Appendix of the Manuscript "International Environmental Agreements Under Different Evolutionary Imitation Mechanisms"

Proof of Proposition 1: After some calculations, u is the minimum of k satisfying

$$
\begin{equation*}
k\left(d+b-\frac{c}{2}\right)+\alpha-b n-\frac{c}{2} \geq 0 \tag{1}
\end{equation*}
$$

and v is the minimum of k satisfying

$$
\begin{equation*}
k\left(d+b+\frac{c}{2}\right)-d n-\alpha+\frac{c(n+1)}{2} \geq 0 . \tag{2}
\end{equation*}
$$

According to relative sizes of $(d+b)$ and $\frac{c}{2}$, we have three cases below.
Case 1: Suppose $(d+b)<\frac{c}{2}$. We then have $b n+\frac{c}{2}-(1-n) d-b-\frac{c(n+2)}{2}=(n-1)(d+$ b) $-\frac{c(n+1)}{2}<\frac{c(n-1)}{2}-\frac{c(n+1)}{2}=-c<0$, which implies $b n+\frac{c}{2}<l_{0} \equiv(1-n) d+b+\frac{c(n+2)}{2}$. Accordingly, there are three sub-cases.

First, if $\alpha>l_{0}$, then (22) fails at $k=1$, and hence $v=\left\lceil\frac{d n+\alpha-\frac{c(n+1)}{2}}{d+b+\frac{c}{2}}\right\rceil \geq 2$. On the other hand, $\alpha>l_{0}$ implies $\alpha>b n+\frac{c}{2}$, which suggests $u=\left\lceil\frac{\alpha-b n-\frac{c}{2}}{\frac{c}{2}-d-b}\right\rceil \geq 1$ by (21). Thus, $S_{*}=\{\vec{C}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-u}$ if $u<v, S_{*}=\{\vec{C}, \vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{0}$ if $u=v$, and $S_{*}=\{\vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-v}$ if $u>v$. These prove Proposition 1(ia).

Second, if $\alpha \in\left(b n+\frac{c}{2}, l_{0}\right]$, then $u=\left\lceil\frac{\alpha-b n-\frac{c}{2}}{\frac{c}{2}-d-b}\right\rceil \geq 1$ by (21), and $v=1$ by $\alpha<l_{0}$ and (22). Thus, $S_{*}=\{\vec{C}, \vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{0}$ if $u=1$ and $S_{*}=\{\vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-1}$ if $u>1$. These prove Proposition 1(ib).

Third, if $\alpha \leq b n+\frac{c}{2}$, then (21) fails for all k, and hence $u=n$. On the other hand, since $\alpha \leq b n+\frac{c}{2}$, we have $\alpha<l_{0}$, which implies that (22) holds at $k=1$ and $v=1$. Since $u=n>v=1, S_{*}=\{\vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-1}$. These prove Proposition 1(ic).

Case 2: Suppose $(d+b)=\frac{c}{2}$. Under the circumstance, we have $b n+\frac{c}{2}-(1-n) d-b-$ $\frac{c(n+2)}{2}<0$. Thus, there are two sub-cases.

First, if $\alpha>l_{0}$, then $v \geq 2$ because (22) fails at $k=1$. We have $\alpha>b n+\frac{c}{2}$ by $\alpha>l_{0}$, which implies $u=1$. Thus, $S_{*}=\{\vec{C}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-1}$ as shown by Proposition

1 (iia). Second, if $\alpha \in\left[b n+\frac{c}{2}, l_{0}\right]$, then $v=1$ by $\alpha<l_{0}$ and $u=1$ by $\alpha>b n+\frac{c}{2}$. Thus, $S_{*}=\{\vec{C}, \vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{0}$ as shown by Proposition 1(iib). Third, if $\alpha<b n+\frac{c}{2}$, then (21) fails for all k, and hence $u=n$. But $\alpha<l_{0}$ implies $v=1$. Thus, $S_{*}=\{\vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-1}$ as shown by Proposition 1(iic).

Case 3: Suppose $(d+b)>\frac{c}{2}$. Then, relative sizes of $b n+\frac{c}{2}$ and l_{0} become unsure, and there are two sub-cases. First, suppose $\alpha \geq b n+\frac{c}{2}$. Then (21) holds at $k=1$, and hence $u=1$. However, if $\alpha>l_{0}$, then $v \geq 2$, and hence $S_{*}=\{\vec{C}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-1}$. In contrast, if $\alpha \leq l_{0}$, then $v=1$, and hence $S_{*}=\{\vec{C}, \vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{0}$. These are the content of 1 (iiia).

Second, if $\alpha<b n+\frac{c}{2}$, then (21) implies $u=\left\lceil\frac{b n+\frac{c}{2}-\alpha}{d+b-\frac{c}{2}}\right\rceil \geq 1$ due to $\frac{b n+\frac{c}{2}-\alpha}{d+b-\frac{c}{2}}>0$. If $\alpha \leq l_{0}$, then (22) implies $v=1$. Accordingly, $S_{*}=\{\vec{C}, \vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{0}$ if $u=1$, and $S_{*}=\{\vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-1}$ if $u>1$. These prove Proposition 1(iiia).

In contrast, if $\alpha>l_{0}$, then (22) fails at $k=1$. Thus, $v=\left\lceil\frac{d n+\alpha-\frac{c(n+1)}{2}}{d+b+\frac{c}{2}}\right\rceil \geq 2$. Accordingly, $S_{*}=\{\vec{C}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-u}$ if $u<v, S_{*}=\{\vec{C}, \vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{0}$ if $u=v$, and $S_{*}=\{\vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-v}$ if $u>v$. These prove Proposition 1(iiic).

Proof of Theorem 1: Before comparing Propositions 1 and C1, we need to know relative
sizes of the following variables:

$$
\begin{align*}
& 2(\alpha-b n)-2 \alpha=-2 b n<0, \tag{3}\\
& 2(\alpha-b n)-2(d-b)=2(\alpha-d)+2 b(1-n)<0 \text { by } d>\alpha \text { and } n \geq 2 \text {, } \tag{4}\\
& \frac{2[\alpha-(1-n) d-b]}{n+2}-\frac{2[\alpha+(d-b)(n-1)]}{n+2}=\frac{2 b(n-2)}{n+2}>0 \text { by } n \geq 3 \text {, } \tag{5}\\
& 2 \alpha-\frac{2[\alpha-(1-n) d-b]}{n+2}=\frac{2[\alpha(n+1)-d(n-1)+b]}{n+2} \\
& \geq(\leq) 0 \text { iff } d \leq(\geq) \frac{b+\alpha(n+1)}{n-1}, \tag{6}\\
& 2 \alpha-\frac{2[\alpha+(d-b)(n-1)]}{n+2}=\frac{2[\alpha(n+1)+b(n-1)-d(n-1)]}{n+2} \\
& \geq(\leq) 0 \text { iff } d \leq(\geq) b+\frac{\alpha(n+1)}{n-1}, \tag{7}\\
& 2(d-b)-\frac{2[\alpha-(1-n) d-b]}{n+2}=\frac{2[3 d-b(n+1)-\alpha]}{n+2} \\
& \geq(\leq) 0 \text { iff } d \geq(\leq) \frac{b(n+1)+\alpha}{3}, \tag{8}\\
& 2(d-b)-\frac{2[\alpha+(d-b)(n-1)]}{n+2}=\frac{2[3(d-b)-\alpha]}{n+2} \\
& \geq(\leq) 0 \text { iff } d \geq(\leq) b+\frac{\alpha}{3}, \tag{9}\\
& 2(d+b)-\frac{2[\alpha-(1-n) d-b]}{n+2}=\frac{2[3 d+n+3 b-\alpha]}{n+2}>0, \tag{10}\\
& 2(\alpha-b n)-\frac{2[\alpha+(d-b)(n-1)]}{n+2}=\frac{-2\left[d(n-1)+b\left(n^{2}+3 n-1\right)-\alpha(n+1)\right]}{n+2} \\
& <0 \text { by } n \geq 2 \text {, } \tag{11}\\
& (d-b+\alpha)-\frac{2[\alpha-(1-n) d-b]}{n+2}=\frac{-d(n-4)-b n+n \alpha}{n+2}<0 \text { by } n \geq 4, \tag{12}\\
& (d-b+\alpha)-\frac{2[\alpha+(d-b)(n-1)]}{n+2}=\frac{(b-d)(n-4)+\alpha n}{n+2}>0 \text { if } d<b+\frac{\alpha}{3} \text {. } \tag{13}
\end{align*}
$$

Next, we need to know relative sizes of the thresholds given in (23)-(33). Some calculations yield

$$
b+\frac{\alpha}{3}<\frac{b+\alpha(n+1)}{n-1}<b+\alpha<b+\frac{\alpha(n+1)}{n-1}<\frac{b(n+1)+\alpha}{3}
$$

for $n \geq 4$. These inequalities divide the values of d into six mutually exclusive ranges as discussed below.

Case 1: Suppose $d \geq \frac{b(n+1)+\alpha}{3}$. We then have
$2(\alpha-b n)<2 \alpha<\frac{2[\alpha+(d-b)(n-1)]}{n+2}<\frac{2[\alpha-(1-n) d-b]}{n+2}<2(d-b)<2(d+b)$
by (23), (25), (27), and (28). These inequalities divide the values of c into seven mutually exclusive intervals. At each interval, we can derive the LREs under the two dynamics by Propositions 1 and C1. Under the imitating-the-best-total dynamic; \vec{D} is the LRE for $c>2(d+b)$ by Proposition 1(ic), $c>2(d+b), c \geq 2(\alpha-b n) ; \vec{D}$ is the LRE at $c=2(d+b)$ by Proposition 1(iic), $c=2(d+b)$, and $c>2(\alpha-b n) ; \vec{D}$ is the LRE for $c \in\left[\frac{2[\alpha-(1-n) d-b]}{n+2}, 2(d+b)\right)$ by Proposition 1(iiib), $c<2(d+b), \alpha \leq(1-n) d+b+\frac{c(n+2)}{2}$, and $c>d+\alpha-b(n-1) ; \vec{D}$ is the LRE for $c \in\left(\hat{c}, \frac{2[\alpha-(1-n) d-b]}{n+2}\right)$ by Proposition 1(iiic), $c>2(\alpha-b n), c<\frac{2[\alpha-(1-n) d-b]}{n+2}$, and $c>\hat{c} ;\{\vec{C}, \vec{D}\}$ is the LRE at $c=\hat{c}$ by Proposition 1 (iiic), $c>2(\alpha-b n)$, and $c<\frac{2[\alpha-(1-n) d-b]}{n+2} ; \vec{C}$ is the LRE for $c \in(2(\alpha-b n), \hat{c})$ by Proposition 1(iiic), $c>2(\alpha-b n), c<\frac{2[\alpha-(1-n) d-b]}{n+2}$, and $c>\hat{c}$; and \vec{C} is the LRE for $c \in(0,2(\alpha-b n)]$ by Proposition 1(iiia), $c \leq \frac{\alpha-b n}{2}$, and $\alpha>(1-n) d+b+\frac{c(n+2)}{2}$. Here $\hat{c} \in\left(2(\alpha-b n), \frac{2[\alpha-(1-n) d-b]}{n+2}\right)$ satisfies condition

$$
\begin{equation*}
\frac{b n+\frac{\hat{c}}{2}-\alpha}{d+b-\frac{\hat{c}}{2}}=\frac{d n+\alpha-\frac{\hat{c}(n+1)}{2}}{d+b+\frac{\hat{c}}{2}} \tag{14}
\end{equation*}
$$

Under the imitating-the-best-average dynamic; \vec{D} is the LRE for $c>2(d-b)$ by Proposition C1(ib) and $c \geq 2 \alpha ; \vec{D}$ is the LRE at $c=2(d-b)$ by Proposition C1(iic) and $c \geq 2 \alpha ; \vec{D}$ is the LRE for $c \in\left(\hat{c}_{c}, 2(d-b)\right)$ by Proposition C1(iiib), $c>2 \alpha$, and $c>\hat{c}_{c} ;\{\vec{C}, \vec{D}\}$ is the LRE at $c=\hat{c}$ by Proposition C1(iiib), $c>2 \alpha$, and $c=\hat{c}_{c} ; \vec{C}$ is the LRE for $c \in\left(2 \alpha, \hat{c}_{c}\right)$ by Proposition C1(iiib), $c>2 \alpha$, and $c<\hat{c}_{c} ; \vec{C}$ is the LRE at $c=2 \alpha$ by Proposition C1(iiia), $c<2(d-b)$, and $c=2 \alpha$; and \vec{C} is the LRE for $c \in(0,2 \alpha)$ by Proposition C1(iiia), $c<2 \alpha$, and $\alpha>(1-n) d+b+\frac{c(n+2)}{2}$. Here $\hat{c}_{c} \in(2 \alpha, 2(d-b))$ satisfies condition

$$
\begin{equation*}
\frac{\frac{\hat{c}_{c}}{2}-\alpha}{d-b-\frac{\hat{c}_{c}}{2}}=\frac{\left(d-b-\frac{\hat{c}_{c}}{2}\right) n+\alpha-\frac{\hat{\hat{c}}_{c}}{2}}{d-b+\frac{\hat{c}_{c}}{2}} . \tag{15}
\end{equation*}
$$

In summary, the c interval making \vec{C} the LRE under the imitating-the-best-average dynamic is $\left(0, \hat{c}_{c}\right]$, and the associated interval under the imitating-the-best-total dynamic is $(0, \hat{c}]$. Thus, if $\hat{c}_{c}>\hat{c}$, then \vec{C} is more likely to be the LRE under the imitating-the-best-average dynamic than under the imitating-the-best-total dynamic. The converse will hold if $\hat{c}_{c}<\hat{c}$, and both dynamics will make \vec{C} emerge equally likely if $\hat{c}_{c}=\hat{c}$.

Case 2: Suppose $b+\frac{\alpha(n+1)}{n-1} \leq d<\frac{b(n-1)+\alpha}{3}$. We then have
$2(\alpha-b n)<2 \alpha<\frac{2[\alpha+(d-b)(n-1)]}{n+2}<2(d-b)<\frac{2[\alpha-(1-n) d-b]}{n+2}<2(d+b)$
by (23), (27), (28), (29), and (30). These inequalities divide the values of c into seven mutually exclusive intervals. Proposition 1 implies that the c interval making \vec{C} the LRE under the imitating-the-best-average dynamic is $\left(0, \hat{c}_{c}\right]$, and the associated interval under the imitating-the-best-total dynamic is ($0, \hat{c}]$ by Proposition C1. Thus, the conclusions are same as Case 1's.

Case 3: Suppose $(b+\alpha) \leq d<b+\frac{\alpha(n+1)}{n-1}$. We then have
$2(\alpha-b n)<\frac{2[\alpha+(d-b)(n-1)]}{n+2}<2 \alpha<2(d-b)<\frac{2[\alpha-(1-n) d-b]}{n+2}<2(d+b)$
by (27), (28), (30), (31), and $d \geq b+\alpha$. These inequalities divide the values of c into seven mutually exclusive intervals. According to Propositions 1 and C1, the c interval making \vec{C} the LRE under the imitating-the-best-average dynamic is $\left(0, \hat{c}_{c}\right]$, and the associated interval under the imitating-the-best-total dynamic is ($0, \hat{c}]$. Again, the results are the same as Case 1's.

Case 4: Suppose $\frac{b+\alpha(n-1)}{n-1} \leq d<(b+\alpha)$. We then have

$$
\begin{aligned}
& 2(\alpha-b n)<\frac{2[\alpha+(d-b)(n-1)]}{n+2}<2(d-b)<(d-b+\alpha)<2 \alpha<\frac{2[\alpha-(1-n) d-b]}{n+2} \\
& <2(d+b)
\end{aligned}
$$

by (26), (29), (30), (31), and $(d-b)<\alpha$. These inequalities divide the values of c into eight mutually exclusive intervals. At each interval, we can derive the LREs under
both dynamics by Propositions 1 and C1. Under the imitating-the-best-total dynamic; \vec{D} is the LRE for $c>2(d+b)$ by Proposition 1(ic); \vec{D} is the LRE at $c=2(d+b)$ by Proposition 1 (iic); \vec{D} is the LRE for $c \in\left[\frac{2[\alpha-(1-n) d-b]}{n+2}, 2(d+b)\right)$ by Proposition $1(\mathrm{iiib}), c>2(\alpha-b n), \alpha \leq(1-n) d+b+\frac{c(n+2)}{2}$, and $\left\lceil\frac{b n+c / 2-\alpha}{d+b-c / 2}\right\rceil>1 ;{ }^{1} \vec{D}$ is the LRE for $c \in\left(\hat{c}, \frac{2[\alpha-(1-n) d-b]}{n+2}\right)$ by Proposition 1(iiic), $c>2(\alpha-b n), c<\frac{2[\alpha-(1-n) d-b]}{n+2}$, and $c>\hat{c} ;\{\vec{C}, \vec{D}\}$ is the LRE at $c=\hat{c}$ by Proposition 1 (iiic), $c>2(\alpha-b n)$, and $c<\frac{2[\alpha-(1-n) d-b]}{n+2} ; \vec{C}$ is the LRE for $c \in(2(\alpha-b n), \hat{c})$ by Proposition 1(iiic), $c>2(\alpha-$ $b n), c<\frac{2[\alpha-(1-n) d-b]}{n+2}$, and $c<\hat{c}$; and \vec{C} is the LRE for $c \in(0,2(\alpha-b n)]$ by Proposition 1 (iiia), $c \leq \frac{\alpha-b n}{2}$, and $\alpha>(1-n) d+b+\frac{c(n+2)}{2}$. Here $\hat{c} \in\left(2(\alpha-b n), \frac{2[\alpha-(1-n) d-b]}{n+2}\right)$ satisfies (34).

Under the imitating-the-best-average dynamic; \vec{D} is the LRE for $c \geq 2 \alpha$ by Proposition $\mathrm{C} 1(\mathrm{ib}), c>2(d-b)$, and $c \geq 2 \alpha ; \vec{D}$ is the LRE for $c \in((d-b+\alpha), 2 \alpha)$ by Proposition C1(ia), $c>2(d-b), c<2 \alpha$, and $c>(d-b+\alpha) ;\{\vec{C}, \vec{D}\}$ is the LRE for $c \in(2(d-b),(d-b+\alpha)]$ by Proposition C1(ia), $c>2(d-b), c \leq(d-b+\alpha)$, and $\alpha<l_{0}^{c} ; \vec{C}$ is the LRE at $c=2(d-b)$ by Proposition C1(iia); \vec{C} is the LRE for $c \in\left[\frac{2[\alpha+(d-b)(n-1]}{n+2}, 2(d-b)\right)$ by Proposition C1(iiia), $c<2(d-b)$, and $c<2 \alpha$; and \vec{C} is the LRE for $c \in\left(0, \frac{2[\alpha+(d-b)(n-1)]}{n+2}\right)$ by Proposition C1(iiia), $c<2(d-b), c \leq 2 \alpha$, and $\alpha>l_{0}^{c}$.

In summary, the c interval making \vec{C} the LRE under the imitating-the-best-average dynamic is $(0,(d-b+\alpha)]$, and the associated interval under the imitating-the-besttotal dynamic is $(0, \hat{c}]$. Thus, if $(d-b+\alpha)>\hat{c}$, then \vec{C} is more likely to be the LRE under the imitating-the-best-average dynamic than under the imitating-the-best-total dynamic. The converse will hold if $(d-b+\alpha)<\hat{c}$, and both dynamics will make \vec{C} emerge equally likely if $(d-b+\alpha)=\hat{c}$.

[^0]Case 5: Suppose $b+\frac{\alpha}{3} \leq d<\frac{\alpha(n-1)+b}{n-1}$. We then have

$$
\begin{aligned}
& 2(\alpha-b n)<\frac{2[\alpha+(d-b)(n-1)]}{n+2}<2(d-b)<(d-b+\alpha)<\frac{2[\alpha-(1-n) d-b]}{n+2} \\
& <2 \alpha<2(d+b)
\end{aligned}
$$

by (26), (29), (31), and (32). ${ }^{2}$ These inequalities divide the values of c into eight mutually exclusive intervals. As in Case 4, the c interval making \vec{C} the LRE under the imitating-the-best-average dynamic is $(0,(d-b+\alpha)]$, and the associated interval under the imitating-the-best-total dynamic is ($0, \hat{c}]$. Thus, the conclusions are the same as Case 4's.

Case 6: Suppose $d \leq b+\frac{\alpha}{3}$. We then have

$$
\begin{aligned}
& 2(\alpha-b n)<2(d-b)<\frac{2[\alpha+(d-b)(n-1)]}{n+2}<d-b+\alpha<\frac{2[\alpha-(1-n) d-b]}{n+2} \\
& <2 \alpha<2(d+b)
\end{aligned}
$$

by (24), (28), (29), (32), and (33). ${ }^{3}$ These inequalities divide the values of c into eight mutually exclusive intervals. As in Case 4 , the c interval making \vec{C} the LRE under the imitating-the-best-average dynamic is $(0,(d-b+\alpha)]$, and the associated interval under the imitating-the-best-total dynamic is ($0, \hat{c}]$. Again, the conclusions are the same as Case 4's.

In summary, Cases $1-3$ show that for $d \geq b+\alpha, \vec{C}$ is more likely to emerge when the imitating-the-best-average rule is adopted if $\hat{c}<\hat{c}_{c}$. For $d<b+\alpha$, the same conclusions can be drawn if $\hat{c}<(d-b+\alpha)$. The two conditions will hold as displayed below, and hence Theorem 1 is proved.

Claim 1. Suppose $d \geq b+\alpha$. We then have $\hat{c}<\hat{c}_{c}$ with $\hat{c} \in\left(2(\alpha-b n), \frac{2[\alpha-(1-n) d-b]}{n+2}\right)$ and $\hat{c}_{c} \in(2 \alpha, 2(d-b))$.
Proof. To simplify the notations, we define $x=\frac{\hat{c}}{2}$ and $y=\frac{\hat{c}_{c}}{2}$. Solving (34) and (35)

[^1]yields ${ }^{4}$
\[

$$
\begin{aligned}
& x=\frac{(d+b)(n+1)-\sqrt{(d+b)^{2}(n+1)^{2}-n(d+b)[2 \alpha+n(d-b)]}}{n} \text { and } \\
& y=\frac{(d-b)(n+1)-\sqrt{(d-b)^{2}(n+1)^{2}-n(d-b)[2 \alpha+n(d-b)]}}{n}
\end{aligned}
$$
\]

Accordingly, we have

$$
(x-y)=\frac{[2 b(n+1)-\sqrt{A}+\sqrt{B}]}{n},
$$

where $A=(d+b)^{2}(n+1)^{2}-n(d+b)[2 \alpha+n(d-b)]>0$ and $B=(d-b)^{2}(n+1)^{2}-$ $n(d-b)[2 \alpha+n(d-b)]>0$ with $A>B$ by $d>b$. To show $x<y$, it is enough to show $A>4(n+1)^{2} b^{2}+B+4 b(n+1) \sqrt{B}$. Note that $\sqrt{\alpha-\beta} \leq \sqrt{\alpha}-\sqrt{\beta}$ if $\alpha>\beta>0$. Thus,

$$
\begin{aligned}
& A-4(n+1)^{2} b^{2}-B-4 b(n+1) \sqrt{B} \\
= & (n+1)^{2}\left(4 b d-4 b^{2}\right)-2 b n[(d-b) n+2 \alpha]-4(n+1) b \sqrt{B} \\
> & (n+1)^{2} 4 b(d-b)-2 b n[(d-b) n+2 \alpha]-4 b(n+1) \sqrt{(d-b)^{2}(n+1)^{2}} \\
& +4 b(n+1) \sqrt{n(d-b)[(d-b) n+2 \alpha]} \\
= & 2 b\{2(n+1) \sqrt{n(d-b)[(d-b) n+2 \alpha]}-n[(d-b) n+2 \alpha]\} \\
> & 0,
\end{aligned}
$$

where the first inequality is implied by $\sqrt{B}<\sqrt{(d-b)^{2}(n+1)^{2}}-\sqrt{n(d-b)[(d-b) n+2 \alpha]}$ and the second inequality is because

$$
\begin{aligned}
& 4(n+1)^{2} n(d-b)[(d-b) n+2 \alpha]-n^{2}[(d-b) n+2 \alpha]^{2} \\
= & n[(d-b) n+2 \alpha]\left[4(n+1)^{2}(d-b)-n^{2}(d-b)-2 \alpha n\right] \\
> & n[(d-b) n+2 \alpha]\left[4(n+1)^{2}(d-b)-n^{2}(d-b)-2 n(d-b)\right] \\
= & n(d-b)[(d-b) n+2 \alpha]\left[3 n^{2}+6 n+4\right]>0
\end{aligned}
$$

by $-\alpha>-(d-b)$. Thus, we have $x<y$ and $\hat{c}<\hat{c}_{c}$, which prove Claim 1 .

[^2]Claim 2. Suppose $d<b+\alpha$ and $\hat{c} \in\left(2(\alpha-b n), \frac{2[\alpha-(1-n) d-b]}{n+2}\right)$ with $\alpha>b n$. We then have $\hat{c}<(d-b+\alpha)$.
Proof. Plugging $\hat{c}=d-b+\alpha$ into (34) yields

$$
\begin{aligned}
& L \equiv \frac{b n+\frac{d-b+\alpha}{2}-\alpha}{d+b-\frac{d-b+\alpha}{2}}=\frac{d+b(2 n-1)-\alpha}{d+3 b-\alpha} \geq 1 \text { by } n \geq 2, \text { and } \\
& R \equiv \frac{d n+\alpha-\frac{(n+1)(d-b+\alpha)}{2}}{d+b+\frac{d-b+\alpha}{2}}=\frac{d(n-1)+b(n-1)-\alpha(n+1)}{3 d+b+\alpha} .
\end{aligned}
$$

Thus

$$
L-R=\frac{-d^{2}(n-4)-b^{2}(n+4)-\alpha^{2}(n+2)+2 n b d+2 d \alpha(n-1)+2 b \alpha(3 n+1)}{[d+3 b-\alpha][3 d+b+\alpha]} .
$$

Denote $N \equiv-d^{2}(n-4)-b^{2}(n+4)-\alpha^{2}(n+2)+2 n b d+2 d \alpha(n-1)+2 b \alpha(3 n+1)$. We then have

$$
\begin{aligned}
N & >-(n-4)(b+\alpha)^{2}-b^{2}(n+4)-\alpha^{2}(n+2)+2 n b^{2}+2 b \alpha(n-1)+2 b \alpha(3 n+1) \\
& =\alpha^{2}(-2 n+2)+b \alpha(6 n+8) \\
& >\alpha^{2}(-2 n+2)+\alpha^{2}(6 n+8) \\
& =\alpha^{2}(4 n+10) \\
& >0
\end{aligned}
$$

The first inequality is due to $d<b+\alpha$ and the second inequality is by $\alpha>b n$. These imply $L>R$. Thus, to make \hat{c} satisfy (34), we must have $\hat{c}<(d-b+\alpha)$ to lower L and raise R. Claim 2 is then proved.

Proof of Proposition 2: After some calculations, u is the minimum of k satisfying

$$
\begin{equation*}
(d k+\alpha)-b(n-k) \geq \frac{c\left[2 k^{2}+3 k+1\right]}{6} \tag{16}
\end{equation*}
$$

and v is the minimum of k satisfying

$$
\begin{equation*}
(d+b) k-\alpha-d n \geq \frac{-c\left[2\left(n^{2}+n k+k^{2}\right)+3(n+k)+1\right]}{6} . \tag{17}
\end{equation*}
$$

Define $g(k) \equiv 2 k^{2}+3 k+1-\frac{6[(d+b) k+\alpha-b n]}{c}$ with $g^{\prime}(k)=4 k+3-\frac{6(d+b)}{c}$ and $g^{\prime \prime}(k)=4>0$ for all k. These imply that $g(k)$ is a strictly convex function of k with $g^{\prime}(k) \geq(\leq) 0$
iff $k \geq(\leq) \underline{k} \equiv \frac{6(d+b)-3 c}{4 c}, g^{\prime}(1)=7-\frac{6(d+b)}{c} \geq(\leq) 0$ iff $c \geq(\leq) \frac{6(d+b)}{7}, \underline{k} \geq(\leq) 1$ iff $c \leq(\geq) \frac{6(d+b)}{7}$, and $g(1) \geq(\leq) 0$ iff $c \geq(\leq)[d+b(1-n)+\alpha]$. Since u is the minimum of k satisfying $g(k) \leq 0$ by (36), it depends on the values of $g^{\prime}(1)$ and $g(1)$. Thus, if $c<\frac{6(d+b)}{7}$, we have $g^{\prime}(1)<0$ and $\underline{k}>1$, which suggest

$$
u= \begin{cases}1 & \text { if } g(1) \leq 0 \tag{18}\\ \left\lceil k_{g}\right\rceil & \text { if } g(1)>0 \text { and } g(\underline{k})<0 \\ n & \text { if } g(1)>0 \text { and } g(\underline{k})>0\end{cases}
$$

where k_{g} satisfies $g\left(k_{g}\right)=0$. For $c=\frac{6(d+b)}{7}$, we have $g^{\prime}(1)=0$ and $\underline{k}=1$, which imply

$$
u= \begin{cases}1 & \text { if } g(1) \leq 0 \tag{19}\\ n & \text { if } g(1)>0\end{cases}
$$

In contrast, if $c>\frac{6(d+b)}{7}$, we have $g^{\prime}(1)>0$ and $\underline{k}<1$, which suggest

$$
u= \begin{cases}1 & \text { if } g(1) \leq 0 \tag{20}\\ n & \text { if } g(1)>0\end{cases}
$$

On the other hand, define $h(k) \equiv 2\left(n^{2}+n k+k^{2}\right)+3(n+k)+1+\frac{6}{c}[(d+b) k-\alpha-d n]$ based on $k \geq 1$ with $h^{\prime}(k)=2 n+4 k+3+\frac{6(d+b)}{c}>0$ for all $k \geq 1, h^{\prime \prime}(k)=4>0$ for all $k \geq 1, h^{\prime}(1)=2 n+7+\frac{6(d+b)}{c}>0$, and $h(1)=2 n^{2}+5 n+6+\frac{6(d+b)}{c}-\frac{6(\alpha+d n)}{c} \geq(\leq) 0$ iff $c \geq(\leq) \frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}$. These suggest that $h(k)$ is a strictly convex function with minimum value $h(1)$. Accordingly, by (37), we have

$$
v= \begin{cases}1 & \text { if } h(1) \geq 0 \tag{21}\\ \left\lceil k_{h}\right\rceil \geq 2 & \text { if } h(1)<0\end{cases}
$$

where k_{h} satisfies $h\left(k_{h}\right)=0$.

Now we are ready to get relative sizes of u and v by comparing $g(k), h(k)$, and (38)(41). First, we need to know relative sizes of $\frac{6(d+b)}{7}, \frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}$, and $[d+\alpha+(1-n) b]$.

Some calculations show

$$
\begin{gather*}
\frac{6(d+b)}{7}-[d+\alpha+(1-n) b]=\frac{-[d+7 \alpha-b(7 n-1)]}{7} \geq(\leq) 0 \text { iff } d \leq(\geq) b(7 n-1)-7 \alpha(, 22) \\
\frac{6(d+b)}{7}-\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}=\frac{6\left[d\left(2 n^{2}-2 n+13\right)+b\left(2 n^{2}+5 n+13\right)-7 \alpha\right]}{7\left(2 n^{2}+5 n+6\right)}>0 \text { by } d>b>\alpha \tag{23}\\
{[d+\alpha+(1-n) b]-\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}=\frac{\left[d\left(2 n^{2}-n+12\right)-b\left(2 n^{3}+3 n^{2}+n-12\right)+\alpha\left(2 n^{2}+5 n\right)\right]}{2 n^{2}+5 n+6}} \\
\geq(\leq) 0 \text { iff } d \geq(\leq) \frac{b\left(2 n^{3}+3 n^{2}+n-12\right)-\alpha\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12} \tag{24}
\end{gather*}
$$

Moreover, since $[b(7 n-1)-7 \alpha]>\frac{b\left(2 n^{3}+3 n^{2}+n-12\right)-\alpha\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12}$, (42)-(44) divide the values of d into three mutually exclusive ranges as stated below.

Case 1: Suppose $d \geq[b(7 n-1)-7 \alpha]$. We then have

$$
l_{1} \equiv \frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}<\frac{6(d+b)}{7}<[d+\alpha+(1-n) b] .
$$

These inequalities divide the values of c into four mutually exclusive intervals.

Case 1a: Suppose $c \geq[d+\alpha+(1-n) b]$. We have $h(1)>0$ by $c>l_{1}$ and $v=1$ by (41). Then $g(1)>0$ by $c \geq d+\alpha+b(1-n)$ and $g^{\prime}(1)>0$ by $c>\frac{6(d+b)}{7}$, which imply $u=n$ by (40). Thus, $S_{*}=\{\vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-1}$.

Case 1b: Suppose $\frac{6(d+b)}{7} \leq c<[d+\alpha+(1-n) b]$. We have $h(1)>0$ by $c>l_{1}$ and $v=1$ by (41). Then $g(1)<0$ by $c<d+\alpha+b(1-n)$ and $g^{\prime}(1) \geq 0$ by $c \geq \frac{6(d+b)}{7}$, which imply $u=1$ by (39)-(40). Thus, $S_{*}=\{\vec{C}, \vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{0}$.

Case 1c: Suppose $l_{1} \leq c<\frac{6(d+b)}{7}$. We have $h(1) \geq 0$ by $c \geq l_{1}$ and $v=1$ by (41). Then $g(1)<0$ by $c<[d+\alpha+b(1-n)]$ and $g^{\prime}(1)<0$ by $c<\frac{6(d+b)}{7}$, which imply $u=1$ by (38). Thus, $S_{*}=\{\vec{C}, \vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{0}$.

Case 1d: Suppose $c<l_{1}$. We have $h(1)<0$ by $c<l_{1}$ and $v=\left\lceil k_{h}\right\rceil \geq 2$ by (41). Then $g(1)<0$ by $c<[d+\alpha+b(1-n)]$ and $g^{\prime}(1)<0$ by $c<\frac{6(d+b)}{7}$, which imply $u=1$ by (38). Thus, $S_{*}=\{\vec{C}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-1}$.

Propositions 2(ia), 2(ib) and 2(ic) are proved by the results of Case 1a, Cases 1b-1c and Case 1d, respectively.

Case 2: Suppose $\frac{b\left[2 n^{3}+3 n^{2}+n-12\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12} \leq d<[b(7 n-1)-7 \alpha]$. We then have

$$
l_{1} \equiv \frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}<d+\alpha+(1-n) b<\frac{6(d+b)}{7}
$$

These inequalities divide the values of c into four mutually exclusive intervals.
Case 2a: Suppose $c \geq \frac{6(d+b)}{7}$. The results here are the same as Case 1a's.
Case 2b: Suppose $[d+\alpha+(1-n) b] \leq c<\frac{6(d+b)}{7}$. We have $h(1)>0$ by $c>l_{1}$ and $v=1$ by (41). Then $g(1)>0$ by $c>[d+\alpha+b(1-n)]$ and $g^{\prime}(1)<0$ by $c<\frac{6(d+b)}{7}$, which imply $u=n$ or $\left\lceil k_{g}\right\rceil$ by (38). Thus, $S_{*}=\{\vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-1}$.

Case 2c: Suppose $l_{1} \leq c<[d+\alpha+(1-n) b]$. The results here are the same as Case 1 c 's.

Case 2d: Suppose $c<l_{1}$. The results here are the same as Case 1d's.

Propositions 2(iia), 2(iib) and 2(iic) are proved by the results of Cases 2a-2b, Case 2c and Case 2d, respectively.

Case 3: Suppose $d \leq \frac{b\left[2 n^{3}+3 n^{2}+n-12\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12}$. We then have

$$
[d+\alpha+(1-n) b]<l_{1} \equiv \frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}<\frac{6(d+b)}{7}
$$

These inequalities divide the values of c into four mutually exclusive intervals.
Case 3a: Suppose $c \geq \frac{6(d+b)}{7}$. The results here are the same as Case 1a's.
Case 3b: Suppose $l_{1} \leq c<\frac{6(d+b)}{7}$. We have $h(1) \geq 0$ by $c \geq l_{1}$ and $v=1$ by (41). Then $g(1)>0$ by $c>[d+\alpha+b(1-n)]$ and $g^{\prime}(1)<0$ by $c<\frac{6(d+b)}{7}$, which imply $u=n$ or $\left\lceil k_{g}\right\rceil$ by (38). Thus, $S_{*}=\{\vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-1}$.

Case 3c: Suppose $[d+\alpha+(1-n) b] \leq c<l_{1}$. We have $h(1)<0$ by $c<l_{1}$ and $v=\left\lceil k_{h}\right\rceil \geq 2$ by (41). Then $g(1)>0$ by $c>[d+\alpha+b(1-n)]$ and $g^{\prime}(1)<0$ by $c<\frac{6(d+b)}{7}$, which imply $u=n$ or $\left\lceil k_{g}\right\rceil \geq 2$ by (38). We can show $\left\lceil k_{g}\right\rceil<\left\lceil k_{h}\right\rceil$ below, and it implies $S_{*}=\{\vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-\left\lceil k_{h}\right\rceil}$.

Claim 3. We have $\left\lceil k_{g}\right\rceil>\left\lceil k_{h}\right\rceil$.
Proof. Since k_{g} satisfies $g\left(k_{g}\right)=0$, we have ${ }^{5}$

$$
k_{g}=\frac{-3+\frac{6(d+b)}{c}+\sqrt{\left[3-\frac{6(d+b)}{c}\right]^{2}-8\left[1-\frac{6(\alpha-b n)}{c}\right]}}{4} .
$$

Similarly, since k_{h} satisfies $h\left(k_{g}\right)=0$, we have

$$
k_{h}=\frac{-\left[2 n+3+\frac{6(d+b)}{c}\right]+\sqrt{\left[2 n+3+\frac{6(d+b)}{c}\right]^{2}-8\left[2 n^{2}+3 n+1-\frac{6(\alpha+d n)}{c}\right]}}{4} .
$$

Define $A=\left[3-\frac{6(d+b)}{c}\right]^{2}-8\left[1-\frac{6(\alpha-b n)}{c}\right]$ and $B=\left[2 n+3+\frac{6(d+b)}{c}\right]^{2}-8\left[2 n^{2}+3 n+1-\frac{6(\alpha+d n)}{c}\right]$. Then,

$$
\left(k_{g}-k_{h}\right)=\frac{2 n+\frac{12(d+b)}{c}+\sqrt{A}-\sqrt{B}}{4} .
$$

To show $k_{g}>k_{h}$, it is enough to prove $B<A+2 \sqrt{A}\left[2 n+\frac{12(d+b)}{c}\right]+4 n^{2}+\frac{48(d+b)}{c}+$ $\frac{144(d+b)^{2}}{c^{2}}$. Some calculations reveal

$$
\begin{aligned}
& B-A-2 \sqrt{A}\left[2 n+\frac{12(d+b)}{c}\right]-4 n^{2}-\frac{48(d+b)}{c}-\frac{144(d+b)^{2}}{c^{2}} \\
= & -\left[\frac{12(d+b)}{c}-(3 n+1)\right]^{2}-7 n^{2}-6 n+1-4 \sqrt{A}\left[n+\frac{d+b}{c}\right] \\
< & 0 .
\end{aligned}
$$

These suggest $k_{g}>k_{h}$. Moreover, the above inequality remains true if we replace n with $(n-4)$. It means $k_{g}>k_{h}+1$. Thus, we will have Claim $3,\left\lceil k_{g}\right\rceil>\left\lceil k_{h}\right\rceil$.

Case 3d: Suppose $c<[d+\alpha+(1-n) b]$. The results here are the same as Case 1d's.

Propositions 2(iiia), 2(iiib) and 2(iiic) are proved by the results of Cases 3a-3b, Case 3c and Case 3d, respectively.

Proof of Theorem 2: Before comparing Propositions 2 and C2, we need to know relative

[^3]sizes of the following variables:
\[

$$
\begin{align*}
& \frac{6(d-b)}{7}-[d+\alpha+(1-n) b]=\frac{-1}{7}[d+7 \alpha-b(7 n-13)] \\
& \geq(\leq) 0 \text { iff } d \leq(\geq)(7 b n-13 b-7 \alpha), \tag{25}\\
& \alpha-\frac{(d-b)\left[2 n^{2}-2 n+13\right]}{7} \geq(\leq) 0 \text { iff } d \leq(\geq) b+\frac{7 \alpha}{2 n^{2}-2 n+13}, \tag{26}\\
& \frac{6(d-b)}{7}-\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}=\frac{6\left[d\left(2 n^{2}+4 n+7\right)-b\left(2 n^{2}+5 n+5\right)-\alpha\right]}{7\left(2 n^{2}+5 n+6\right)} \\
& \geq(\leq) 0 \text { iff } d \geq(\leq) \frac{b\left(2 n^{2}+5 n+5\right)+\alpha}{2 n^{2}+4 n+7}, \tag{27}\\
& d-b+\alpha-[d+\alpha+(1-n) b]=b(n-2)>0 \text { by } n \geq 3 \text {, } \tag{28}\\
& \frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}-\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}=\frac{6 b(n-2)}{2 n^{2}+5 n+6}>0 \text { by } n \geq 3, \tag{29}\\
& \frac{6(d+b)}{7}-[d-b+\alpha]=\frac{-(d-13 b+7 \alpha)}{7} \geq(\leq) 0 \text { iff } d \leq(\geq)(13 b-7 \alpha), \tag{30}\\
& \frac{6(d-b)}{7}-\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}=\frac{6\left(2 n^{2}-12 n+13\right)\left[d-b-\frac{7 \alpha}{2 n^{2}-12 n+13}\right]}{7\left(2 n^{2}+5 n+6\right)} \\
& \geq(\leq) 0 \text { iff } d \geq(\leq) b+\frac{7 \alpha}{2 n^{2}-2 n+13}, \tag{31}\\
& {[d+\alpha+(1-n) b]-\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}} \\
& =\frac{d\left(2 n^{2}-n+12\right)-b\left(2 n^{3}+3 n^{2}-5 n\right)+\alpha\left(2 n^{2}+5 n\right)}{2 n^{2}+5 n+6} \\
& \geq(\leq) 0 \text { iff } d \geq(\leq) \frac{b\left(2 n^{3}+3 n^{2}-5 n\right)-\alpha\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12} \text {. } \tag{32}
\end{align*}
$$
\]

Next, according to relative sizes of the thresholds of d specified in Proposition 2, there are three cases below.

Case 1: Suppose $d \geq[b(7 n-1)-7 \alpha]$. We then have

$$
\begin{aligned}
& \frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}<\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}<\frac{6(d-b)}{7}<\frac{6(d+b)}{7} \\
& <[d+\alpha+(1-n) b]<(d-b+\alpha)
\end{aligned}
$$

by (42), (47), (48), (49), and $d \geq[b(7 n-1)-7 \alpha]>\frac{b\left[2 n^{2}+5 n+5\right]+\alpha}{2 n^{2}+4 n+7}$. These inequalities divide the values of c into seven exclusive ranges. At each range, we can derive the LREs in both dynamics. Under the imitating-the-best-total dynamic; \vec{D} is the LRE for
$c \geq[d+\alpha+(1-n) b]$ by Proposition 2(ia); $\{\vec{C}, \vec{D}\}$ is the LRE for $c \in\left[\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6},[d+\right.$ $\alpha+(1-n) b])$ by Proposition 2(ib); and \vec{C} is the LRE for $c<\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}$ by Proposition 2(ic).

Under the imitating-the-best-average dynamic; \vec{D} is the LRE for $c>(d-b+\alpha)$ by Proposition C2(i); $\{\vec{C}, \vec{D}\}$ is the LRE for $c \in\left[\frac{6(d-b)}{7},(d-b+\alpha)\right]$ by Proposition C2(iia) and $\alpha \leq \frac{(d-b)\left[2 n^{2}-2 n+13\right]}{7} ;\{\vec{C}, \vec{D}\}$ is the LRE for $c \in\left[\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}, \frac{6(d-b)}{7}\right)$ by Proposition C2(iiib), $c<\frac{6(d-b)}{7}, \alpha \leq \frac{(d-b)\left[2 n^{2}-2 n+13\right]}{7}$ implied by (46) and $d \geq[b(7 n-$ 1) $-7 \alpha]$, and $c \in\left[\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}, \frac{6(d-b)}{7}\right)$; and \vec{C} is the LRE for $c \in\left(0, \frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}\right)$ by Proposition C2(iiia), $c<\frac{6(d-b)}{7}, \alpha \leq \frac{(d-b)\left[2 n^{2}-2 n+13\right]}{7}$ implied by (46) and $d \geq$ $[b(7 n-1)-7 \alpha]$, and $c<\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}$.

In summary, the c interval making \vec{C} the LRE under the imitating-the-best-average dynamic is $(0,(d-b+\alpha)]$, and the associated interval under the imitating-the-besttotal dynamic is $(0,(d+\alpha+(1-n) b))$. Since $(0,(d+\alpha+(1-n) b)) \subset(0,(d-b+\alpha)]$ by $(d-b+\alpha)>[d+\alpha+(1-n) b]$ due to $n \geq 3, \vec{C}$ is more likely to be the LRE under the imitating-the-best-average dynamic than under the imitating-the-best-total dynamic.

Case 2: Suppose $(7 b n-7 \alpha-13 b) \leq d<[b(7 n-1)-7 \alpha]$. Under the circumstance, we need to know relative sizes of the thresholds of d specified in (45)-(51). Some calculations reveal
$b+\frac{7 \alpha}{2 n^{2}-2 n+13}<\frac{b\left[2 n^{2}+5 n+5\right]+\alpha}{2 n^{2}+4 n+7}<13 b-7 \alpha<7 b n-7 \alpha-13 b<b(7 n-1)-7 \alpha$.
These inequalities divide the values of d into five mutually exclusive intervals.
Case 2a: Suppose $(7 b n-7 \alpha-13 b) \leq d<[b(7 n-1)-7 \alpha]$. We then have

$$
\begin{aligned}
& \frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}<\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}<\frac{6(d-b)}{7}<[d+\alpha+(1-n) b] \\
& <\frac{6(d+b)}{7}<(d-b+\alpha)
\end{aligned}
$$

by (42), (45), (47), (49), and (50). These inequalities divide the values of c into seven
mutually exclusive intervals. The results here are the same as Case 1's by $(d-b+\alpha)>$ $[d+\alpha+(1-n) b]$.

Case 2b: Suppose $(13 b-7 \alpha) \leq d<(7 b n-7 \alpha-13 b)$. We then have

$$
\begin{aligned}
& \frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}<\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}<[d+\alpha+(1-n) b]<\frac{6(d-b)}{7} \\
& <\frac{6(d+b)}{7}<(d-b+\alpha)
\end{aligned}
$$

by (44), (45), (49), and (50). These inequalities divide the values of c into seven mutually exclusive intervals. Again, the conclusions here are the same as Case 1's due to $(d-b+\alpha)>[d+\alpha+(1-n) b]$.

Case 2c: Suppose $\frac{b\left[2 n^{2}+5 n+5\right]+\alpha}{2 n^{2}+4 n+7} \leq d<13 b-7 \alpha$. We then have

$$
\begin{aligned}
& \frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}<\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}<[d+\alpha+(1-n) b]<\frac{6(d-b)}{7} \\
& <(d-b+\alpha)<\frac{6(d+b)}{7}
\end{aligned}
$$

by (44), (45), (49), and (50). These inequalities divide the values of c into seven mutually exclusive intervals. Similarly, Propositions 2 and C 2 imply that \vec{C} is more likely to emerge when countries adopt the imitating-the-best-average rule by ($d-b+$ $\alpha)>[d+\alpha+(1-n) b]$.

Case 2d: Suppose $b+\frac{7 \alpha}{2 n^{2}-2 n+13} \leq d<\frac{b\left[2 n^{2}+5 n+5\right]+\alpha}{2 n^{2}+4 n+7}$. We then have

$$
\begin{aligned}
& \frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}<\frac{6(d-b)}{7}<\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}<[d+\alpha+(1-n) b] \\
& <(d-b+\alpha)<\frac{6(d+b)}{7}
\end{aligned}
$$

by (44), (47), (48), (50), and (51). These inequalities divide the values of c into seven mutually exclusive intervals. The results obtained here are the same as Case 1's by Propositions 2 and C 2 due to $(d-b+\alpha)>[d+\alpha+(1-n) b]$.

Case 2e: Suppose $d \leq b+\frac{7 \alpha}{2 n^{2}-2 n+13}$. We then have

$$
\begin{aligned}
& \frac{6(d-b)}{7}<\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}<\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}<[d+\alpha+(1-n) b] \\
& <(d-b+\alpha)<\frac{6(d+b)}{7}
\end{aligned}
$$

by (44), (48), (49), (50), and (51). These inequalities divide the values of c into seven mutually exclusive intervals. Because $(d-b+\alpha)>[d+\alpha+(1-n) b], \vec{C}$ is more likely to emerge in the long run under the imitating-the-best-average rule by Propositions 2 and C2.

Case 3: Suppose $d<\frac{b\left[2 n^{3}+3 n^{2}+n-12\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12}$. We can show $\frac{b\left[2 n^{3}+3 n^{2}+n-12\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12}<[7 b n-7 \alpha-13 b]$ by $n \geq 4$. On the other hand, we have $\frac{b\left[2 n^{3}+3 n^{2}+n-12\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12}-(13 b-7 \alpha)<0$ if $n<13$, and >0 if $n \geq 13$. Thus, the situation of $d \in[7 b n-7 \alpha-13 b, b(7 n-1)-7 \alpha)$ discussed in Case 2 a does not exist here. Accordingly, we will start with the case of $d \in[13 b-7 \alpha, 7 b n-7 \alpha-13 b)$ as follows. In addition, we have

$$
\frac{b\left[2 n^{3}+3 n^{2}-5 n\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12}<\frac{b\left[2 n^{3}+3 n^{2}+n-12\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12}
$$

by $n \geq 3$.

Case 3a: Suppose $(13 b-7 \alpha) \leq d<(7 b n-7 \alpha-13 b)$. We then have

$$
\begin{aligned}
& \frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}<d+\alpha+(1-n) b<\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}<\frac{6(d-b)}{7} \\
& <\frac{6(d+b)}{7}<(d-b+\alpha)
\end{aligned}
$$

by (44), (47), (50), and (52) with $d>\frac{b\left[2 n^{3}+3 n^{2}-5 n\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12}$ assumed. ${ }^{6}$ These inequalities divide the values of c into seven mutually exclusive intervals. At each range, we can derive the LREs in both dynamics. Under the imitating-the-best-total dynamic; \vec{D} is the LRE for $c \geq \frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}$ by Proposition 2(iiia); \vec{D} is the LRE for

[^4]$c \in\left[d+\alpha+(1-n) b, \frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}\right)$ by Proposition 2(iiib); and \vec{C} is the LRE for $c<[d+\alpha+(1-n) b]$ by Proposition 2(iiic).

Under the imitating-the-best-average dynamic; \vec{D} is the LRE for $c>(d-b+\alpha)$ by Proposition C2(i); $\{\vec{C}, \vec{D}\}$ is the LRE for $c \in\left[\frac{6(d-b)}{7},(d-b+\alpha)\right]$ by Proposition C2(iia) and $\alpha \leq \frac{(d-b)\left[2 n^{2}-2 n+13\right]}{7}$ implied by (46) and $d>b+\frac{7 \alpha}{2 n^{2}-2 n+13} ;\{\vec{C}, \vec{D}\}$ is the LRE for $c \in\left[\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}, \frac{6(d-b)}{7}\right)$ by Proposition C2(iiib), $c<\frac{6(d-b)}{7}, \alpha \leq \frac{(d-b)\left[2 n^{2}-2 n+13\right]}{7}$ implied by (46) and $d>b+\frac{7 \alpha}{2 n^{2}-2 n+13}$, and $c \in\left[\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}, \frac{6(d-b)}{7}\right)$; and \vec{C} is the LRE for $c \in\left(0, \frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}\right)$ by Proposition C2(iiia), $c<\frac{6(d-b)}{7}, \alpha \leq \frac{(d-b)\left[2 n^{2}-2 n+13\right]}{7}$ implied by (46) and $d>b+\frac{7 \alpha}{2 n^{2}-2 n+13}$, and $c<\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}$.

In summary, the c interval making \vec{C} the LRE under the imitating-the-best-average dynamic is $(0,(d-b+\alpha)]$, and the associated interval under the imitating-the-besttotal dynamic is $(0,(d+(1-n) b+\alpha))$. Since $(0,(d+(1-n) b+\alpha)) \subset(0,(d-b+\alpha)]$ by $(d-b+\alpha)>(d+(1-n) b+\alpha), \vec{C}$ is more likely to be the LRE under the imitating-the-best-average dynamic than under the imitating-the-best-total dynamic.

Case 3b: Suppose $\frac{b\left[2 n^{2}+5 n+5\right]+\alpha}{2 n^{2}+4 n+7} \leq d<(13 b-7 \alpha)$. Some calculations show

$$
\frac{b\left[2 n^{3}+3 n^{2}+n-12\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12}>\frac{b\left[2 n^{3}+3 n^{2}-5 n\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12}>\frac{b\left[2 n^{2}+5 n+5\right]+\alpha}{2 n^{2}+4 n+7} .
$$

We then have

$$
\begin{aligned}
& \frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}<d+\alpha+(1-n) b<\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}<\frac{6(d-b)}{7} \\
& <(d-b+\alpha)<\frac{6(d+b)}{7}
\end{aligned}
$$

by (44), (47), (50), and (52) with $d>\frac{b\left[2 n^{3}+3 n^{2}-5 n\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12}$ assumed. ${ }^{7}$ These inequalities divide the values of c into seven mutually exclusive intervals. As in Case 3b, we obtain that \vec{C} is more likely to emerge under the imitating-the-best-average dynamic than under the imitating-the-best-total dynamic due to $(0,(d+(1-n) b+\alpha)) \subset(0,(d-b+\alpha)]$ by Propositions 2 and C2.

[^5]Case 3c: Suppose $b+\frac{7 \alpha}{2 n^{2}-2 n+13} \leq d<\frac{b\left[2 n^{2}+5 n+5\right]+\alpha}{2 n^{2}+4 n+7}$. We will always have $d<\frac{b\left[2 n^{3}+3 n^{2}-5 n\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12}<$ $\frac{b\left[2 n^{3}+3 n^{2}+n-12\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12}$. Then

$$
\begin{aligned}
& d+\alpha+(1-n) b<\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}<\frac{6(d-b)}{7}<\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6} \\
& <(d-b+\alpha)<\frac{6(d+b)}{7}
\end{aligned}
$$

by (47), (50), (51), and (53) by $d>b+\frac{7 \alpha}{2 n^{2}-2 n+13}>\frac{(b-\alpha)\left(2 n^{2}+5 n\right)}{2 n^{2}-2 n+12}$. These inequalities divide the values of c into seven mutually exclusive intervals. Again, the results here are the same as Case 3b's due to $(d-b+\alpha)>[d+(1-n) b+\alpha]$.

Case 3d: Suppose $d<b+\frac{7 \alpha}{2 n^{2}-2 n+13}$. Under the circumstance, we need to know relative sizes of $(d-b+\alpha), \frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}$, and $\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}$. Some calculations show

$$
\begin{align*}
& (d-b+\alpha)-\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}=\frac{\left[d\left(2 n^{2}-n+12\right)-(b-\alpha)\left(2 n^{2}+5 n\right)\right]}{2 n^{2}+5 n+6} \\
& \geq(\leq) 0 \text { iff } d \geq(\leq) \frac{(b-\alpha)\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12} \tag{33}\\
& (d-b+\alpha)-\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}=\frac{\left(2 n^{2}-n+12\right)\left[d-b+\frac{\alpha\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12}\right]}{2 n^{2}+5 n+6} \\
& \geq(\leq) 0 \text { iff } d \geq(\leq) b-\frac{\alpha\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12} \tag{34}\\
& b-\frac{\alpha\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12}-\frac{(b-\alpha)\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12}=\frac{b\left(2 n^{2}-n+11\right)}{2 n^{2}-n+12}>0 \text { by } n \geq 2, \tag{35}\\
& b-\frac{\alpha\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12}<b+\frac{7 \alpha}{2 n^{2}-n+12} . \tag{36}
\end{align*}
$$

These suggest

$$
\frac{(b-\alpha)\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12}<b-\frac{\alpha\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12}<b+\frac{7 \alpha}{2 n^{2}-n+12}
$$

and the inequalities imply that there are three sub-cases below.
Case 3d-1: Suppose $b-\frac{\alpha\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12} \leq d<b+\frac{7 \alpha}{2 n^{2}-n+12}$. We then have

$$
\begin{aligned}
& d+\alpha+(1-n) b<\frac{6(d-b)}{7}<\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}<\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6} \\
& <(d-b+\alpha)<\frac{6(d+b)}{7}
\end{aligned}
$$

by (45), (49), (50), (51), and (53). These inequalities divide the values of c into seven mutually exclusive intervals. As in Case $3 \mathrm{~b}, \vec{C}$ is more likely to emerge under the imitating-the-best-average dynamic than under the imitating-the-best-total dynamic due to $(d-b+\alpha)>\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}$ by Propositions 2 and C2.

Case 3d-2: Suppose $\frac{(b-\alpha)\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12} \leq d<b-\frac{\alpha\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12}$. We then have $(d-b+\alpha)>$ $\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}$ by (53), and $(d-b+\alpha)<\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}$ by (54). However, (49) implies $\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}<\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}$, which leads to a contradiction. Thus, no solution exists in this case.

Case 3d-3: Suppose $d \leq \frac{(b-\alpha)\left(2 n^{2}+5 n\right)}{2 n^{2}-n+12}$. We then have

$$
\begin{aligned}
& {[d+\alpha+(1-n) b]<\frac{6(d-b)}{7}<(d-b+\alpha)<\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}} \\
& <\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}<\frac{6(d+b)}{7}
\end{aligned}
$$

by (43), (45), (49), and (54). These inequalities divide the values of c into seven mutually exclusive intervals. At each range, we can derive the LREs in both dynamics. Under the imitating-the-best-total dynamic; \vec{D} is the LRE for $c \geq \frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}$ by Proposition 2(iiia); \vec{D} can be the LRE for $c \in\left[d+\alpha+(1-n) b, \frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}\right)$ by Proposition 2(iiib); and \vec{C} is the LRE for $c \in(0,[d+\alpha+(1-n) b])$ by Proposition 2(iiic).

Under the imitating-the-best-average dynamic; \vec{D} is the LRE for $c>(d-b+\alpha)$ by Proposition C2(i); \vec{C} is the LRE for $c \in\left[\frac{6(d-b)}{7},(d-b+\alpha)\right]$ by Proposition C2(iib) and $\alpha>\frac{(d-b)\left[2 n^{2}-2 n+13\right]}{7}$ and $c \in\left[\frac{6(d-b)}{7}, \frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}\right)$; and \vec{C} is the LRE for $c \in\left(0, \frac{6(d-b)}{7}\right)$ by Proposition C2(iiic), $c<\frac{6(d-b)}{7}$, and $\alpha>\frac{(d-b)\left[2 n^{2}-2 n+13\right]}{7}$.

Accordingly, the c interval making \vec{C} the LRE under the imitating-the-best-average dynamic is $(0,(d-b+\alpha)]$, and the associated interval under the imitating-the-besttotal dynamic is $(0,(d+(1-n) b+\alpha))$. Since $(0,(d+(1-n) b+\alpha)) \subset(0,(d-b+\alpha)), \vec{C}$ is more likely to be the LRE under the imitating-the-best-total dynamic than under
the imitating-the-best-average dynamic.

In summary, the results of Cases 1-3 prove Theorem 2.
Proof of Proposition 3: If $[d+\alpha-b(n-1)]<c_{1}$, then $[d+\alpha-b(n-1)]<\frac{\sum_{i=1}^{k} c_{i}}{k}$. That is, (8) fails at $k=1$, and hence $u \geq 2$. On the other hand, $[d(n-1)+\alpha-b] \leq \frac{\sum_{i=2}^{n} c_{i}}{n-1}$ implies that (11) holds at $k=1$, and hence $v=1$. We have $S_{*}=\{\vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-1}$ as shown by Proposition 3(i). In contrast, if $[d+\alpha-b(n-1)] \geq c_{1}$, then $u=1$ due to (8) holding at $k=1$, and $v=1$ by $[d(n-1)+\alpha-b] \leq \frac{\sum_{i=2}^{n} c_{i}}{n-1}$ due to (11) holding at $k=1$. Thus, $S_{*}=\{\vec{C}, \vec{D}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{0}$ as shown by Proposition 3(ii). Finally, if $[d+\alpha-b(n-1)]>c_{n}$, then we have $[d+\alpha-b(n-1)]>c_{n}>\frac{\sum_{i=1}^{k} c_{i}}{k}$, which implies $u=1$ by (8). Moreover, we have $d(n-1)+\alpha-b-\frac{\sum_{i=2}^{n} c_{i}}{n-1}>d(n-1)+\alpha-b-c_{n}>$ $(n-1)\left[c_{n}+b(n-1)-\alpha\right]+\alpha-b-c_{n}=(n-2) c_{n}+b(n-1)^{2}-\alpha(n-2)>0$ by $c_{n}>\frac{\sum_{i=1}^{n} c_{i}}{(n-1)}$ and $d>c_{n}+b(n-1)-\alpha$. This suggests that (11) fails at $k=1$, and hence $v \geq 2$. Thus, $S_{*}=\{\vec{C}\}$ and $E\left(T_{\epsilon}\right)=\epsilon^{-1}$ as shown by Proposition 3(iii).

[^0]: ${ }^{1}$ That is because $b n+c / 2-\alpha-[d+b-c / 2]=-d+b(n-1)+c-\alpha>b(n-2)>0$ by $c>d-b+\alpha$ and $n \geq 4$.

[^1]: ${ }^{2}$ Although $2 \alpha>2(d+b)$ may occur in the inequalities, our results will not change.
 ${ }^{3}$ Although $2 \alpha>2(d+b)$ may occur in the inequalities, our results will not change.

[^2]: ${ }^{4}$ To meet the range requirements, we take the negative roots.

[^3]: ${ }^{5}$ To have $k_{g}>0$ and $k_{h}>0$, we take the positive roots.

[^4]: ${ }^{6}$ If $d \leq \frac{b\left[2 n^{3}+3 n^{2}-5 n\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12}$, then we have $[d+\alpha+(1-n) b]<\frac{6[(d-b)(n-1)+\alpha]}{2 n^{2}+5 n+6}<\frac{6[d(n-1)+\alpha-b]}{2 n^{2}+5 n+6}<$ $\frac{6(d-b)}{7}<\frac{6(d+b)}{7}<(d-b+\alpha)$. Under the circumstance, the results of Case 3a remain true.

[^5]: ${ }^{7}$ As in Case 3a, our results remain true if $d \leq \frac{b\left[2 n^{3}+3 n^{2}-5 n\right]-\alpha\left[2 n^{2}+5 n\right]}{2 n^{2}-n+12}$.

