Appendix of the Manuscript ”International Environmental Agreements

Under Different Evolutionary Imitation Mechanisms”

Proof of Proposition 1. After some calculations, v is the minimum of k satisfying

k(d+b—§)+a—bn—§zo, (1)
and v is the minimum of k satisfying
1
k(d+b+§)—dn—&+@20. (2)

According to relative sizes of (d + b) and §, we have three cases below.

Case 1: Suppose (d+0b) < 5. We then have bn +§ — (1 —n)d —b— @ =(n—-1)(d+
b) — c(n2+1) < C("gl) - C(n;d) = —c < 0, which implies bn+§ < lop = (1 -n)d+b+ w

Accordingly, there are three sub-cases.

c(n+1)

dnta—==
a1 22 0On

First, if a > [y, then (22) fails at £ = 1, and hence v = |
the other hand, o > I implies o > bn + §, which suggests u = [a;b;l:ﬂ > 1 by (21).
2

Thus, S, = {C} and E(T.) = e ifu < v, S, = {C, D} and E(T.) = " if u = v, and
S, ={D} and E(T.) = ¢ if u > v. These prove Proposition 1(ia).

a—bn—<

Second, if o € (bn + 5, lo], then u = [=—=] > 1 by (21), and v = 1 by a < I
2

and (22). Thus, S, = {C, D} and E(T.) = if u = 1 and S, = {D} and E(T,) = ¢
if u > 1. These prove Proposition 1(ib).

Third, if o < bn + 5, then (21) fails for all k£, and hence u = n. On the other hand,
since a < bn + §, we have o < [y, which implies that (22) holds at ¥ = 1 and v = 1.

Since u=n>v =1, S, = {D} and E(T.) = ¢ '. These prove Proposition 1(ic).

Case 2: Suppose (d+b) = 5. Under the circumstance, we have bn+ ¢ — (1 —n)d —b—

—C(n; 2 <. Thus, there are two sub-cases.

First, if a > Iy, then v > 2 because (22) fails at k = 1. We have o > bn + § by
a > lg, which implies u = 1. Thus, S, = {é} and FE(T.) = ¢! as shown by Proposition
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1(iia). Second, if v € [bn+ 5, ly], then v = 1 by o < lp and u = 1 by a > bn+ 5. Thus,
S, = {C, D} and E(T,) = ¢* as shown by Proposition 1(iib). Third, if o < bn + 5
then (21) fails for all k, and hence u = n. But a < [y implies v = 1. Thus, S, = {D}
and F(T.) = ¢! as shown by Proposition 1(iic).

Case 3: Suppose (d +b) > 5. Then, relative sizes of bn + § and ly become unsure, and
there are two sub-cases. First, suppose a > bn + 5. Then (21) holds at £ = 1, and
hence u = 1. However, if a > ly, then v > 2, and hence S, = {C'} and E(T.) = ¢ '. In
contrast, if & < ly, then v = 1, and hence S, = {C, D} and E(T.) = €*. These are the

content of 1(iiia).

Second, if v < bn + §, then (21) implies u = [%1 > 1 due to bgj:b% > 0. If
2 2

a < Iy, then (22) implies v = 1. Accordingly, S, = {C, D} and E(T.) = & if u = 1,
and S, = {D} and E(T,) = % if u > 1. These prove Proposition 1(iiia).

dn+a— w

d+b+5 2.

Accordingly, S, = {C} and E(T.) = e if u < v, S, = {C, D} and E(T.) = ° if

In contrast, if o > [y, then (22) fails at £k = 1. Thus, v = |

v

u=v,and S, = {D} and E(T,) = ¢ if u > v. These prove Proposition 1(iiic).

Proof of Theorem 1: Before comparing Propositions 1 and C1, we need to know relative
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sizes of the following variables:

2(a—bn) —2a = —2bn < 0, (3)
20a—bn) —2(d—b) =2(a—d)+2b(1 —n) <0 by d>aand n > 2, (4)
2 — (1 —=n)d—b] 2la+(d—0b)(n—1)] 2bn—2)
n+2 a n+2 42 >0byn =3, (5)

) 2 — (1 —n)d—b]  2la(n+1) —d(n—1)+b]
“r n+2 B n+2

> (<) 0iffd < () —b+:(_"1+1), (6)
o0y 2l + (d—b)(n —1)] _ 2la(n+1)+b(n—1) —d(n—1)]

n+2 n+2

> (oifds (=)o UL 7
2<d_b)_2[a—(;;g)d—b]:2[3d—brfvizl)—a]

> (9)0ifaz (5) LTS ®)
2d—b) — 2[a + (dn—+b;(n -] _ 2[3(dn—+b)2— a]

> (S)0iffd> (<) b+ 3, (9)
2(d+b)—2[a_(i;_;)d_b]:2[3d+::—236_a]>(), (10)

oy 2lat+(@=b)(n—1)] =2[dn—1)+bn*+3n-1)—an+1)]

2(e = bn) n+2 B n+ 2

<0byn>2, (11)
(d—b+a)—2[&_<i12)d_b] _ —d(n—s)+—zbn+n04<0bynz4, (12)
(d—b+a)— Ao (dnjrb;("_ Dl _ (b_d)(;:;) T 0itd<b+ %.(13)

Next, we need to know relative sizes of the thresholds given in (23)-(33). Some
calculations yield

b 1 1 b 1
b+g<—+a(rhL )<b+oz<b+a(rhL )< (n+l)+a

3 n—1 n—1 3

for n > 4. These inequalities divide the values of d into six mutually exclusive ranges

as discussed below.
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Case 1: Suppose d > M We then have

2+ (d—b)(n—1)] _ 2[a — (1 —n)d —b] _

20 — bn) < 2a <
(o n) @ n+2 n-+2

2(d — b) < 2(d +b)

by (23), (25), (27), and (28). These inequalities divide the values of ¢ into seven
mutually exclusive intervals. At each interval, we can derive the LREs under the two
dynamics by Propositions 1 and C1. Under the imitating-the-best-total dynamic; D is
the LRE for ¢ > 2(d+b) by Proposition 1(ic), ¢ > 2(d+b), ¢ > 2(a—bn); D is the LRE
at ¢ = 2(d+b) by Proposition 1(iic), ¢ = 2(d+b), and ¢ > 2(aw—bn); D is the LRE for

¢ € [He=Und=l "o(d+b)) by Proposition 1(iiib), ¢ < 2(d+b), o < (1—n)d+b+ "2,

and ¢ > d4+a—b(n—1); D is the LRE for ¢ € (¢, LM) by Proposition 1(iiic),

c>2(a—bn), c< 2[0‘_(711—;;”_1)], and ¢ > ¢ {C, D} is the LRE at ¢ = ¢ by Proposition

1(iiic), ¢ > 2(av — bn), and ¢ < % C is the LRE for ¢ € (2(a — bn), é) by

Proposition 1(iiic), ¢ > 2(a — bn), ¢ < W, and ¢ > ¢; and C is the LRE for

¢ € (0, 2(av— bn)] by Proposition 1(iiia), ¢ < 2 and a > (1 —n)d+b+ C(RTH) Here

¢ e (2(a—bn), W) satisfies condition

bn—i—%—a_dn—i—a—@

g : (14)
d+b—2 d+b+¢

Under the imitating-the-best-average dynamic; D is the LRE for ¢ > 2(d — b) by
Proposition C1(ib) and ¢ > 2a; D is the LRE at ¢ = 2(d — b) by Proposition C1(iic)
and ¢ > 2a; D is the LRE for ¢ € (ée, 2(d — b)) by Proposition C1(iiib), ¢ > 2a, and
c > Ce {é, ﬁ} is the LRE at ¢ = ¢ by Proposition C1(iiib), ¢ > 2«, and ¢ = ¢é; c
is the LRE for ¢ € (2«a, ¢é.) by Proposition Cl1(iiib), ¢ > 2a, and ¢ < é; C is the
LRE at ¢ = 2a by Proposition Cl(iiia), ¢ < 2(d — b), and ¢ = 2; and C is the LRE

for ¢ € (0, 2a) by Proposition Cl(iiia), ¢ < 2a, and « > (1 —n)d +b+ "+2) . Here
€ (2a, 2(d — b)) satisfies condition
5o (d-b-Smta-§F (15)
d—b— d—b+ %
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In summary, the ¢ interval making C the LRE under the imitating-the-best-average
dynamic is (0, ¢.], and the associated interval under the imitating-the-best-total dy-
namic is (0, ¢]. Thus, if ¢, > ¢, then C is more likely to be the LRE under the
imitating-the-best-average dynamic than under the imitating-the-best-total dynamic.
The converse will hold if ¢, < ¢, and both dynamics will make C emerge equally likely

if ¢, = ¢.

Case 2: Suppose b + % <d< w We then have

2l + (d—b)(n —1)] 2[a — (1 = n)d —b]
n+2 n+2

by (23), (27), (28), (29), and (30). These inequalities divide the values of ¢ into

2(a—bn) <2a <

<2(d-b) <

<2(d+0b)

seven mutually exclusive intervals. Proposition 1 implies that the ¢ interval making C
the LRE under the imitating-the-best-average dynamic is (0, ¢, and the associated
interval under the imitating-the-best-total dynamic is (0, ¢| by Proposition C1. Thus,

the conclusions are same as Case 1’s.

Case 3: Suppose (b+ o) <d<b—+ % We then have

2[a + (d—0b)(n —1)] 2l — (1 = n)d — b]
n+2 n+2

by (27), (28), (30), (31), and d > b+ «. These inequalities divide the values of ¢ into

2(a—bn) < <2< 2(d—-0) < <2(d+0b)

seven mutually exclusive intervals. According to Propositions 1 and C1, the ¢ interval
making C the LRE under the imitating-the-best-average dynamic is (0, ¢.], and the
associated interval under the imitating-the-best-total dynamic is (0, ¢]. Again, the

results are the same as Case 1’s.

Case 4: Suppose 22D < ¢ < (b + a). We then have

n—1

2[a + (d—=0b)(n —1)]

2(a—bn) <

<2d—-b)<(d—b+a)<2a<

2[a = (1 —n)d — b

n+ 2 n -+ 2

<2(d+0b)

by (26), (29), (30), (31), and (d — b) < a. These inequalities divide the values of ¢ into

eight mutually exclusive intervals. At each interval, we can derive the LREs under
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both dynamics by Propositions 1 and C1. Under the imitating-the-best-total dynamic;
D is the LRE for ¢ > 2(d + b) by Proposition 1(ic); D is the LRE at ¢ = 2(d + b)
by Proposition 1(iic); D is the LRE for ¢ e [22=U—m4=t " 57 4 b)) by Proposition

n+2
1(iiib), ¢ > 2(a — bn), a < (1 —n)d + b+ < Cn+2 , and [bgj:lfﬂ =1 > 1 1D is the LRE
for ¢ € (e, 2[0‘_(71—:;)61_1)}) by Proposition 1(1110), ¢ > 2(a—bn), ¢ < m%—w,

and ¢ > ¢;{C, D} is the LRE at ¢ = & by Proposition 1(iiic), ¢ > 2(c — bn), and

c< W C'is the LRE for ¢ € (2(ov — bn), ¢) by Proposition 1(iiic), ¢ > 2(a —

bn), ¢ < LW and ¢ < ¢ and C is the LRE for ¢ € (0, 2(a—bn)] by Proposition
1(iiia), ¢ < %5 and a > (1 —n)d + b+ C(n+2) . Here ¢ € (2(a — bn), 2[a—(1—n)d_b]>

n+2
satisfies (34).

Under the imitating-the-best-average dynamic; D is the LRE for ¢ > 2a by Propo-
sition C1(ib), ¢ > 2(d — b), and ¢ > 2a; D is the LRE for ¢ € ((d — b+ «), 2a) by
Proposition Cl1(ia), ¢ > 2(d — b), ¢ < 2a, and ¢ > (d — b+ ); {C, D} is the LRE
for c € (2(d —b), (d — b+ «)] by Proposition Cl(ia), ¢ > 2(d —b), ¢ < (d — b+ «),
and a < I¢; C is the LRE at ¢ = 2(d — b) by Proposition C1(iia); C is the LRE for
%ﬁg(n_”, 2(d — b)) by Proposition C1(iiia), ¢ < 2(d—b), and ¢ < 2a; and C is

the LRE for ¢ € (0, W} by Proposition Cl(iiia), ¢ < 2(d — b), ¢ < 2a, and

cel

a > [§.

In summary, the c interval making C the LRE under the imitating-the-best-average
dynamic is (0, (d — b+ «)], and the associated interval under the imitating-the-best-
total dynamic is (0, é]. Thus, if (d — b+ @) > ¢, then C is more likely to be the LRE
under the imitating-the-best-average dynamic than under the imitating-the-best-total
dynamic. The converse will hold if (d — b+ a) < ¢, and both dynamics will make c
emerge equally likely if (d — b+ «) = ¢.

IThat is because bn+c¢/2—a—[d+b—c/2] = —d+b(n—1)+c—a >b(n—2) >0by ¢ >d—b+a

and n > 4.
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. e a(n—1)+b
Case 5: Suppose b+ § < d < =———. We then have

2la+ (d —b)(n —1)]
n+2

2[a — (1 = n)d — 0]
n+2

2(a—bn) < <2d-=b)<(d=b+a)<

<20 < 2(d+0b)

by (26), (29), (31), and (32).? These inequalities divide the values of ¢ into eight
mutually exclusive intervals. As in Case 4, the ¢ interval making C' the LRE under the
imitating-the-best-average dynamic is (0, (d—b+«)], and the associated interval under
the imitating-the-best-total dynamic is (0, ¢]. Thus, the conclusions are the same as

Case 4’s.

Case 6: Suppose d < b+ 5. We then have

2l + (d—0b)(n —1)] cd—bia< 2[a — (1 —n)d — b
n+2 n+2

2(a—bn) <2(d—0) <

<2a <2(d+0)

by (24), (28), (29), (32), and (33).® These inequalities divide the values of ¢ into eight
mutually exclusive intervals. As in Case 4, the ¢ interval making C the LRE under
the imitating-the-best-average dynamic is (0, (d — b+ «)], and the associated interval
under the imitating-the-best-total dynamic is (0, ¢]. Again, the conclusions are the

same as Case 4’s.

In summary, Cases 1-3 show that for d > b+a, C'is more likely to emerge when the
imitating-the-best-average rule is adopted if ¢ < ¢.. For d < b+ «, the same conclusions
can be drawn if ¢ < (d — b+ «). The two conditions will hold as displayed below, and

hence Theorem 1 is proved.

Claim 1. Suppose d > b+ . We then have ¢ < é. with ¢ € (2(a—bn), %ﬁ)d%})

and ¢, € (2a, 2(d — b)).

Proof. To simplify the notations, we define z = £ and y = %. Solving (34) and (35)

2Although 2a > 2(d + b) may occur in the inequalities, our results will not change.
3 Although 2a > 2(d + b) may occur in the inequalities, our results will not change.
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yields®

(d+b)(n+1)— /(d+b)2(n+ 1)2 — n(d + b)2a + n(d — b)]

r = and
y - (d—b)(n~|—1)—\/(d—b)Q(n+1)2—n(d—b)[2a+n(d—b)]

Accordingly, we have

2b(n +1) — VA+ VD]
(QZ’ - y) = )
n
where A = (d +b)?(n+ 1) —n(d+b)2a+n(d —b)] >0 and B = (d — b)*(n +1)* —
n(d —b)[2a+n(d —b)] > 0 with A > B by d > b. To show x < y, it is enough to show

A > 4(n 4 1)%0* + B + 4b(n + 1)v/B. Note that a— 3 < Ja — B ifa > > 0.
Thus,

A—4(n+1)%° — B —4b(n+ 1)VB
= (n+ 1)2(4bd — 4b%) — 2bn[(d — b)n + 2a] — 4(n + 1)bVB

> (n+1)%4b(d — b) — 2bn[(d — b)n + 2a] — 4b(n + 1)\/(d — b)2(n + 1)2

+4b(n + 1)/n(d — b)[(d — b)n + 2a]

= 2b{2(n + 1)\/n(d — b)[(d — b)n + 2a] — n[(d — b)n + 2a]}

> 0,

where the first inequality is implied by v/B < /(d — b)2(n + 1)2—/n(d — b)[(d — b)n + 2a]

and the second inequality is because
4(n + 1)*n(d — b)[(d — b)n + 2a] — n*[(d — b)n + 2a]?
= n[(d —b)n + 2a][4(n + 1)*(d — b) — n*(d — b) — 2an]
> n[(d—b)n+2a][4(n +1)*(d — b) — n*(d — b) — 2n(d — b)]

= n(d—b)[(d—b)n +2a][3n* + 6n +4] >0

by —a > —(d — b). Thus, we have z < y and ¢ < ¢, which prove Claim 1.

4To meet the range requirements, we take the negative roots.
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Claim 2. Suppose d < b+ a and ¢ € (2(a — bn), W) with o > bn. We
then have ¢ < (d—b+ a).
Proof. Plugging ¢ = d — b+ « into (34) yields

bn+ 2 —a d+b(2n—1) —a

L= = >1b > 2 d
d+b— d=bie d+3—a = Yh=soan
dn + o — @YD g0, 1y 4 h(n—1) — aln + 1)
R= 2 = :
d+ b+ &= 3d+b+«
Thus
I _R— —d*(n —4) = b*(n+4) — a*(n +2) + 2nbd + 2da(n — 1) + 2ba(3n + 1)

[d+3b—a][3d + b+ a]
Denote N = —d?*(n —4) — b*(n + 4) — o*(n + 2) + 2nbd + 2da(n — 1) + 2ba(3n + 1).
We then have
N > —(n—4)(b+a)> —b*(n+4) —a*(n+2)+2nb* + 2ba(n — 1) + 2ba(3n + 1)
= o*(—2n+2) + ba(6n + 8)
> a®(=2n+2) + a*(6n + 8)
= o*(4n + 10)

> 0.

The first inequality is due to d < b+ a and the second inequality is by a > bn. These
imply L > R. Thus, to make ¢ satisfy (34), we must have ¢ < (d — b+ «) to lower L

and raise R. Claim 2 is then proved.

Proof of Proposition 2: After some calculations, u is the minimum of k satisfying

2k* + 3k + 1]

(dk+ ) — b(n— k) > & - , (16)
and v is the minimum of k satisfying
—c[2(n? k+ k? k)+1
(A4 b)k— a—dn > c2(n® +nk+ k%) +3(n+ k) + ]_ (17)

6
Define g(k) = 2k2+3k+1—w with ¢'(k) = 4k3+3—6(d—c+b) and ¢"(k) =4>0
for all k. These imply that g(k) is a strictly convex function of k with ¢'(k) > (<) 0
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iff k> (<) k=2 g(1) =7 -4 > (oiffe> ()% k> ()1
iff ¢ < (>) M and g(1) > (<) 0iff ¢ > (<) [d+ b(1 —n) + al. Since u is the
minimum of k satisfying g(k) < 0 by (36), it depends on the values of ¢'(1) and g(1).

Thus, if ¢ < d+b) , we have ¢’(1) < 0 and k£ > 1, which suggest

1 if g(1) <0,
u=14q [k, ifg(1)>0and g(k) <0, (18)
n if g(1) > 0 and g(k) > 0,

where k, satisfies g(k;) = 0. For ¢ = 6(d7+b), we have ¢'(1) = 0 and k£ = 1, which imply

1 ifg(1) <0,
" — if g(1) < (19)
n if g(1) > 0.

6(d+b)
7

In contrast, if ¢ > , we have ¢/(1) > 0 and k < 1, which suggest

1 ifg(1) <0,
" g(1) < (20)
n if g(1) > 0.

On the other hand, define h(k) = 2(n*+nk+k*)+3(n+k)+1+2[(d+b)k—a—dn]
based on k > 1 with & (k) = 2n+4k+3+ % 5 0 for all k > 1, h"(k) = 4 > 0 for all
k>1, W) =2n+7+ %0 5 0 and A(1) = 202 4 5n + 6+ L Slatdn <y

iff ¢ > (<) %. These suggest that h(k) is a strictly convex function with

minimum value h(1). Accordingly, by (37), we have

1 if h(1) > 0,
(k] =2 if h(1) <0,

where kj, satisfies h(kp,) = 0.

Now we are ready to get relative sizes of u and v by comparing g(k), h(k), and (38)-

(41). First, we need to know relative sizes of d+b), 6[‘12(:; jg:j‘g 4 and [d+ o+ (1—n)b).
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Some calculations show

@) [d+ o+ (1 —n)b) = 2Dl > (<) 0 iff d < (>) b(Tn — 1) — Ta(22)

n— a— n2—2n n2+5n —Ta
6(d7+b) _ 6[d2(n2+15),2+6 b _ 6[d(2n*-2 J;(ljf)zjj(;mgf +13)=7a] ) by d>b>a, (23)
6[d(n—1)+a—>b d(2n2—n+12)—b(2n3+3n2+n—12)+a(2n2+5n
[d+a+(1—n)b] - [2(n2+5):+6 L = Hanontiodl e prelnin)
. b(2n3+3n24+n—12)—a(2n?+5n
> (<) 0iff d > (<) Yottt alnion), (24)

Moreover, since [b(7Tn — 1) — Ta] > b(2n3+3n224;721:£z;2a(2n2+5n)’ (42)-(44) divide the values

of d into three mutually exclusive ranges as stated below.

Case 1: Suppose d > [b(7Tn — 1) — Ta]. We then have

6ld(n —1) +a —b] _ 6(d+D)
22 + 5n + 6 7

I = <ld+a+ (1 —n)b).

These inequalities divide the values of ¢ into four mutually exclusive intervals.

Case la: Suppose ¢ > [d+ a + (1 — n)b]. We have h(1) > 0 by ¢ > [; and v = 1 by
(41). Then g(1) >0by c>d+a+b(1 —n) and ¢’(1) > 0 by ¢ > (d+b , which imply
u=n by (40). Thus, S, = {D} and E(T.) = e .

Case 1b: Suppose 6(d—7+b) <c¢ < [d+a+ (1 —n)b. We have h(1) > 0 by ¢ > [ and
v =1by (41). Then ¢g(1) <0 by ¢ <d+a+b(1l—mn)and ¢'(1) > 0 by ¢ > (dH’)
which imply « = 1 by (39)-(40). Thus, S, = {C, D} and E(T.) = .

Case 1lc: Suppose [; < ¢ < 25 d+b . We have h(1) > 0 by ¢ > [y and v = 1 by (41). Then

d+b)

g()<0byc<[d—|—a—|—b(1—n)] and ¢'(1) < 0 by ¢ < %) which imply u = 1 by

(38). Thus, S, = {C, D} and E(T.) = .

Case 1d: Suppose ¢ < l3. We have h(1) < 0 by ¢ <l; and v = [k;,| > 2 by (41). Then
g(1) <0bye<|d+a+b1l—-n) and ¢'(1) <0 by ¢ < (d+b)

(38). Thus, S, = {C} and E(T.) = ¢ L.

, which imply v = 1 by

Propositions 2(ia), 2(ib) and 2(ic) are proved by the results of Case la, Cases 1b-1c
and Case 1d, respectively.
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Case 2: Suppose d2ntsn’in—1g—aln®+on] o [b(7Tn — 1) — 7a]. We then have

2n2—n+12
6[d(n—1)+a —1] 6(d+0)
L1 = d 1—n)b< ——=.
! ot g6 ~dtet-nmb<——

These inequalities divide the values of ¢ into four mutually exclusive intervals.
Case 2a: Suppose ¢ > w. The results here are the same as Case 1a’s.

Case 2b: Suppose [d + o+ (1 —n)b] < ¢ < d+b . We have h(1) > 0 by ¢ > [, and
v =1 by (41). Then g(1) > 0 by ¢ > [d+a+b(1 —n)] and ¢’(1) < 0 by ¢ < (d+b),
which imply u = n or [k,] by (38). Thus, S, = {D} and E(T,) = ¢ .

Case 2¢: Suppose [} < ¢ < [d+ a + (1 — n)b]. The results here are the same as Case

lc’s.
Case 2d: Suppose ¢ < [;. The results here are the same as Case 1d’s.

Propositions 2(iia), 2(iib) and 2(iic) are proved by the results of Cases 2a-2b, Case
2c and Case 2d, respectively.

Case 3: Suppose d < b2n?+3n +n—12—a[2n*+5n] ywo then have

2n2—n+12
6[d(n —1) +a — ] _ 6(d+b)
2n2 +5n+6 7T

d+a+ (1—n)b <l =
These inequalities divide the values of ¢ into four mutually exclusive intervals.

Case 3a: Suppose ¢ > w. The results here are the same as Case 1a’s.

Case 3b: Suppose [} < ¢ < 2T d+b . We have h(1) > 0 by ¢ > [; and v = 1 by (41). Then

g(1)>0byc>[d+a+b(1—n)] and ¢'(1) < 0 by ¢ < (d+b

[ky] by (38). Thus, S, = {D} and E(T.) = e .

, which imply v = n or

Case 3c¢: Suppose [d + o + (1 —n)b] < ¢ < ;. We have h(1l) < 0 by ¢ < [; and
v = [ky] > 2 by (41). Then g(1) > 0 by ¢ > [d+ a+ b(1 —n)] and ¢'(1) < 0 by
c < 6(d7+b), which imply v = n or [k,] > 2 by (38). We can show [k,] < [k;| below,
and it implies S, = {D} and E(T,) = e %1,
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Claim 3. We have [k,] > [ky].
Proof. Since k, satisfies g(k,) = 0, we have®

d+b 4 \/ 6(d+b) _8[1— 6(a:lm)]
ky = )

Similarly, since ky, satisfies h(k,) = 0, we have

—2n+3+ @] + \/[2n+ 34 @]z —82n2+3n+1— G(a—l—dn)]

kn = 1

Define A = [3— 222 —g[1 -2 and B = [2n4-3+ X2 8 [2n?4-3n+1 — etanl],

Then,
2n + 2L d+b + VA - \/_
4

To show k, > ky, it is enough to prove B < A + 2\/_[2 + (d+b)] +4n? + (d+b) +
144(d+b)?
02

(kg - kh)

. Some calculations reveal
12(d 4 144 b)?
B—A—2\/A[27L+M] gz B <d2+ )
c c c

12(d+9) —(3n+1)]2—7n2—6n+1—4\/2[n+d+b]

C C

-

< 0.

These suggest k;, > kj,. Moreover, the above inequality remains true if we replace n

with (n — 4). It means k, > kj, + 1. Thus, we will have Claim 3, [k,] > [k ].
Case 3d: Suppose ¢ < [d + a + (1 — n)b]. The results here are the same as Case 1d’s.

Propositions 2(iiia), 2(iiib) and 2(iiic) are proved by the results of Cases 3a-3b,
Case 3¢ and Case 3d, respectively.

Proof of Theorem 2: Before comparing Propositions 2 and C2, we need to know relative

°To have k, > 0 and kj, > 0, we take the positive roots.
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sizes of the following variables:

d—>b -1
6( - )—[d+a+(1—n)b]:7[d+7a—b(7n—13)]
> (L)0iff d < (=) (Tbn — 13b — Ta), (25)
(d — b)[2n* — 2n + 13] _ Ta
— > (< < (> -
a - > (L)0iff d < <_>b+2n2—2n—|—13’ (26)
6(d—1b) 6[dn—1)+a—0b 6[d2n*+4n+7)—b(2n*+5n+5) — af
7 22 +5n+6 7(2n2 + 5n + 6)
_ b(2n* +5n +5) + «
> (< Td> (< 2
z (2)0iffd = (<) n24+4n+7 (27)
d—b+a—-[d+a+(1=n)bj=0b(n—-2)>0byn >3, (28)
6ldin —1)+a—">b] 6[(d—>b)(n—1)+q] 6b(n — 2)

_ = b >3,(2
2n% + 50+ 6 2n% + 50 + 6 o2+ nt6 0z ()
d+b —(d—13b

6( as ) _td—bta) ==L f T S (<)0ifd< (3) (135 — Ta)(30)
6(d—b) 6[(d=—b)(n—1)+a] 6(2n*—12n+13)[d —b— 555 ]
7 22 +5n+6 7(2n2 + 5n + 6)
To
> (< 1 > (< -
> (L)0iffd > <_)b+2n2—2n+13’ (31)
6[(d —b)(n—1) + a]
1— _
[t at(1=n)) 2n%2 4+ 5n+6
_d(2n® —n 4 12) — b(2n® 4 3n* — 5n) + (2n® + 5n)
B 2n24+5n+6
_ b(2n® + 3n? — 5n) — a(2n® + 5n)
> (< ftd> (< . 2

Next, according to relative sizes of the thresholds of d specified in Proposition 2,

there are three cases below.

Case 1: Suppose d > [b(7Tn — 1) — Ta]. We then have

6[(d —b)(n —1) + a _ 6ld(n — 1)+« — b _ 6(d —b) _ 6(d+0)
2n2 +5n + 6 2n2 4+ 5n + 6 7 7
<l[d+a+(1—-n)]<(d—b+a)

by (42), (47), (48), (49), and d > [b(7n — 1) — Ta] > L2 Hntilte Thege inequalities
divide the values of ¢ into seven exclusive ranges. At each range, we can derive the

LREs in both dynamics. Under the imitating-the-best-total dynamic; D is the LRE for
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¢ > [d+a+ (1—n)b] by Proposition 2(ia); {C, D} is the LRE for ¢ € [%, [d+

a~+(1—n)b]) by Proposition 2(ib); and C is the LRE for ¢ < % by Proposition
2(ic).

Under the imitating-the-best-average dynamic; D is the LRE for ¢ > (d—b+ )
by Proposition C2(i); {C, D} is the LRE for ¢ € [G(d_b) (d — b+ «)] by Proposition

C2(iia) and a < M {C D} is the LRE for ¢ € [6[(d n’;)f;nfg“], d7 ) ) by

Proposition C2(iiib), ¢ < 6(d—7b), a < w implied by (46) and d > [b(7Tn —
1) — 7al, and ¢ € [6[(‘12;?&;?;0‘], 6(d7_b)); and C is the LRE for ¢ € (0, %)
by Proposition C2(iiia), ¢ < 6(d—7_b), a < w implied by (46) and d >

[b(Tn — 1) — 7al, and ¢ < %.

In summary, the c interval making C the LRE under the imitating-the-best-average
dynamic is (0, (d — b+ «)], and the associated interval under the imitating-the-best-
total dynamic is (0, (d4+«a+ (1 —n)b)). Since (0, (d+a+ (1 —n)b)) C (0, (d—b+ )]
by (d—b+a) > [d+ a+ (1 —n)b] due to n > 3, C is more likely to be the LRE
under the imitating-the-best-average dynamic than under the imitating-the-best-total

dynamic.

Case 2: Suppose (7bn — 7o — 13b) < d < [b(Tn — 1) — 7a]. Under the circumstance,
we need to know relative sizes of the thresholds of d specified in (45)-(51). Some

calculations reveal

Ta b[2n? + 5n + 5] + «

b <
+2712—2n+13 N2 +4n+7

<13b—Ta < 7bn — 7o — 130 < b(Tn — 1) — Ta.

These inequalities divide the values of d into five mutually exclusive intervals.

Case 2a: Suppose (7bn — Ta — 13b) < d < [b(7Tn — 1) — 7a]. We then have

6[(d—0b)(n—1)+q] _ 6[d(n —1) +a — b _ 6(d —b)
2n2+5n+6 2n?24+5n+6 7

< 6(d7+b) <(d—b+a)

by (42), (45), (47), (49), and (50). These inequalities divide the values of ¢ into seven

<ld+a+(1—-n)b
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mutually exclusive intervals. The results here are the same as Case 1’s by (d—b+a) >

[d+a+ (1 —n)bl.

Case 2b: Suppose (13b — 7o) < d < (7bn — Taw — 13b). We then have

6[(d—b)(n—1)+a] 6ldn—1)+a—1 6(d — b)
6 - aisnie  —dret-oni<——
< 6(d7+b> <(d=b+a)

by (44), (45), (49), and (50). These inequalities divide the values of ¢ into seven
mutually exclusive intervals. Again, the conclusions here are the same as Case 1’s due

to(d—b+a)>[d+a+ (1 —n)b.

Case 2c: Suppose br*+5ntblta < g 13 — 7. We then have

2n2+4n+7
6[(d—b)(n—1)+a] 6ldn—1)+a—10 6(d — b)
d 1— )b
516~ 2@ isnig  ~dtet(lombl<
6(d + b)

<(d=b+a)<

7

by (44), (45), (49), and (50). These inequalities divide the values of ¢ into seven
mutually exclusive intervals. Similarly, Propositions 2 and C2 imply that C' is more
likely to emerge when countries adopt the imitating-the-best-average rule by (d — b +

a) > [d+a+ (1 —n)b|.

Case 2d: Suppose b + ML% <d< %ﬁ%. We then have

6[(d—b)(n—1)+a] _6(d=b) _6dn—1)+a—}
2n? +5n + 6 7 2n? +5n + 6
6(d+0b)
7

<ld+a+ (1 —n)b

<(d-b+a)<

by (44), (47), (48), (50), and (51). These inequalities divide the values of ¢ into seven
mutually exclusive intervals. The results obtained here are the same as Case 1’s by

Propositions 2 and C2 due to (d — b+ «) > [d+ a + (1 — n)b].

43



Case 2e: Suppose d < b+ 52— We then have

2n2—2n+13"
6(d—b) _6[(d—b)(n—1)+a] _6[dn—1)+a—b
1 —
7 = 2n2 + 5n + 6 < 292 1 5n + 6 <[d+a+ (1 —n)b
<(d—b+a)< 6(d7+b)

by (44), (48), (49), (50), and (51). These inequalities divide the values of ¢ into seven
mutually exclusive intervals. Because (d —b+a) > [d4 o+ (1 —n)b], C is more likely

to emerge in the long run under the imitating-the-best-average rule by Propositions 2

and C2.

2n3+4+3n24n—12]—a[2n?+5
n’+3n"tn—12—aRn’+5n] o can show

Case 3: Suppose d < b

2n2—n+12
bpmﬁ"é;?:ﬁ;; [2n?45n] [7Tbn — Taw — 13b] by n > 4. On the other hand, we have
Hen i 2l alneinl _(13h — Ta) < 0if n < 13, and > 0 if n > 13. Thus, the

situation of d € [7bn — Ta — 13b, b(7Tn — 1) — Ta) discussed in Case 2a does not exist
here. Accordingly, we will start with the case of d € [13b — Ta,, 7Tbn — Taw — 13b) as
follows. In addition, we have

b[2n® + 3n? — 5n] — a[2n® + 5n] - b[2n3 + 3n? +n — 12] — a[2n® + 5n)
2n? —n+12 2n? —n+12

by n > 3.

Case 3a: Suppose (13b — 7Ta) < d < (7bn — Taw — 13b). We then have
6[(d—b)(n—1)+ qf 6[d(n —1)+a —1] _ 6(d —b)
2n% 4+ 5n + 6 2n% 4+ 5n + 6 7

< 6(d7+b) <(d-b+a)

<d4+a+(1-n)b<

by (44), (47), (50), and (52) with d > bpﬁ%’;i;ig;g%uw assumed.® These inequal-

ities divide the values of ¢ into seven mutually exclusive intervals. At each range,

we can derive the LREs in both dynamics. Under the imitating-the-best-total dy-

namic; D is the LRE for ¢ > % by Proposition 2(iiia); D is the LRE for

Ot d < Mo n o2 on] then we have [d-a+ (1-m)b] < D] < S ectl <
6(d—b)

< G(di;'b) < (d = b+ «). Under the circumstance, the results of Case 3a remain true.
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€ [d+ a+ (1 —n)b, %) by Proposition 2(iiib); and C is the LRE for

¢ < [d+ a+ (1 —n)b] by Proposition 2(iiic).

Under the imitating-the-best-average dynamiC' D is the LRE for ¢ > (d—b+a) by
Proposition C2(i); {C, D} is the LRE for ¢ € [242 (4— b+a)] by Proposition C2(iia)
and a < L;Q”H?’] implied by (46) and d > b + {C, D} is the LRE

prEmcTmuEL
for ¢ € [6[(2;’;&"5;36“], 6(d %) by Proposition C2(iiib), ¢ 6(d7 Do < w
implied by (46) and d > b+ 5", and ¢ € [6[“‘2n2)f;nfg“], 6(d; Y): and C is the

LRE for ¢ € (0, Y=0n=btaly pv proposition C2(iiia), ¢ < (d D oa< —(d_b)[2”27_2”+13]

2n2+-5n-+6
6[(d—b)(n—1)+q]

implied by (46) and d > b+ and ¢ < =55 5%

2n2 2n+13’

In summary, the c interval making C the LRE under the imitating-the-best-average
dynamic is (0, (d — b+ «)], and the associated interval under the imitating-the-best-
total dynamic is (0, (d+ (1 —n)b+ «)). Since (0, (d+ (1 —n)b+a)) C (0, (d—b+ )]
by (d—b+a) > (d+ (1 —n)b+a), C is more likely to be the LRE under the

imitating-the-best-average dynamic than under the imitating-the-best-total dynamic.

b[2n2+5n+5]+a
2n2+4n+7 <d<

b[2n® + 3n? +n — 12] — a[2n? + 5n) . b[2n? + 3n? — 5n] — a[2n? + 5n] - b[2n* +5n + 5] + a

Case 3b: Suppose (13b — 7). Some calculations show

on?2 —n+12 2n2 —n + 12 2n? 4+ 4n+7
We then have

6[(d—b)(n—1) + 6ld(n—1)+a—b 6(d—b)

MIibnt6 7

<d+a+(1-n)b<

2n? +5n 4+ 6
6(d+0
<(d-b+a)< ( ;L )
by (44), (47), (50), and (52) with d > b[2n3+37;1gir;];1a2[2n2+5n] assumed.” These inequali-

ties divide the values of ¢ into seven mutually exclusive intervals. As in Case 3b, we ob-
tain that C is more likely to emerge under the imitating-the-best-average dynamic than
under the imitating-the-best-total dynamic due to (0, (d+(1—n)b+a)) C (0, (d—b+a)]

by Propositions 2 and C2.

. . . b2 3 2_ _ 2 2
7As in Case 3a, our results remain true if d < (27 +37;ngiz]+1a2[ n+5n]
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b[2n>+3n%—5n]—a[2n?+5n]

< d < b[2n2+5n+5]+a

Case 3c: Suppose b—l—m ity we will always have d < ST —— <
b[2n>+3n%+n—12]—a[2n2+5n]
DT —s . Then

ot (1< S0 1) bl 6=t _6dn—1) a1

2n? +5n +6 7 2n? +5n +6
6(d+0b
<(d—b+a)< #
b (b—a)(2n%+5n) . "
y (47), (50), (51), and (53) by d > b+ 55 2n+13 > 55 5ris - These inequalities

divide the values of ¢ into seven mutually exclusive intervals. Again, the results here

are the same as Case 3b’s due to (d — b+ a) > [d+ (1 —n)b+ af.

Case 3d: Suppose d < b+ Under the circumstance, we need to know relative

222+13

sizes of (d — b+ «), [“;(ZQ Jrlg;ffi i and 6[(‘12n’;>+(’;ni6+”] Some calculations show
(d—b+a)— 6[d(n—1)+a—10 _ [d(2n* —n +12) — (b — «)(2n* + 5n)]
2n2+5n+6 2n2 +5n+6
, (b— a)(2n2 + 5n)
> (D)0iffd> (<
2 (S)0iftd= () = (33)
n2 n
by oy BB 1) o] (02— n 12)d b+ SRR
_bia)— _
2n2+5n+6 2n? +5n+6
_ a(2n? + 5n)
> (< ffd> ()b —————= 4
> () 0ifd> ()b o2t (39
a2n*+5n)  (b—a)(2n®*+5n)  b(2n* —n+11)

h— — = Obyn>2 (35
M2 —n+ 12 20’ —n+ 12 P —my1z O ¥m=2 (35)
a(2n? + 5n) Ta

b————— - <bt+ ————. 36
2n2—n+12< +2n2—n—|—12 (36)

These suggest
(b— ) (2n? 4 5n) S a(2n? 4 5n) b4 Ta |
2n? —n+ 12 2n? —n+ 12 2n? —n+ 12

and the inequalities imply that there are three sub-cases below.

Case 3d-1: Suppose b — 3 o(2n? Jfo) <d<b+ %QZ% We then have

6(d—b) 6ld—b)(n—1)+a] 6ldn—1)+a—b
1_

dtat(l-nb < = < e s < o516

6(d + b)

7

<(d-b+a)<
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by (45), (49), (50), (51), and (53). These inequalities divide the values of ¢ into seven
mutually exclusive intervals. As in Case 3b, C is more likely to emerge under the
imitating-the-best-average dynamic than under the imitating-the-best-total dynamic

due to (d — b+ «a) > % by Propositions 2 and C2.

Case 3d-2: Suppose (b—a)2n®+5n) g 2C20P450) o then have (d—b+a) >

2n2 —n+12 2n2—n+12"°
% by (53), and (d — b+ ) < % by (54). However, (49) implies
Sld=b)n-L)ta] - 6ldn-L)ta—b] "which Jeads to a contradiction. Thus, no solution exists

2n24-5n+6 2n24+-5n-+6

in this case.

Case 3d-3: Suppose d < % We then have

6(d — b) 6[(d — b)(n — 1) + q

2n2 +5n+6

[d+a+(1—n)b < <(d-b+a)<

6[d(n — 1)+ a — b _ 6(d+b)
2?2 4+5n+6 7

by (43), (45), (49), and (54). These inequalities divide the values of ¢ into seven
mutually exclusive intervals. At each range, we can derive the LREs in both dynamics.

Under the imitating-the-best-total dynamic; D is the LRE for ¢ > % by

Proposition 2(iiia); D can be the LRE for ¢ € [d + a + (1 — n)b, %) by
Proposition 2(iiib); and C is the LRE for ¢ € (0, [d + o+ (1 — n)b]) by Proposition

2(iiic).

Under the imitating-the-best-average dynamic; D is the LRE for ¢ > (d—b+a) by
Proposition C2(i); C is the LRE for ¢ € [% d Y (d—b+a)] by Proposition C2(iib) and

a > %7_2”“3] and ¢ €[4 b), 6[(‘1271%7;”3;&]); and C is the LRE for ¢ € (0, G(d;b))
6(d b)

_ 2_
and o > @ b)[2n7 2n+13]

by Proposition C2(iiic), ¢ <

Accordingly, the ¢ interval making C the LRE under the imitating-the-best-average
dynamic is (0, (d — b+ «)], and the associated interval under the imitating-the-best-
total dynamic is (0, (d+(1—n)b+a)). Since (0, (d+(1—n)b+a)) C (0, (d—b+a)), C
is more likely to be the LRE under the imitating-the-best-total dynamic than under
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the imitating-the-best-average dynamic.
In summary, the results of Cases 1-3 prove Theorem 2.

Proof of Proposition 3: If [d4+a—0b(n—1)] < ¢, then [d+a—b(n—1)] < # That

is, (8) fails at £ = 1, and hence u > 2. On the other hand, [d(n — 1) + a — b] < %
implies that (11) holds at k = 1, and hence v = 1. We have S, = {D} and E(T,) = ¢!
as shown by Proposition 3(i). In contrast, if [d 4+ a — b(n — 1)] > ¢4, then u = 1 due to
(8) holding at k = 1, and v = 1 by [d(n — 1) + a — b] < Z=2% due to (11) holding at
k= 1. Thus, S, = {C, D} and E(T.) = €® as shown by Proposition 3(ii). Finally, if
[d+ a —b(n —1)] > ¢,, then we have [d + a —b(n —1)] > ¢, > %, which implies
u =1 by (8). Moreover, we have d(n—l)—l—oz—b—% >dn—1)+a—-b—c, >
(n—1e, +bn—1)—a]+a—-b—c, = (n—2)c, +bn—1)> —a(n —2) > 0 by
Cp > Z(nn%ll;’ and d > ¢, +b(n—1) — «. This suggests that (11) fails at £k = 1, and hence
v >2. Thus, S, = {C} and E(T.) = ¢! as shown by Proposition 3(iii).
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