 = 2(a1i-b) - §a2(2a1a22—1b2) 2l > 2(041_1_6) _
[(2a2—b)— 2a201+bc“11} _ (16a§a§+8ba1a§+8ba%a2+6b2a1a27b2c@79b2a§74b3a174b3a274b4)(1701)2 >0
8a2(2a1a2 b2) 32&2(2&10&27()2)((114»1))2 :
_ (1—c1)? _ [(2az—b)—2aaci +bca]?
These imply RY = alib) > R/ = 82a2(2a1a22_1b2) 2
1—c1)?  (1— 202 —a1)—(2a2+b)cr1+(a1+b) oH
Define Hy, — é(aﬁ_)b)_( c2)[(2a2 041()206(2_"?4;)2 e+ (a1 +b)ea) Since 1 ;1 — (2a21—|—b) [—(20(1—
—(2a1—20+b)—(2a2+b)c1 +2(a1 +b)cdt +b)(1—
209+b) = (200+b)e1+2(n b)cp| < —EREes Fetentiontien _ (o feiilea) o
(1—c1)? (1-c4)[(2a2—a1)—(2a2+b)e1+(a1+b)ciat] 1
0, we have Hy > 5=4 — Gas T 21— 4(a1+b)(2a2+b)2[(1 _

) (ad 4 5a3 — 2aran + 2bay + 2bag + 26%) (1 — ¢1)?] > 0. Thus, for ¢y € (¢, ¢4t), the

unit-fee scheme is better than the fixed-fee scheme, and thus the optimal contract.

Second, for ¢y € [c4!, ¢%?], one equilibrium two-part tariff scheme exists with
R = % and two equilibrium fixed-fee schemes may exist with R/ m
[((2cy — b) — 2ag¢; + beg)? or RE = (1_02)[(20‘2_al()ZQ(QQfIf)er)ClJr(aler 2 Define Hyy =
ol taael Since Y2 = ey [~ (2004D) (a3
20102 + 1lbajay — ba? — 4b%ay + 20%ay — 463)(1 — ¢1)] < 0 at ¢ = %', and
e = e miaa 2 < 0 at e = i, we have Hi >
Af?c;i;::i);) o [(20428;1;)(;36?;21:;;332]2 - 40‘2(01"!‘062-1—217)2(Oél'lf‘zoé2+2b)(20‘10‘2_b2) [(2ata; +4a105 —

205+ 3bad g + 120 2 — 5bais + 8b2 iy — 4b% a3 — 203y — 4b3 s — 4b%) (1 —¢1)?] > 0 due
t0 S = dayaj 44 +12ba3 +8b*ag + 6bay g — 26° > 0 and G = 4aj +10bai +40%a3 —
6b%ay — 4b* > 0 at a; = ay, where G = (2aiad + 4ana3 — 205 + 3baZay + 12bar a3 —

5bas + 8b%anan — 4b*ad — 203y — 4b3a, — 4b*). Moreover, since [(MSQ;’()z;?zzcj;;lgcﬂ —

(1—c2)[(2aa—an)— (202 +b)c1+(a14+b)ca]  [(daras—4aZ—b2)+2a2(202+b)cr — (4o aa+2bag —b?)ea]? > 0. we
(2a2+b)2 - 8a2(2a1a2—b2)(2a2+b)2 ’
(2—c1—c2)? [(20i2—b)—2aac1 +bea]? (1—c2)[(2a2—a1)—(2a2+b)c1+(a1+b)ea] wll  wul2
have 4(a1+2a2+2b) > 8az(2c1 g —b2) > (2a2+b)2 for G2 € [CCQ v Ce2 ]

Thus, for ¢, € [¢%4!, ¢%}?], the two-part tariff scheme is optimal.
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Third, for ¢; € (c%?, €], one equilibrium unit-fee scheme exists with R* =
(1—62)2 (20&2—b)—2&201+b02]2
2(aa+b)? 8ag (2a1 g —b2) )

1—c2)[(202—a1 ) — (2aa+b)e1 +(a1 +b 1—c1)[(201 —az)+(aa+b)er —(2a1+b
RZ _ (1=c2)[(202 al()2a(2f5)2 )e1+(an )cz}7 R(J: _ (e[ az()Qa(lOfb)Q)q (201 )02]7 or R(J; =
[(20&1—1})—‘,—1)01—2&162]2
8a1 (2a1 g —b?) ’

and four equilibrium fixed-fee schemes may exist with R/ = [

_ (1=c2)?®  [(2a2—b)—2asc1+bey]? . 82H;3  (8a1a3—5b2ax—b?)

Deﬁne H13 - 2(a2+b) 8052(2041&2—172) ! Slnce 8::3 - 4a2(a2+b)(2a1a2—b2) >0 and
OH13 _  —(4a3+3baz+b?)(1—c1) _ f4 OH, f4 _
90 = (o th){arantzbas—57) < 0 at 2 = ¢y, We have F% <0 for co < ¢, and Hyg =
(1—c2)®  [(2a2—b)—2aac1+bea]? (1—cf)?  [(2as—b)—2aser+beh] _ 1 [2(4a3+
2(a2+b) 8042(20{10{27b2) 2(a2+b) 8042(2041&27{)2) - (a2+b)(4a1a2+2ba27b2)2 2

4ba2 — 20102 — 2bagarg 4 20205 + 3 (1 — ¢1)%] > 0 for ¢, < ¢y with ¢y < ¢ . These

imply R* > R/.

Defining Hy, — é};;i);)_(1762)[(2042*011()2;(224(:‘%[)2);’1))01+(al+b)02]' Since 02812%14 _ (a2+b)(12042+b)2
[4a2 + 29 + 2bary + 6bas + 3b?] > 0 and a;g“ = _(S;Eg;?;)zjﬁ)bé)i:;) <0atc = cg’,
we have 3%124 < 0 for ¢ < 6523, and Hyy > (21(;2%)2 - (1_62)[(2a2_m%;oiﬁ;b)q“aﬁb)cg -
(4a§*20&13?;{?2‘)2(;2’1’115;#)(1701)2 > 0. Moreover, we have é};;i);) > (2a11+b)2 {(T=c)[(201 —

—C: 2 a1 — C]1—z(x1C 2
) + (g 4 b)ey — (204 + b)ey]} for ¢ € (cy, ¢/y) and éiagi)b) > 12 éallz)zziész;) 2l for

¢y €[]}, €] by the outcomes of Case 1. Thus, for ¢; € (€42, ¢, the unit-fee

scheme is optimal.

Fourth, for co € (€, Cw|, one equilibrium unit-fee scheme exists with RY =
[(2a1+a2—2b)—(a2—b)01—(2a1—b)02]2
4(2a1+a2—2b)(2a1a2—b2)
[(20c1 —b)+bcy —2a1 c2]?

, and one equilibrium fixed-fee scheme exists with R/ =

[(2c1 +a2—2b)— (a2 —b)c1 —(2a1 —b)ca)? (2a1 —b)+bcy —2a; c2]?

. Asin Case 1, we have > |

8011(2041042—1)2) 4(2a1+a2—2b)(2a1a2—b2) 8011(2051042—1)2)

These suggest that the unit-fee scheme is optimal.

Fifth, for ¢o € (G2, Ce2), one equilibrium unit-fee scheme exists with RY =

(cg—cl)[(Zoq —b)+bey —2a102]
(2a1—b)?2

[(2a1 — b) + bey — 2a65)?. As in Case 1, we have R* =

[(2a1 —b)+be1 —2a c2]?
8a (2a1 g —b?)

, and one equilibrium fixed-fee scheme exists with R/ = m

(c2—c1)[(20c1 —b)+bc1 —2a1 c2]
2—C1 (210[1_17)2 1 e2]

. Thus, the unit-fee scheme is optimal.

Case 4: Suppose (2as —aq) < 0.
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Comparing the two-part tariff scheme with the unit-fee scheme :

Lemma 14(iii) shows that R* = [(“ﬁi‘{;l‘_ﬁ’;g(fgf)@”;j;(022)” 2l for ¢, € (c1, ') if

(o +6bayap—9bas—Ta a3 +8b*as—6aias—bat) > 0, RY = [(0‘1ﬁﬁﬁf;g(fgz)&b;i;g)é;b)cﬂ

forco € (c1, ), RY = ;};Ci);) for ¢y € (%, 1) if (a3 +6bayag—9bas—Ta s +8b*an—

(1— 62)2 (1—01)2 [(a142a2—2b)—(2a2—b)c1 —(a1—b) Cz] } for

6aias — ba?) < 0, R* = max{2

(2ci2+b)? 2(2a1+b)’ 4(a1+2a2—2b) (2a1az—b?)
wll u12 u o (1 02 wl2 - u [(2a1+a2 26) (a2 b)01 (20&1 b)CQt]
G2 € [002 1 Ce2 ]’ R az+b) for ¢, € ( Ce2™s ] R 4(201 +az—2b) (200 s —b?)

(02701 ) [(2041 7b)+b61 72(1102]
(2a1—b)?

for co € ('€, Ce], and R}; = for co € (Cea, Cea).

On the other hand, Lemma 13(iii) shows that R} = ay + 20 — 2b) —

1
4(2a1 a2 —b2) [(

—c1—c2)?
2(2a — b)ey — 2(ay — b)ey — 2beien + 20t + a3 for ey € (e, ], RE = m

A x _ (2—c1—c9)?
for ¢y € (cy, ¢2), R = o Fan T3]
12(a1+aa—b)(1—r¥)—(202—b)c1 —(2a1 —b)ca
rel
C 4oy o —b?

for Cy € [écg, 02) iff Cen < 602, and R: = 2fc* +

| for ¢y € [Cea, Ce2).

ull

By some calculations, we have ¢4? < ¢! and %! ul2

< ¢%? < min{ée, o} <

max{¢e, e} < Co < Cua < Cuy < G as shown in Case 3. However, relative sizes of
¢, and ¢4? and of ¢, and ¢%}! are unknown. Thus, we need to discuss the following

five intervals.

First, if ¢ € (c1, ¢%') and (af +6bayag —9bad — Tayad + 8%y — 60 iy —bad) > 0,

then we have cJ' < ¢,. Under the circumstance, one equilibrium unit-fee scheme exists

: u o [(a1+2a2—2b)—(2a2—b)c1—(oq—b)cz]g o1e . .
with R} = (017207 —5) o g 5 , and one equilibrium two-part tariff scheme
. . x (a1+2a2—2b)—2(2a2—b)61—2(041—b)cg—2b0102+2agc%+a1c% . w £\
exists with R} = TG0 ) . Since (R — R}) =

4(;1(?2—;?—)2217) < 0, the two-part tariff scheme is better.

By contrast, if (a3 + 6bajag — 9ba3 — Tayas + 8b ay — 6aiay — ba?) < 0, then

1

¢y can be less than ¢%'. Two equilibrium unit-fee schemes may exist with RY =

[(al+io([i1__ig)a_2(_2§§)g£;;(_ablz;b)%] or R = —1a erb for ¢y € (¢, c“1). On the other hand,

two equilibrium two-part tariff schemes may exist with R} = m [(a1+2a5—2b)—
2(2a — b)ey —2(a — b)eg — 2beycg + 2903 + 3] or R = % for ¢y € (cy, ¢e2)
ull (1—c1)? (2—c1—c2) ull

iff ¢, < ¢%'. As in Case 3, we can show for c; < ¢, and

2(a1+b) (Oc1+20¢2+2b)
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(14202 —2b)—2(2a2—b)c1 —2(a1 —b)ca—2bcy ca+2aac3 +aq > [(a1+2a2—2b)—(2a2—b)c1 — (a1 — b)02]2

4(2a1a2 b2) 4(a1+2a2 2b)(2a1a2 b2)
_ (1=c1)? . (a1+2a2—2b)—2(2a2—b)c1—2(a1—b)cz—2bc162+2agc%+a102 OHis
Define Hqs = a1 ) 1(2aron ) . Since o =
(a1—b)+bci —aica > (a1=b)+bci—a1c!t  (a2+2a102—2b%)(1—c1) > O H _ —(a1—-b)(a1—2a2)(1—c1)?
2(2a1a2—b2) 2(2a1 a3 —b?) " 4(a14b) (201 a2 —b?) 15 = 7 4(a1+b) (2aron—b2)
. . (a172a2)(1701)2 . . 60(10(276%?70110{2 4b ag)(1701)2
<0Oatcy=1c¢, Hs= T A th)? >0atcy = Ce) Hi5 = 16(a170)% (201 0 —b2)
(<) 0 iff (6afay — al — aja3 — 4b%ay) > (<) 0 at g = %', and Hi5 = 0 at
(@20 +b(ar+b)er—(1—c1)y/ (a3 —b2)(20100—b%) ol
Cy = A CTET)) = Ce2, we have Hy; < 0 for co = ¢y~ if

(6a2ay — af — o — 4b%as) < 0, His < 0 for ¢y < G, and Hys > 0 for ée < ¢y < ¢4

if (6atag —ad — ajal — 4b%ay) > 0.

Thus, if (602 — a3 — aja3 — 4b%ay) < 0, the two-part tariff scheme is better than

the unit-fee scheme, and so is when (6a2ay — a3 — aja2 — 4b%as) > 0 and ¢y < Ceo.

However, the unit-fee scheme will be better if ¢ < ¢y < 4.

Second, for ¢ € [c¢!, ¢%?], one equilibrium unit-fee scheme exists with R =

(1— 02)2 (1—81)2 [(041+2a2—Zb)—(2&2—1))61—(&1—1))02]2

max{2 502 10)7 22a11D)’ Ho1 203 2b) Garas ) }, and two equilibrium two-part
tariff schemes may exist with R} = (o1 +207 —2b) ~2(20a2 bzféafggl bZ))CQ 2bercatoncitoncy
R: _ ((jlf;agi%) Since (a1+2a272b)72(2a27b2&12;féc;1;l;))cz 2bclcg+2agcl+alc§

> [(al+240(215222(—2;72)(22?;—2(—6212?)62] g 4<(§1f§a§i)zb) > max{zlmizz)v 2(12ajl+b)} forc; € [eiy", ciy?

and the results derived in Case 3, the two-part tariff scheme is better than the unit-fee

scheme.

Third, for ¢; € (c%?, '¢.], one equilibrium unit-fee scheme exists with R* =

éé;;i);), and four equilibrium two-part tarift schemes may exist with R} =

(01202 —2b)—2(209— blc(lzafigl bg))cQ 2bcica+2ac? +ancd i ¢y > 02212, R = 4(5;5(1261)221)) R* —
4((22;‘1—% iff ¢eo < Ceoy, and R = 2fF + [2(a1+a2 b)(A~ za)la(jaZQ bler— (21— bcg] As in
Case 3, we can show (};Ci); ((j;f;;;f;b)’ é%;;i);) 4((22;12;;:33;)7 and laTci)bQ) >
2fc* + r:[2(a1+a2—b)(1 1:102105220422 b)er—(2a1— b)cz]

Note that (¢, — c4?) = (bo1~20} —3bas)(1-c1) it (bay — 202 — 3bay) > 0.

c2 (a1+b) (a1 +a2+2b)
- (1—02)2 . (a1+2cx2—2b)—2(2a2—b)cl—2(a1—b)02—2bclcg+2agc%+alc§ . 82H16 o
Define Hqig = S(aath) H2aron 1) . Since 23" =
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(3a1a27ba17262) OHig __ 7(3a2+b)(1701) — /" _8H16
S(an b @mas 5 > U and e = ooty < 0 at ¢ = Co, we have S51¢ <

(Ga%+4ba2—alag—boq)(l—cl)2
4(a2+b)(a1 +b)2

0 for co < ¢, and Hj has the minimum value < 0 by

(bay — 2a2 — 3bay) > 0 at ¢y = . However, since the sign of His at ¢y = ¢%? is

uncertain, we have two situations below.

If (bay — 203 — 3bay) >,0 then the unit-fee scheme is better (worse) than the

(1—62)2
2(a2+b)

2(2a — b)cy — 2(ay — b)eg — 2beycg + 20t + aycd] for g € (%2, )], and the unit-fee

two-part tariff scheme if

is larger (smaller) than m[(al + 209 — 2b) —

scheme is better for ¢y € (cj, €] By contrast, if (bay — 2a? — 3bas) < 0, then the
unit-fee scheme is better than the two-part tariff scheme for ¢y € (¢9?, ¢ ).

Fourth, for ¢y € (ce, Ce|, the unit-fee scheme is better than the two-part tariff

scheme with R = KzalZ?;;ﬁ)a;(:Jé;b;fg)z;iﬁlz;b)cﬂ2 as shown in Case 3.

Fifth, for ¢ € (€, Ce), the unit-fee scheme is better than the two-part tariff

scheme with RY = (02_61)[(2{';;_11’_)83261_20‘102} as shown in Case 3 again.

Comparing the better scheme above with the fixed-fee scheme :

Since the equilibria of Lemma 15(iv) are parts of those of Lemma 15(iii) as shown
in Case 3, the better contract obtained in the above steps is optimal for the port

authority.

Finally, the outcomes of Cases 1 and 2 prove Proposition 4(i), the results of Case

3 show Proposition 4(ii), and the outcomes of Case 4 verify Proposition 4(iii). O

Lemma 16. Given fee contract and minimum throughput requirement (r;, fi, &;)

offered to operator i, 1 =1, 2, operators’ optimal behaviors are as follows.

(i) For ¢&; € [0, 5d1] with 8g = (27b)72(7'14tcl)12)+b(r2+02) and &9 € [0, 5(12] with 84y =

(2_b) _2(""2 +c2)+b(r1+c1
4—b2

), both operators’ equilibrium cargo-handling amounts are ¢, = a1

and qjy = Sdg, the equilibrium service prices are py, = ¢; + 1 + qy > 0, and their
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equilibrium profits are w5 = (¢3)* — fi for i =1, 2.

(ii) For &, € [0, l_b‘b%] and 9y € ((5 42, %), both operators’ equilibrium

cargo-handling amounts are ¢ = H)(SQQ# and @y = 02, the equilibrium prices
are ph = % >0 and pjhy = [(2_b)_(2_b22)52+b01+br1] > 0, and their equilibrium

profits are T = (‘J§1)2 — f1 and Thy = 52[(2—5)—(2—1)2)52—22(7“2+02)+b(7"1+01)} — fo.

(iii) For &, € (5d1, %) and 9y € [0, 1_1’&#], both operators’ equilibrium

cargo-handling amounts are ¢ = 61 and gl = 5222 the equilibrium prices

are ph = [e=t)-(2= bz)dﬁbcﬁbrz] >0 and phy = M > 0, and their equilibrium

2 —al(T C T C
51[(2—b)—(2-b2)81 22( 1+e1)+b(ratca)] fiand 7, = <qd2) — fo.

profits are mh =

(iv) For 01 € (%, 1 —bdy) and 6y € (M, 1 — bdy), both operators’
equilibrium cargo-handling amounts are q5, = 61 and ¢y = 92, the equilibrium service
prices are ph = (1 —01 —bdy) > 0 and ply = (1 —bdy — d2) > 0, and their equilibrium

profits are wh = 6;[1 — 6 —bd; —c; —ri] — fi for i, j {1, 2|i#j}.

Proof of Lemma 16: Denote L; and Lo the Lagrange functions of operators 1 and 2

in problem (46) with L1y = (1 — ¢ —bga — 1 — 1)1 — f1 + Mi(qn — 01) and Ly =
(1—q2—bqy —ca—12)qa — fo+ Aa(ga — 02), where Ay and A, are the Lagrange multipliers

for the operators. Then, the Kuhn-Tucker conditions for operator 1 are

oL oL
—=1-2—bp—c1 —r+ M <0, g =0, (A160)
Oq1 Oq1
oL, 0L,
—_— —01 >0, A =0 Al61
OV ' ) Vi (A161)
and for operator 2 are
L L
2:1—2q2—b(J1—02_r2+)\2§0,QQ‘Q:O, and (A162)
0q2 g2
8L2 aLZ
= g >0, \y- — = 0. A163
(9)\2 =(q2 — 02 =2 U, A B ( )

Based on the values of A\; and Ay, we have four cases as follows.
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Case 1: Suppose A\ = 0 and A5 = 0. Then (A160) and (A162) suggest (1 — 2¢; —
bgo — ¢y —r1) = 0 and (1 — 2gy — bgy — ¢o — 1r2) = 0. Solving these equations yields

Qn = (27b)72(7ﬂ1t?2)+b(r2+02) and ¢}, = (24))72(T24t%22)+b(h+01). To guarantee ¢j; > 0

and ¢}, > 09, conditions 0 < 6; < dg = (2_b)_2(rtlt?2)+b(m+02) and 0 < 0y < dpp =

(2—b)—2(r24c2)+b(r1+c1)
4—b2

201+ b(ry + )], and g, > 0iff ro < 7o = 2[(2—b) — 22 + b(ry 4 ¢1)]. Substituting ¢,

are imposed. Moreover, we have ¢}, > 0iff r; <7y = 3[(2—b) —

and ¢}, into (1)-(2) yields p5; = ¢; +r; + ¢, > 0, and into (4) yields 7% = (¢3;)* — f;
for i = 1, 2. These prove Lemma 16(i).

Case 2: Suppose A7 = 0 and A5 > 0. Then (A160), (A162), and (A163) suggest
(1—2(]1—6(]2—01—7’1) :O, (1_2q2_bq1_C2_T2+)\2) :0, and ((D-(Sg) = 0.

(1—bd2—c1—r1) 4-b?)(62—842)

Solving these equations yields ¢, = 5 . @y = 02, and A5 = ( 5 .

To have A5 > 0, conditions dy > 5d2 and r < 74 are needed. On the other hand, to

1—bda—c1—71)
2

have ¢}, > ¢, condition d; < ( is needed. Moreover, we have ¢, > 0 iff

11 < (1—=0bdy—cq). Substituting ¢4, and g}, into (1)-(2) produces pj; = w >0

= [(2_b)_(2_b22)62+b61+b”] > 0 iff 69 < —(Z_bz;_bg?)”l), and into (4) gives 7}, =

(q5)*— f1and 7, = 52[(Q_b)_(2_b2)62_22(T2+C2)+b(”+01)] — fo. Thus, the plausible range for
6y is 6, € [0, 1=2za=n] and for dy is 5y € (5d2, W) These prove Lemma

2 (2—b2)
16(ii).

and pj,

Case 3: Suppose A] > 0 and A5 = 0. Then (A160)-(A162) suggest (¢ —d;) =0, (1 —
2¢1 —bga —c1 — 11+ A1) =0, and (1 —2g — bgy — ca — r2) = 0. Solving these equations
yields @i = 01, qlp = S22 and Af = 1(4 — b%)(8; — 641). To guarantee A > 0,
conditions 6; > 5d1 and r < 74 are needed. On the other hand, to have ¢}, > 0o,

< (1—b61 —co—12)
— 2

condition d, is needed. Moreover, we have ¢}, > 0 iff ro < (1 —

bdy — ¢2). Substituting ¢}, and ¢}, into (1)-(2) produces ph, = M > 0 and

P = [(2_b)_(2_622)51+b62+br2] > 0iff 0, < %, and into (4) gives 75y, = (¢fy)*— fo

and 75, = ‘51[(2_b)_(2_”2)51_22(7"1+01)+b(’"2+62)] — f1. Thus, the plausible range for 9y is
dy € 0, %], and for &; is 0; € (Oa1, %) These prove Lemma

38



16(iii).

Case 4: Suppose A} > 0 and A3 > 0. Then (A160)-(A163) suggest ¢, = 01, ¢y =

dg, \J = =142 +bds+c1 + 71, and A5 = —1+4 202 + bdy + ¢ +12. To have A\ > 0 and

1-bds—c1—r1 (1—b61 —ca—12)
2

A > 0, conditions d; > ( 5 ) and Oy >
¢y = 01 and ¢, = d5 into (1)-(2) yields pi; = (1 — 6, — bdy) > 0 iff 6; < (1 — bds) and
Phe = (1061 —02) > 0iff 03 < (1—bdy), and into (4) gives w5, = 0;[1—8;—bd;—c;—ri]— f;
for i, j € {1, 2| i # j}. These prove Lemma 16(iv). O

are needed. Substituting

Proof of Proposition 5. Suppose 6, € [0, d41] with 64 = (2_b)_2(T14t%12)+b(T2+62) and d, €
[07 5d2] with 5d2 _ (2—6)—2(T1t%22)+b(r1+01)' Lemma. 16(1) implies fc}(l _ 71.21 _ %(qzl)Q > 0

and [}, = mi, = 3(¢j)* > 0. Thus, the problem in (49) becomes

maXy,, 1, 81, ra, fa, 82 fl + f2 + qu;l + qu:;Q

st 0 <0 <dar, 0 <0y < by, 0< 7y < Far, and 0 <y < Ty,
Its Lagrange function is
1 * \2 ]‘ * \2 * * : . _ _
L = 5(4a1)"+5(9a2)" 7@ +72-Gap+- A1 (01— 01) +A2(0az—02) + A5 (T —71) +Aa (Taz—72),

where A, A9, A3, and A4 are the Lagrange multipliers for the four inequality con-

straints. Then, the Kuhn-Tucker conditions are

oL 1
oL Tl D20 — (4= e — ey (12 58 22— ¥
= ao
2)\1 b>\2 b)\4 aL
— — — < — =
- tame Ty =0 T ey
oL

Bra = m[a +b)(2—b)* = bPe; — (4 —3b%)ca + 2b(2 — b*)ry — (12 — Bb?)ry]

b 29 b3 oL
_ )\, < R
+ (4 — b2) (4 — 52) + 5 )\4 ~ O, ] 87’2 0, <A165)
oL oL
— )\ < R Al
a5, A <0, 6 a5, 0, (A166)
oL oL
— )\, < i Al
a5, Ao <0, 6o a5, 0, (A167)
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oL oL

x = O 0= 0 A = =0, (A168)
g—i:édz—52zo, Az'aa—i:()a (A169)
g—i:ml—rlzo, Ag-g—izo, (A170)
P =T =120 Ao =0 (4171)

If A} > 0, then g—fl = —\; < 0and 07 = 0 by (A166). They in turn suggest gTLl = >0
and A} = 0 by (A168). It is a contradiction. Thus, we must have A} = 0. Similarly,
we have A5 = 0 by (A167). Then, based on the values of A3 and A4, there are four

sub-cases as follows.
Case la: Suppose A\ = 0 and \j = 0. Then (A164) and (A165) suggest

m[(l +0)(2=0)2 — (4 —3b%)c; — b3cy — (12 — 5b*)ry + 2b(2 — b?)ry] = 0, and

A (L 0)(2=0)" = bPer — (4 = 36)cy + 2b(2 — b%)r1 — (12 — 50%)ry] = 0.
(14b)(3—2b)—(3—2b%)c1 —bea
9—4b2
b)(3 — 2b) — bey — (3 — 2b%)ca] > 0. It remains to check whether r; < 74 and
(4—b2)[(3—2b)—3c1 +2bca]

Solving these equations yields 7, =

> 0 and r}, = g_ﬁ[(l +

4y < Tq2 hold. By some calculations, we have (71 — 73;) = Ty >
—b2)(3— _ec _ « —b2)[(3— c1—3c : o —
e ;8—4212()1 2) > 0, and (TdQ - 7“d2) = &2 )[(3(92_1721:22)b 1-3¢] > 0iff ¢ < ¢ =

w. In addition, (A168) and (A169) imply 8% € [0, 4], 0% € [0, duo], fi =

17(3-2b)—3c;+2b 17 (3-2b)+2bc; —3 . A .
5[( (2)—4212') 22 >0, and fj, = 5[( (;—41731) 22 > 0 iff ¢; < égz. Thus, for ¢ < Cas,

port authority’s equilibrium fee revenue equals
2(3 = 2b)(1 — ¢; — ¢p) — 4bciey + 3(c2 + ¢3)

R = 20— 15 = R, (A172)

Case 1b: Suppose A\ = 0 and A} > 0. Then (A164), (A165), and (A171) suggest

ame (L +0)(2 = 0)? — (4 = 3b?)er — bPep — (12 = 5b%)ry + 2b(2 — b%)ro] + bxi =0,
m[(l +0)(2=0)2 = b3c; — (4 —3b%)cy + 2b(2 — b*)ry — (12 — 5b%)ry] — X; = 0, and

o — 3[(2—=b) — 2co + b(ry + 1)) = 0.
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(3 b)+bc1 3ca ,an d)\* _ 2[—(3—2b)— 2b61+302}

Solving these equations yields 77}, =

3(4-0%)

Note that 7, > 0 iff o < (S_b)T’Lbcl, (Fdl —rh) = W > 0, A > 0iff

oy > g with G20 G — % > 0, f5, = 0, and &% = 0 due to

bgy = G 2rptea)iblaten) _ o 1p addition, (A168) implies 6% € [0, d4] with

4—b2
(1—61)2
18

> 0. Thus, for ¢pp < g < %

5d1 = —1_361 and f;l =

, port authority’s
equilibrium fee revenue equals

(]_ — 01)2

=R (A173)

Ry=fa+ra-dm =
Case 1c: Suppose A > 0and A} = 0. Then, (A164), (A165), and (A170) suggestr’, =

Ta1 = w >0, Ty = 1?2 > 0, and \} = 2L §f’i+§§; 2beal <. Tt is a contra-

diction. Thus, no solution exists in this case.

Case 1d: Suppose A; > 0 and A} > 0. Then, (A164), (A165), (A170), and (A171)

suggest 15 =Tq1 = 1—cy, 15y =Tag = 1 —co, N = —2(1-c1) 0, and \; = —2(1-cs) _

a—5?) 4 b2)

However, A\ < 0 is a contradiction. Thus, no solution exists in this case.

Case 2: Suppose §; € [0, =02-¢="1] and §, € (Ous2, %) Then, Lemma 16(ii)
(= béchl —1)?— fi and 7, = 6_2[(2—5)_(2—b2)52—2<T2+C2)+b(7”1+01)]—
fip with 3, = J(=2259=)2 and fi, = 2[(2—b) = (2= b)02 — 2(r2 +¢2) +b(r1 +c1)].

We have fi; > 0 iff 1y < (1 —bdy — ¢1) with (1 — b0y — ¢1) < Ta1, fio > 01iff 5o <
(2—b)—2(ro+c2)+b(r14c1)
-t)

(2—b)+b(01 +T’1)
(2-0%)

implies 7}, =

(2—b)— 2(r(22+?2))+b(r1+01) <

= Sdz and ry < 7g. In addition, we have

. Thus, the problem in (49) becomes

* * * *
max Jaor t Jae +11ay + reqa
r1, f1, 01, 72, f2, 62

1, dgz < 0y < Do, 0<r <(1—=0b0y—c1), and 19 < Fyo.

(A174)

S.t.OS(Sl S

—b(SQ—Cl—T’
2
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Its Lagrange function is

ri (1 —0bdy —cy —r 1.1—bdy—c1—7r

I = 1( 22 1 ) T262 2( 22 1 1
1—0b0g —cy—7r .

2(7‘2+02)+b(7"1+01)]+)\1( 22 ! 1_51)+)\2(62_5d2)

+>\3<Sd2 — (52) -+ /\4[(1 — b62 — Cl) — Tl] —+ )\5(ng — 7”2).

(12[(2 —b) — (2= b%)dy —

)* +

Then, the Kuhn-Tucker conditions are

oL . (]_ - 37“1 - Cl) )\1 b>\2 b)\g b)\5 oL

ZZ_ = 2t M)At — M+ — <0, =0, (A175
o 1 > G- -t T gy, = 0 (AIT)
oL 209 23 oL
Jr_ 2 — < Al
o 2 A=) =9 ~rs 0 oy (A176)
oL oL
I S = =0 Al177
L
a—L = 1[2(1-6)—#2[)61 202+27’2— (4 3b2)52] —§A1+/\2—)\3_b)\4 < O 528 07
852 4 652
(A178)
(9L 1-— b52 — C1 — 8L
— — 6, >0, A =0 A179
a)\l 9 1 1° a)\l ) ( )
oL oL
= > Al
W =0y — 0g2 >0, Ay N =0, (A180)
oL ~ oL
27 > A181
B3y dg2 — 02 >0, Az~ o =0, (A181)
oL oL
a—)\42<1—552—01)—7’120, )\4'8—)\4207 and (A182)
oL oL
8_)\5 ng )] > O )\5 8_)\5 — 0- (A183)

Constraint d, > dgo in (A174) suggests A5 = 0 by (A180). If \¥ > 0, then g—éf‘l =-X\ <0
and 07, = 0 by (A177). They in turn suggest g—i = H’%ﬁ > 0 and A} = 0 by
(A179). This is a contradiction. Thus, we must have A} = 0. Similarly, if A} > 0, we
have r}, = 740 by (A183) and Sg2 = 040 = 0, which contradicts dg < dy < 4. Thus,

we must have A\; = 0. Moreover, if A} = A\ = 0, (A176) becomes §& = % — (22/\3 <0.

Thus, we must have A3 > 0.

Based on the values of \4, there are two sub-cases as follows.
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Case 2a: Suppose A; = 0. Then (A175), (A176), (A178), and (A181) suggest

1-3r1—c
(U=fnme)  Bar) = 0, [ — Bis) = 0, 2(1 = b) + 2ber — 203 + 2 — (4 —
30%)0s] — A3 = 0, and §, = Ry (2717)72(7"(2;‘;22))%(”+Cl). Solving these equations yields
* 2+4+b—2b2)—2(1—b2)c1 —be * —c * 3—2b)+2bcy —3c¢ *
Tar = = 2)(3—(2172) ot >, T = 52 >0, b = : 2();—21721) 5 and A =

—b? — C1 —oC * * — C1 —oC * *
== )[(2(32_17)2;2){) +=22] Note that fi» = 0 due to dg, = . 2217():)?—221)1321) =, (1=bdgo—c1)—rgy =

—b)—c C: _ * —b2 — c1—3c . A _ — C

2181 thes) (é’)_%é)*b 2l > 0, (Taz — 1)) = 2 )[(3(32_1’)2222)6 180l > 0 ff ¢y < gy = B2 ng,wb o
and \; > 0 iff ¢; < ép. In addition, (A179) implies 05, € [0, U=522] and

% —b)—c1+bc
fa = %[—(1 —— 2]2

G209 > (0. Thus, for ¢y < ¢40, port authority’s equilibrium fee rev-

enue equals

5 —4b) — 4(1 — b)ey — 2(3 — 2b)cy — 4bcycy + 263 + 3c3
4(3 — 202)

o =R, (Al84)

Case 2b: Suppose A% > 0. Then (A181) and (A182) suggest 8%, = b4 and %, =

(1 — bd%, — c1) > 0. Substituting 6%, and 7%, into equations [(17321701) + (21’_’\,;‘2) — ] =

0, [% — o2y] = 0 and F[2(1 —b) +2bey — 2¢5 + 215 — (4 = 3b%)0] — A3 — Ay = 0 yields

Aj = 3[—(1 = b) + ¢1 — bea] < 0, which contradicts A} > 0. Thus, no solution exists in

this case.

Case 3: Suppose 0; € (5d1, %) and dy € |0, 1_1’51#] Then, Lemma
16(iii) implies 7 = 51[(2_6)_(2_b2)61_22(”+Cl)+b(r2+c2)} — fi and 75, = (q)? — f3, with
fn= %[(2 —b)—(2=0%)01 —2(r1 + 1) + b(ro + ¢2)] and f3, = %[1_1’&#]? We have

f;lkl > 0 iff (51 < (27b)72(r(12t?2))+b(r2+c2) = gdh and 1 < Tq1 and fJQ > 0 iff T2 < (1—1)51—62)

with (1 — bd; — ¢3) < Fgo. In addition, we have (Q_b)_2(r(12t?2))+b(m+02) < (Q_bz;fg?)M)
Thus, the problem in (49) becomes
max far + fao +1m1dq1 + 1205

T1, f1, 01, 72, f2, 62

7’2’ g1 < 01 < Ogr, 12 < (1 =001 —cz), and 1 < 7gy.

(A185)

St0§(52 S

1—b(51—62—
2
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Its Lagrange function is

1.1—0b61 —cy — )
L = 2(1—b8 —co—12) + 1101 + | L2 7Py Ao p) — (2 - 1?)d,
2 2 2 4
1—b51—02

—2(7’1 + C1) + b(TQ + Cg)] + )\1(

. 2 50) 4+ A8 — Sar)

+)\3(Sd1 - 51) + )\4[(1 —_ 651 — 02) — 7“2] =+ )\5(7(11 — 7“1).

Then, the Kuhn-Tucker conditions are

L & 2 2\ oL

F I S VI = S oSy =) B S (A186)

g_f; _ (- 322 —c) % B (4b_>\2b2) n (25_)\3[)2) ot % <0, 7y g_f; =0, (A187)
g—(i = i[Q(l—b)+2bcg—201+2r1 —(4—3b%)6,] — %4—)\2—)\3—5)\4 <0, 5135[1 0,
(A188)

g—é = -\ <0, 6 - g—é =0, (A189)
gizl_bélg@_”—@_o A SALl 0, (A190)

gi 5 — 05 >0, Ay gfz 0, (A191)

g—i O — 01 >0, A3 - SALB 0, (A192)
g—i:(l—bél—@)—mZO, )\4-3—){;:0, and (A193)

g){; Tar—11 >0, A5 - g)i) 0. (A194)

Constraint &; > dg; in (A185) suggests A5 = 0 by (A191). If \¥ > 0, then 3_61; =-X\ <0
and 07, = 0 by (A189). They in turn suggest g—i = H’%ﬂ > 0 and A} = 0 by
(A190). It is a contradiction. Thus, we must have A] = 0. On the other hand, if \f > 0,
we have 1%, = 74 by (A194) and dq1 = 0q1 = 0, which contradicts 8z < dy < d41. Thus,

we must have A} = 0. Moreover, if \; = Af =0, (A186) becomes gL =2 (22j\§2) <0,

which implies A5 > 0.
Based on the values of A4, we have two sub-cases as follows.
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Case 3a: Suppose A} = 0. Then (A186)-(A188) and (A192) suggest [W +

] = 0, (% — 2] = 0, [2(1-0)+2bcy —2¢1+2r1 —(4=36")d1] = A3 = 0, and &; =
da1 = (271’)72(7“(1;(22))”(7’2%2). Solving these equations yields %, = (2%7%22)(;3(21{);;’2)02*bcl >
0, 4 = 1?1 >0, &5 = % > 0, and \j = (2_172)[(2&2_6)2:22)1762_381] > 0. Note
that fi, = 0 by 05 = S8 (1 — by — ¢) — 1y = A5l > 0 iff

(2—b2)[(3—2b)+2bca—3c1]
4(3—2b2)

05 € 10, Uit and fi, = U 5E? > 00 ¢ < (1= b+ bey). Thus, for

c2 < (1=0)+bey, and (Fg — 1) =

> 0. Moreover, (A190) implies

ca < (1 —b) + bey, port authority’s equilibrium fee revenue equals

(5 —4b) — 4(1 — b)cy — 2(3 — 2b)cy — 4beycy + 3¢3 + 263
4(3 — 202)

Ry= = R (A195)

Case 3b-1: Suppose \; > 0, rj5 > 0, and 7, > 0. Then (A186)-(A188) and
(A192)-(A193) suggest [(1—3ro—co) + % — M) =0, [&—29]=0, 2(1-0)+

2 (2—02)
2b02 - 261 + 27"1 - (4 - 3b2)51] - /\3 - b)\4 = 0, 51 = Sdl = (2—b)—2(r(12—&;cl;12))+b(r2+02)7 and 9 =

(1—bd1 — ¢2). Solving these equations yields 7, = 5% > 0, 7, = [(2—1))-{-—301—202]7 o =

51> 0, A} = %8(1761) > 0, and A} = w Note that f;; = 0 due to
8 = 0m = 52, fr, = 0dueto g =0, N > 0iff co > (1 —b) +bey, 15, > 0 iff
¢y < 3[(2 = b) + bey] with (=0l (1 _p) 4 pey and (g — 1) = E2220e) 5 ¢
Thus, for [(1—b) +bey] < ¢2 < 3[(2—b) +bey], port authority’s equilibrium fee revenue
equals

(1—¢p)?

Ry =1y -0y = —— = ;. (A196)

Obviously, we have rj, < 0 iff co > [(24’;—%@] from the above. Thus, r}, = 0 for

large c9, and we have the following sub-cases.

Case 3b-2: Suppose \; > 0, 5 > 0, and 7, = 0. Then (A186)-(A188) and
(A192)-(A193) suggest [U1=5ra=c2) (b’\?’ A <0, 36 — 25 =0, 1[2(1—-0) +

4 2-b2) (2—-b2)
2b02 — 2C1 + 27”1 — (4 — 3b2)(51] — /\3 — b)\4 = O, 51 == Sdl — (271))72(T(12tcblz))+b(7q2+62)7 and
rg = (1 — bdy — o) = 0. Solving these equations yields 15, = w, rhy =
0, 65 = 1_13‘32 > 0, A\; = (2_1)231# > 0, and \j = [—(4—2b—b2);:21’01+(4_b2)c2]. Note
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that f = 0 due to 6% = g = =2 fr = 0due to gy = 0, A} > 0iff ¢ >

—2b—b? c —3ra—c — c1—2c . — c .
(4 21()4bb%;|—2b1’ & rg 2) | (;’_A,fg) — N = W <0 iff g > M with
[(2— b;ercl] S (- 2l(>4 b;g‘)i’ZbCl > (1= b) + bey, and (Fgy — 175)) = M > 0. Thus, for

cy > %, port authority’s equilibrium fee revenue equals

1
Ry=r) -0 = ﬁ(l —co)[—(1 = b) — bey + o] = Rg. (A197)

Case 4: Suppose 0, € (%, (1—"0bd9)) and 4§, € (%, (1—="561)). Then,

Lemma 16(iv) implies 7}, = 6;[1 — 6; — bd; — ¢; — ri] — fi for i, j € {1, 2 | i # j}.
51[1—51—1)522—(1”1-5-01)} and f;le _ 52[1—52—17(;1—(1”2-5-02)}

Accordingly, we have [}, = . Moreover,

f;l Z 0 iff 51 S [1-()(52—7”1—61] and 1 S Fdla and fC}kQ Z 0 iff 52 S [1-()(51— (T2+C2)]

and 9 < 7go. Then, the problem in (49) becomes

* * * *
max Jar T fao +r1ag + 72
r1, f1, 01, 72, f2, 02

1— b6y — 1 —
s.t. ( 52 9 a Tl) (51 [1 — b(52 — T — Cl] ™ S fdh
(1 — b51 — Cy — 7’2)

2

52 []_ - b(Sl (T’g + CQ)], and T2 S ’ng. (A198)

Its Lagrange function is

1—01— — 1—8, — _
I — T151+T2(52—|—51[ 51 b522 <T1+Cl)]+(sg[ (52 b(;l (TQ—FCQ)]

1—0bdy —c1 —
+/\1[51 - ( 2 9 a rl)] +/\2[(1 —b62 — T —Cl) —51] +/\3[52

1—0b0 —co—1r
_( ! 5 2 2)]—|—/\4[1—b51—(1“2-1—62)_52]+/\5(77d1—7’1)+)‘6(7:d2_r2)’

Then, the Kuhn-Tucker conditions are

oL 1 1 b OL

6T1 2(51 + 2)\1 )\2 )\5 -+ 2>\6 ~ 0, T1 87“1 O, <A199)
oL 1 1 b oL
_ = = — — — — < T = A2
(97‘2 2(52 + 2)\3 )\4 + 2)\5 )\6 = 0, T2 87‘2 O, ( 00)
oL 1 b oL
8_51 = 5[1 — 2(51 — 21)52 —C + 7”1] + )\1 )\2 + 2)\3 — b)\4 < 0 51 861 0, <A201)
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oL 1 b oL

5, = o[l 20— 20—+ SN =D+ A = A S0, 8 5 =0, (4202)
%:51_(1—1)52;(;1—7”1)207 Al.g_i:()’ (A203)
gi (1—bby—11 — 1) — 6, >0, Agg—izo, (A204)
88_){;:62_(1—1)51;02—7”2)20’ A3‘§—i20’ (A205)
55_1_551 (ra + ) — 8 2 0, A4-g—i:0, (A206)

g_i)—fdl—r1>0 s - g—i—o, and (A207)
g—){;zfdQ—T2>O X - gi 0. (4208)

Constraints % < 07 and M < 0y in (A198) suggest A\j = A5 = 0 by
(A203) and (A205). If XX > 0, we have %, = 74 by (A207) and d4 = 0. Then, we get
0 < (1 —=bbg —Tg1 — 1) < 1— 1)(1—1151—2—@—@ T o — bQ%. This is a contraction.
Thus, we must have A} = 0. Similarly, A\§ = 0 can be shown by (A208). Moreover, we
have gf =% — X2 <0by (A199), 8L %2 — A4 <0 by (A200), 6; > 0 and J, > 0 due

to 1 < 7Tgq and ry < rge. Thus, we must have A5 > 0 and A} > 0.

Then, (A199)-(A202), (A204) and (A206) suggest (% — o) = 0, (2 — \y) =
0, %[1 - 2(51 - 2b52 — C1 +T1] - /\2 - b/\4 = O, %[1 - 2(52 - 2b51 — Cy —|—7"2] — b)\g —

)\4 = 0, [(1 — b52 — T — Cl) — 51] = 0, and [1 — b51 - (7"2 + CQ) - 52] = 0. Solving
these equations yields 7, = 52 > 0, rj, = 52, 65 = (11;()1—%24;1)@ > 0, 65
—(17;()5)521)702, Ay = (A=b)—cidbey 4b()1 Cblj)bcz > 0, and \} = —(175()1411355)7@' Note that fi = 0 due to

0y = (L =003 — 13y — 1), fip = 0 due to 0y = (1 — bdg — 135 — c2), A} > 0 iff
<(1=b+bcy), (Tar — 7)) = —(2 bi2ertber (), and (7gp — 175y) = —(2 bitber—2¢; > () iff
o < 3[(2 =) + bey] with [(2—b) 4 bey] > (1 — b+ bey). Thus, for ¢; < [(1—b) + bey],

port authority’s equilibrium fee revenue equals

(1—e)[(1=b) — 1+ bea] + (1 — e2)[(1 = b) + bey — c]
41— 12

* * * * * *
Ry =130+ 05 = = R7.

(A209)
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By comparing port authority’s equilibrium fee revenues derived in Cases 1-4, we can

. . . .. . “ 3—2b)+2b
obtain optimal concession contracts. We first compare critical points ¢4 = %

(3—b)+bey
3

in Case la, ¢ g = in Case 1b, ¢z = (1 — b) + by in Case 3a, and ¢z =

2[(2 = b) + bey] in Case 3b. Since (€ 4o — Can) = @ >0, (g2 — Ca2) = @ > 0,

and (Cgo — Ca2) = w > 0, we have ¢z < Cga < Cgo < Cgo. Thus, there are four

situations below.

First, for co < ¢4, equilibria of R} in (A172) for ¢y < ég4o of Case la, R} in (A184)
for ¢y < 4o of Case 2a, R} in (A195) for co < ég4o of Case 3a, and R in (A209) for ¢, <

. . . « % —b)—c1+bca]? " * — c1—ca)?
¢q2 of Case 4 exist. Since (R:— R}) = % >0, (R5—Ry) = % > 0,

and (R5—R}) = [(i@%’ﬁ%’z‘;ﬂﬁ%? > 0, R%isoptimal. Thus, port authority’s best choices

x* __ l—cy x* __ l—co x _ (1=b)—c1+bca x _ (1=b)+bc1—ca x *
are 1y = 5, Th = 52, 0 = i O = o Ja =0, f =0, and

P 3 2(1-07) 21-62)
Ry = (1—01)[(1—5)—01+bﬁtg)—02)[(1_b)+b01_cz] in (A209). These prove Proposition 5(i).

Second, for ¢z < ¢ < 4o, equilibria of Rf in (A172) for ca < égo in Case
la, R% in (A184) for ¢y < é4o in Case 2a, and RE in (A196) for é¢g < co < égo of

Case 3b-1 exist. Since (R — R}) = (1_51)2 — (5_4b)_4(1_b)°1_ig’:gzg§2_4b5102+26%+3‘3§ and

O(R;—R3 3—2b)+2bc; —3 . . o
( = 5 4()3_2521) 2 > () for ¢g < ¢y < ég, we have (RE — R;) > U=al
(5-4b)—4(1-b)e1 —23—20lap—dberlar+26§+3E, (1) (1—c1)? i, _

4(3—202) 2 = 4(37%2)1 > 0. In addition, (R — R}) =

[(3—2b)+2bc1 —3ca)?
4(9—4b2)(3—2b2)

S iy = 32— b) b — 20, Oy = 5 fi = 0, fi = 6 = 0, and

Ry=rh 04 = % in (A196). These prove Proposition 5(ii) with ¢y € [¢g2, Caol.

> 0. Thus, R is optimal, and port authority’s best choices are r)}; =

Third, for ¢z < ¢a < égo, equilibria of Ry in (A173) for ége < ca < €49 of Case
1b and R in (A196) for ¢qe < ¢y < Cgo of Case 3b-1 exist. Since (R — R}) =

(1_51)2 — (1_601)2 > 0, R is optimal, the same as the second situation. These prove

Proposition 5(ii) with ¢y € (g, Ca2).

Fourth, for ¢y > &40, equilibria of R} in (A173) for ¢ge < co < ¢y of Case
1b and R in (A197) for ¢ > &g of Case 3b-2 exist. Since (Rj — R3) = (1 —
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c2)[—(1 = b) — bey + ] — U522 and 2HTE) - G0t < for ¢ > égy, we have

(R — R3) > (1 —co)[=(1 = b) — bey + ca] — (1_661)2 = (1_121)2 > 0 for g < cg < Cao.

Thus, for ¢g > ¢49, the port authority will only offer the unit-fee contract to operator
1 with v, = 3[—(1 = b) —bey + o], & = 52, fi, =0, and Ry = 1} - 05 =
(1= ¢)[—(1 = b) — bey + ¢ in (A197). These prove Proposition 5(iii). O

Lemma 17. Given two-part tariff contract and minimum throughput requirement

(’r, f, 6), operators’ optimal behaviors are as follows.

_ (1=c—17)

If 0 < A=e=1) 4pe equilibrium cargo-handling amount of operator k is ¢, = “——*,
gk = (1+n)

(14+n) >
(14+nc+nr)

T 0, and its equilibrium profit is

its equilibrium service price is  p =

T = (@) — f for k=1,2,....n

(i) If ¢ > (1(;;;), the equilibrium cargo-handling amount of operator k is gy =9,
its equilibrium service price is py = (1 — nd), and its equilibrium profit is T =

(1—=nd—c—r)d—f for k=1,2,...,n.

Proof of Lemma 17 The proofs are similar to those of Lemma 1, and thus omitted. O

Lemma 18. Suppose the conditions in (53) hold. Then we have 71, = nl(i;), [y =
ﬁ, and o, € € [0, (11+2 |. At the equilibrium, operator k will handle cargo amount
G = 1+2n > 0, charge price py, = 1?1;25" > 0, and obtain profit 73, = 2((11+;)1)2 > 0
for k=1, 2,...,n. Moreover, port authority’s fee revenue is R, = ;((11+2€n > 0.

Proof of Lemma 18: According to Lemma 17, we have two cases as follow.

1—c—r
1+n

f < (q)* — f, and hence f; = L) and 7y,

Case 1: Suppose § < Since 7, = 7, - =, = (q3)? — f, we have

> (. Then, the problem in (54)

)

becomes

n(gy,)*
max, —g— +rnf

(l—c—'r)]
(14n)

st. 0<r<r,=(1-c¢).

Its Lagrange function is L = g[(l(;:;)]z + rn[(l(l_j;;)] + A(7y — 1), and the Kuhn-Tucker
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conditions are

OL n(l—c—7r) n(l—c—r) ™

L
—/\<0,r-8—:()and (A210)

or — 1+n  (14+n)?  1+n - or
oL oL
o (I1—c—7r)>0, X- N =0 (A211)

According to the values of A, there are two sub-cases.

Case la: Suppose A* = 0. Then (A210) implies 7, = 2029 with (1 — ¢ — ry) =

142n

(A+n)(1—c)
14+2n
0, (11;22] Substituting r; into Lemma 17(i) yields g, = (11+_2(2 > 0, into (50) yields

_ (14n+cen)
Pk, = "112n

> (. Since no constraint is imposed on d;, it can be any number in interval

> 0, and into (51) yields 7}, = fy = 2((114531)2 > 0. At the equilibrium,

n(l—c)?

stz > V-

port authority’s fee revenue is R} =

Case 1b: Suppose A* > 0. Then (A211) implies 7 = (1 —¢) > 0 and \* = %ﬂl) <

0, which contradicts A* > 0. Thus, no solution exists in this case.

. Then Lemma 17(ii) implies ¢}, = ¢ with 0 < 1 and

l—c—r

Case 2: Suppose 0 > -

T = (1 —=nd —c—r)d — f. On the other hand, since 7;; = 7y = ... = 7, =
(1-=nd—c—r)d—f, wehave f < (1—-nd—c—r)d— f, and thus f; = —(1_"6;C_T)5 and
Top = M > 0. Accordingly, the problem in (54) becomes

max, s —na(kn;*cfr) +nrd

s.t. 0<r<(l—c)and I(Ii;;<5§1_—z_’“.

Since 0 < === implies r < (1 — ¢ —nd) and § > 1(1’;;" implies r > [1 — ¢ — (n + 1)d],

this problem can be reduced to
max;,, R= M +nro
st. [l—c—(n+1)d <r<[l—c—nd].

Due to aR > (), we have 75 = (1 —c—nd). Accordingly, at 7, we have f; = 7, =

l—c—rk

Tgn = 0, which contradicts f > 0. Thus, no solution exists in this case.

The solutions in Case 1 prove Lemma 18. O
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Lemma 19. Suppose the conditions in (55’) hold. Then we have 15 = 029 und

2
U _ (=9
dg =5~ >0,

charge price Py, = 17“ > 0, and obtain profit 7y =0 for k=1, 2,...,n. Moreover,

= 2" 5,

o :
port authority’s fee revenue is Ry

Proof of Lemma 19: The proofs are similar to those of Lemma 18. O

Lemma 20. Suppose the conditions in (53) hold. Then we have ff = (1 2 and

2(n+1)?
55 € [0, (11+n] At the equilibrium, operator k will handle cargo amount qgk = (1+n) > 0,
charge price pgk = 111'37;‘ > 0, and obtain profit ng ((11+2 s >0 for k = ceey M
Moreover, port authority’s fee revenue is Rg 2((1 632 > 0.0

Proof of Lemma 20: The proofs are similar to those of Lemma 18. O

Proof of Footnote 8 By letting ¢; = ¢ = ¢ and b = 0 in Lemma 1, we get optimal

cargo-handling amount ¢™ and equilibrium service price p™ for a monopolistic operator

under the two-part tariff scheme (r, f) as follows.

Lemma 21. Given two-part tariff scheme (r, f) and minimum throughput guarantee

0, we obtain the following optimal behaviors for a monopolistic operator.

(i) For 6 €0, Sm] with 8, = 1’7"’0, the operator’s equilibrium cargo-handling amount
: _ 1= Iy — Lirt 10
is @7 = =5 = Om, equilibrium service price is p™ = =F= > 0, and equilibrium

profit is ™ = (q )
(ii) For § € (5m, 1), the operator’s equilibrium cargo-handling amount is ¢ = 0,
equilibrium service price is p™ = (1 —6) > 0, and equilibrium profit is = = (1 —§ —

c—r)d— f.

Based on these outcomes, the port authority will choose (™, f™, ™) to solve the

problem of

maxy r & f—i—?"qm
s.t. 0<0<1,0<r<(l—¢),7m>0, and0< f<7™,
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The solutions are listed in Lemma 22.

Lemma 22. Suppose r < (1—c¢). Given (¢™, ™) in Lemma 21, the port authority’s

optimal concession contract is the unit-fee contract with r™ = 09 gnd om = 20)

2
_ a=o?

At the equilibrium, port authority’s equilibrium fee revenue is R™ 7

Proof. According to the sizes of 4, we have two cases.

Case 1: Suppose § € [0, 5m] Lemma 21(i) implies f™ = %(qm)2. Thus, port authority’s

problem becomes

max, r s %( ) + rq™

s.t. O§5<5mand()§7“§(1—c).

Its Lagrange function is L = £(¢™)* + rq™ + M (O — 8) + Xo[(1 — ¢) — 7], where A\,
and A\, are the Lagrange multipliers associated with the two inequalities. Then, the

Kuhn-Tucker conditions are

g_f_¥_%_)\2go,r.g—f—o, (A212)
g_f;:_)\lg()?g.g_f;:o, (A213)
g—i—ém—(szo, AL - gfl 0, and (A214)
g—i (1—¢)—r >0 A gi 0. (A215)

Based on the values of A; and Ay, we have four sub-cases.

Case la: Suppose A\] = A5 = 0. Then, ™ = (I;C) > 0 by (A212). It remains to

check whether v < (1 — ¢) holds. We can show r™ < (1 — ¢) by some calculations.
Accordingly, 6™ € [0, &,,] with 6™ = % and f™ = =2 > 0, and port authority’s

equilibrium fee revenue is

_ fm—f-qum _ (1 _0)2. (A216)
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Case 1b: Suppose A} = 0 and A > 0. Then, r™ = (1 —¢) > 0 by (A215). However,
we have \j = # < 0 by (A212), which leads to a contradiction. Thus, no solution

exists in this case.

Case 1c: Suppose A} > 0 and A5 = 0. Then, 6™ = §,, > 0 by (A214). This in turn
implies A\ = 0 by (A213), which leads to a contradiction. Thus, no solution exists in

this case.

Case 1d: Suppose A} > 0 and A\j > 0. As in Case 1b, we have A} = 0 by (A212),

and no solution exists in this case.

Case 2: Suppose § € (b, 1). Lemma 21(ii) implies f™ = w. Thus, port

authority’s problem becomes

0[1—0—r—c]

max,. f s rd + 5

s.t. o <6 <land 0<r < (1—c).

Its Lagrange function is L = T§+w+)\1(5—5m)+)\2[(1—r—c) =]+ A3[(1—c)—7],
where A1, Ao, and A3 are the Lagrange multipliers associated with the three inequalities.

Then, the Kuhn-Tucker conditions are

e (4217)

%:<1_25;C+T)+A1—A2§0,5-2—?:0, (4218)

%Zé_stO’A“S_ALl:O’ (4219)

g—i:(l—r—c)—ézO,)\g-g—i:O, and (A220)
oL oL

=(1—-¢c)—7r>0, Az~ 0. (A221)

0 s
Since 0,, < 6, we must have A = 0 by (A219). If A3 > 0, then ™ = (1 —¢) > 0 by
(A221) and 6™ = 0 by (A219) and (A220). However, (A217) suggests 7™ = 0 due to

%—f < 0, which leads to a contradiction. Thus, we must have A5 = 0. On the other
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hand, if A5 > 0, then 2& =

o g < 0, which contradicts the requirement of § > om > 0.
Thus, we must have A} = 0. Under the circumstance, (A217), (A218) and (A220)

imply g =X, Ao = (17262—7(:”), and

rm = (1;) <(1—=¢), 0" = %, and \5 = (110) > 0 with (0™ — 5m) = % > 0 and

(1 —r —¢) = 6. Solving the three equations yields

f™ = 0. Thus, port authority’s equilibrium fee revenue is

(1-¢?

(A222)

Comparing R™ = % in (A216) and R™ = % in (A222), we obtain that port

authority’s best choice is the unit-fee contract defined in Case 2 with R™ = %. a

Finally, since port authority’ equilibrium fee revenue in Proposition 1 with ¢; =

. ” 1—c)? ” m 1—c)? 1—c)? 1-b)(1—c)? .
g = cis R* = ;(1+3>)> we have (R* — R™) = é(Hz) — ! 4) = { 4()1(%)) > 0. This

implies that the port authority is better off when there are two terminal operators,

instead of one, in the market.
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