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Proof of Proposition 1: After some calculations, u is the minimum of k satisfying

k(d + b− c

2
) + α− bn− c

2
≥ 0, (1)

and v is the minimum of k satisfying

k(d + b +
c

2
)− dn− α +

c(n + 1)

2
≥ 0. (2)

According to relative sizes of (d + b) and c
2
, we have three cases below.

Case 1: Suppose (d+ b) < c
2
. We then have bn+ c

2
− (1−n)d− b− c(n+2)

2
= (n− 1)(d+

b)− c(n+1)
2

< c(n−1)
2

− c(n+1)
2

= −c < 0, which implies bn+ c
2

< l0 ≡ (1−n)d+ b+ c(n+2)
2

.

Accordingly, there are three sub-cases.

First, if α > l0, then (22) fails at k = 1, and hence v = ddn+α− c(n+1)
2

d+b+ c
2

e ≥ 2. On

the other hand, α > l0 implies α > bn + c
2
, which suggests u = dα−bn− c

2
c
2
−d−b

e ≥ 1 by (21).

Thus, S∗ = {~C} and E(Tε) = ε−u if u < v, S∗ = {~C, ~D} and E(Tε) = ε0 if u = v, and

S∗ = { ~D} and E(Tε) = ε−v if u > v. These prove Proposition 1(ia).

Second, if α ∈ (bn + c
2
, l0], then u = dα−bn− c

2
c
2
−d−b

e ≥ 1 by (21), and v = 1 by α < l0

and (22). Thus, S∗ = {~C, ~D} and E(Tε) = ε0 if u = 1 and S∗ = { ~D} and E(Tε) = ε−1

if u > 1. These prove Proposition 1(ib).

Third, if α ≤ bn+ c
2
, then (21) fails for all k, and hence u = n. On the other hand,

since α ≤ bn + c
2
, we have α < l0, which implies that (22) holds at k = 1 and v = 1.

Since u = n > v = 1, S∗ = { ~D} and E(Tε) = ε−1. These prove Proposition 1(ic).

Case 2: Suppose (d + b) = c
2
. Under the circumstance, we have bn + c

2
− (1−n)d− b−

c(n+2)
2

< 0. Thus, there are two sub-cases.

First, if α > l0, then v ≥ 2 because (22) fails at k = 1. We have α > bn + c
2

by

α > l0, which implies u = 1. Thus, S∗ = {~C} and E(Tε) = ε−1 as shown by Proposition
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1(iia). Second, if α ∈ [bn+ c
2
, l0], then v = 1 by α < l0 and u = 1 by α > bn+ c

2
. Thus,

S∗ = {~C, ~D} and E(Tε) = ε0 as shown by Proposition 1(iib). Third, if α < bn + c
2
,

then (21) fails for all k, and hence u = n. But α < l0 implies v = 1. Thus, S∗ = { ~D}

and E(Tε) = ε−1 as shown by Proposition 1(iic).

Case 3: Suppose (d + b) > c
2
. Then, relative sizes of bn + c

2
and l0 become unsure, and

there are two sub-cases. First, suppose α ≥ bn + c
2
. Then (21) holds at k = 1, and

hence u = 1. However, if α > l0, then v ≥ 2, and hence S∗ = {~C} and E(Tε) = ε−1. In

contrast, if α ≤ l0, then v = 1, and hence S∗ = {~C, ~D} and E(Tε) = ε0. These are the

content of 1(iiia).

Second, if α < bn + c
2
, then (21) implies u = d bn+ c

2
−α

d+b− c
2
e ≥ 1 due to

bn+ c
2
−α

d+b− c
2

> 0. If

α ≤ l0, then (22) implies v = 1. Accordingly, S∗ = {~C, ~D} and E(Tε) = ε0 if u = 1,

and S∗ = { ~D} and E(Tε) = ε−1 if u > 1. These prove Proposition 1(iiia).

In contrast, if α > l0, then (22) fails at k = 1. Thus, v = ddn+α− c(n+1)
2

d+b+ c
2

e ≥ 2.

Accordingly, S∗ = {~C} and E(Tε) = ε−u if u < v, S∗ = {~C, ~D} and E(Tε) = ε0 if

u = v, and S∗ = { ~D} and E(Tε) = ε−v if u > v. These prove Proposition 1(iiic).

Proof of Theorem 1: Before comparing Propositions 1 and C1, we need to know relative
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sizes of the following variables:

2(α− bn)− 2α = −2bn < 0, (3)

2(α− bn)− 2(d− b) = 2(α− d) + 2b(1− n) < 0 by d > α and n ≥ 2, (4)

2[α− (1− n)d− b]

n + 2
− 2[α + (d− b)(n− 1)]

n + 2
=

2b(n− 2)

n + 2
> 0 by n ≥ 3, (5)

2α− 2[α− (1− n)d− b]

n + 2
=

2[α(n + 1)− d(n− 1) + b]

n + 2

≥ (≤) 0 iff d ≤ (≥)
b + α(n + 1)

n− 1
, (6)

2α− 2[α + (d− b)(n− 1)]

n + 2
=

2[α(n + 1) + b(n− 1)− d(n− 1)]

n + 2

≥ (≤) 0 iff d ≤ (≥) b +
α(n + 1)

n− 1
, (7)

2(d− b)− 2[α− (1− n)d− b]

n + 2
=

2[3d− b(n + 1)− α]

n + 2

≥ (≤) 0 iff d ≥ (≤)
b(n + 1) + α

3
, (8)

2(d− b)− 2[α + (d− b)(n− 1)]

n + 2
=

2[3(d− b)− α]

n + 2

≥ (≤) 0 iff d ≥ (≤) b +
α

3
, (9)

2(d + b)− 2[α− (1− n)d− b]

n + 2
=

2[3d + n + 3b− α]

n + 2
> 0, (10)

2(α− bn)− 2[α + (d− b)(n− 1)]

n + 2
=
−2[d(n− 1) + b(n2 + 3n− 1)− α(n + 1)]

n + 2

< 0 by n ≥ 2, (11)

(d− b + α)− 2[α− (1− n)d− b]

n + 2
=
−d(n− 4)− bn + nα

n + 2
< 0 by n ≥ 4, (12)

(d− b + α)− 2[α + (d− b)(n− 1)]

n + 2
=

(b− d)(n− 4) + αn

n + 2
> 0 if d < b +

α

3
.(13)

Next, we need to know relative sizes of the thresholds given in (23)-(33). Some

calculations yield

b +
α

3
<

b + α(n + 1)

n− 1
< b + α < b +

α(n + 1)

n− 1
<

b(n + 1) + α

3

for n ≥ 4. These inequalities divide the values of d into six mutually exclusive ranges

as discussed below.
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Case 1: Suppose d ≥ b(n+1)+α
3

. We then have

2(α− bn) < 2α <
2[α + (d− b)(n− 1)]

n + 2
<

2[α− (1− n)d− b]

n + 2
< 2(d− b) < 2(d + b)

by (23), (25), (27), and (28). These inequalities divide the values of c into seven

mutually exclusive intervals. At each interval, we can derive the LREs under the two

dynamics by Propositions 1 and C1. Under the imitating-the-best-total dynamic; ~D is

the LRE for c > 2(d+b) by Proposition 1(ic), c > 2(d+b), c ≥ 2(α−bn); ~D is the LRE

at c = 2(d+ b) by Proposition 1(iic), c = 2(d+ b), and c > 2(α− bn); ~D is the LRE for

c ∈ [2[α−(1−n)d−b]
n+2

, 2(d+b)) by Proposition 1(iiib), c < 2(d+b), α ≤ (1−n)d+b+ c(n+2)
2

,

and c > d+α− b(n− 1); ~D is the LRE for c ∈ (ĉ, 2[α−(1−n)d−b]
n+2

) by Proposition 1(iiic),

c > 2(α− bn), c < 2[α−(1−n)d−b]
n+2

, and c > ĉ; {~C, ~D} is the LRE at c = ĉ by Proposition

1(iiic), c > 2(α − bn), and c < 2[α−(1−n)d−b]
n+2

; ~C is the LRE for c ∈ (2(α − bn), ĉ) by

Proposition 1(iiic), c > 2(α − bn), c < 2[α−(1−n)d−b]
n+2

, and c > ĉ; and ~C is the LRE for

c ∈ (0, 2(α− bn)] by Proposition 1(iiia), c ≤ α−bn
2

, and α > (1− n)d + b + c(n+2)
2

. Here

ĉ ∈ (2(α− bn), 2[α−(1−n)d−b]
n+2

) satisfies condition

bn + ĉ
2
− α

d + b− ĉ
2

=
dn + α− ĉ(n+1)

2

d + b + ĉ
2

. (14)

Under the imitating-the-best-average dynamic; ~D is the LRE for c > 2(d − b) by

Proposition C1(ib) and c ≥ 2α; ~D is the LRE at c = 2(d − b) by Proposition C1(iic)

and c ≥ 2α; ~D is the LRE for c ∈ (ĉc, 2(d− b)) by Proposition C1(iiib), c > 2α, and

c > ĉc; {~C, ~D} is the LRE at c = ĉ by Proposition C1(iiib), c > 2α, and c = ĉc; ~C

is the LRE for c ∈ (2α, ĉc) by Proposition C1(iiib), c > 2α, and c < ĉc; ~C is the

LRE at c = 2α by Proposition C1(iiia), c < 2(d − b), and c = 2α; and ~C is the LRE

for c ∈ (0, 2α) by Proposition C1(iiia), c < 2α, and α > (1 − n)d + b + c(n+2)
2

. Here

ĉc ∈ (2α, 2(d− b)) satisfies condition

ĉc

2
− α

d− b− ĉc

2

=
(d− b− ĉc

2
)n + α− ĉc

2

d− b + ĉc

2

. (15)
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In summary, the c interval making ~C the LRE under the imitating-the-best-average

dynamic is (0, ĉc], and the associated interval under the imitating-the-best-total dy-

namic is (0, ĉ]. Thus, if ĉc > ĉ, then ~C is more likely to be the LRE under the

imitating-the-best-average dynamic than under the imitating-the-best-total dynamic.

The converse will hold if ĉc < ĉ, and both dynamics will make ~C emerge equally likely

if ĉc = ĉ.

Case 2: Suppose b + α(n+1)
n−1

≤ d < b(n−1)+α
3

. We then have

2(α− bn) < 2α <
2[α + (d− b)(n− 1)]

n + 2
< 2(d− b) <

2[α− (1− n)d− b]

n + 2
< 2(d + b)

by (23), (27), (28), (29), and (30). These inequalities divide the values of c into

seven mutually exclusive intervals. Proposition 1 implies that the c interval making ~C

the LRE under the imitating-the-best-average dynamic is (0, ĉc], and the associated

interval under the imitating-the-best-total dynamic is (0, ĉ] by Proposition C1. Thus,

the conclusions are same as Case 1’s.

Case 3: Suppose (b + α) ≤ d < b + α(n+1)
n−1

. We then have

2(α− bn) <
2[α + (d− b)(n− 1)]

n + 2
< 2α < 2(d− b) <

2[α− (1− n)d− b]

n + 2
< 2(d + b)

by (27), (28), (30), (31), and d ≥ b + α. These inequalities divide the values of c into

seven mutually exclusive intervals. According to Propositions 1 and C1, the c interval

making ~C the LRE under the imitating-the-best-average dynamic is (0, ĉc], and the

associated interval under the imitating-the-best-total dynamic is (0, ĉ]. Again, the

results are the same as Case 1’s.

Case 4: Suppose b+α(n−1)
n−1

≤ d < (b + α). We then have

2(α− bn) <
2[α + (d− b)(n− 1)]

n + 2
< 2(d− b) < (d− b + α) < 2α <

2[α− (1− n)d− b]

n + 2

< 2(d + b)

by (26), (29), (30), (31), and (d− b) < α. These inequalities divide the values of c into

eight mutually exclusive intervals. At each interval, we can derive the LREs under
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both dynamics by Propositions 1 and C1. Under the imitating-the-best-total dynamic;

~D is the LRE for c > 2(d + b) by Proposition 1(ic); ~D is the LRE at c = 2(d + b)

by Proposition 1(iic); ~D is the LRE for c ∈ [2[α−(1−n)d−b]
n+2

, 2(d + b)) by Proposition

1(iiib), c > 2(α − bn), α ≤ (1 − n)d + b + c(n+2)
2

, and d bn+c/2−α
d+b−c/2

e > 1;1 ~D is the LRE

for c ∈ (ĉ, 2[α−(1−n)d−b]
n+2

) by Proposition 1(iiic), c > 2(α − bn), c < 2[α−(1−n)d−b]
n+2

,

and c > ĉ; {~C, ~D} is the LRE at c = ĉ by Proposition 1(iiic), c > 2(α − bn), and

c < 2[α−(1−n)d−b]
n+2

; ~C is the LRE for c ∈ (2(α− bn), ĉ) by Proposition 1(iiic), c > 2(α−

bn), c < 2[α−(1−n)d−b]
n+2

, and c < ĉ; and ~C is the LRE for c ∈ (0, 2(α−bn)] by Proposition

1(iiia), c ≤ α−bn
2

, and α > (1 − n)d + b + c(n+2)
2

. Here ĉ ∈ (2(α − bn), 2[α−(1−n)d−b]
n+2

)

satisfies (34).

Under the imitating-the-best-average dynamic; ~D is the LRE for c ≥ 2α by Propo-

sition C1(ib), c > 2(d − b), and c ≥ 2α; ~D is the LRE for c ∈ ((d − b + α), 2α) by

Proposition C1(ia), c > 2(d − b), c < 2α, and c > (d − b + α); {~C, ~D} is the LRE

for c ∈ (2(d − b), (d − b + α)] by Proposition C1(ia), c > 2(d − b), c ≤ (d − b + α),

and α < lc0; ~C is the LRE at c = 2(d − b) by Proposition C1(iia); ~C is the LRE for

c ∈ [2[α+(d−b)(n−1]
n+2

, 2(d− b)) by Proposition C1(iiia), c < 2(d− b), and c < 2α; and ~C is

the LRE for c ∈ (0, 2[α+(d−b)(n−1)]
n+2

) by Proposition C1(iiia), c < 2(d− b), c ≤ 2α, and

α > lc0.

In summary, the c interval making ~C the LRE under the imitating-the-best-average

dynamic is (0, (d − b + α)], and the associated interval under the imitating-the-best-

total dynamic is (0, ĉ]. Thus, if (d− b + α) > ĉ, then ~C is more likely to be the LRE

under the imitating-the-best-average dynamic than under the imitating-the-best-total

dynamic. The converse will hold if (d − b + α) < ĉ, and both dynamics will make ~C

emerge equally likely if (d− b + α) = ĉ.

1That is because bn+ c/2−α− [d+ b− c/2] = −d+ b(n−1)+ c−α > b(n−2) > 0 by c > d− b+α

and n ≥ 4.
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Case 5: Suppose b + α
3
≤ d < α(n−1)+b

n−1
. We then have

2(α− bn) <
2[α + (d− b)(n− 1)]

n + 2
< 2(d− b) < (d− b + α) <

2[α− (1− n)d− b]

n + 2

< 2α < 2(d + b)

by (26), (29), (31), and (32).2 These inequalities divide the values of c into eight

mutually exclusive intervals. As in Case 4, the c interval making ~C the LRE under the

imitating-the-best-average dynamic is (0, (d−b+α)], and the associated interval under

the imitating-the-best-total dynamic is (0, ĉ]. Thus, the conclusions are the same as

Case 4’s.

Case 6: Suppose d ≤ b + α
3
. We then have

2(α− bn) < 2(d− b) <
2[α + (d− b)(n− 1)]

n + 2
< d− b + α <

2[α− (1− n)d− b]

n + 2

< 2α < 2(d + b)

by (24), (28), (29), (32), and (33).3 These inequalities divide the values of c into eight

mutually exclusive intervals. As in Case 4, the c interval making ~C the LRE under

the imitating-the-best-average dynamic is (0, (d− b + α)], and the associated interval

under the imitating-the-best-total dynamic is (0, ĉ]. Again, the conclusions are the

same as Case 4’s.

In summary, Cases 1-3 show that for d ≥ b+α, ~C is more likely to emerge when the

imitating-the-best-average rule is adopted if ĉ < ĉc. For d < b+α, the same conclusions

can be drawn if ĉ < (d− b + α). The two conditions will hold as displayed below, and

hence Theorem 1 is proved.

Claim 1. Suppose d ≥ b+α. We then have ĉ < ĉc with ĉ ∈ (2(α− bn), 2[α−(1−n)d−b]
n+2

)

and ĉc ∈ (2α, 2(d− b)).

Proof. To simplify the notations, we define x = ĉ
2

and y = ĉc

2
. Solving (34) and (35)

2Although 2α > 2(d + b) may occur in the inequalities, our results will not change.
3Although 2α > 2(d + b) may occur in the inequalities, our results will not change.
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yields4

x =
(d + b)(n + 1)−

√
(d + b)2(n + 1)2 − n(d + b)[2α + n(d− b)]

n
and

y =
(d− b)(n + 1)−

√
(d− b)2(n + 1)2 − n(d− b)[2α + n(d− b)]

n

Accordingly, we have

(x− y) =
[2b(n + 1)−

√
A +

√
B]

n
,

where A = (d + b)2(n + 1)2 − n(d + b)[2α + n(d− b)] > 0 and B = (d− b)2(n + 1)2 −

n(d− b)[2α + n(d− b)] > 0 with A > B by d > b. To show x < y, it is enough to show

A > 4(n + 1)2b2 + B + 4b(n + 1)
√

B. Note that
√

α− β ≤
√

α −
√

β if α > β > 0.

Thus,

A− 4(n + 1)2b2 −B − 4b(n + 1)
√

B

= (n + 1)2(4bd− 4b2)− 2bn[(d− b)n + 2α]− 4(n + 1)b
√

B

> (n + 1)24b(d− b)− 2bn[(d− b)n + 2α]− 4b(n + 1)
√

(d− b)2(n + 1)2

+4b(n + 1)
√

n(d− b)[(d− b)n + 2α]

= 2b{2(n + 1)
√

n(d− b)[(d− b)n + 2α]− n[(d− b)n + 2α]}

> 0,

where the first inequality is implied by
√

B <
√

(d− b)2(n + 1)2−
√

n(d− b)[(d− b)n + 2α]

and the second inequality is because

4(n + 1)2n(d− b)[(d− b)n + 2α]− n2[(d− b)n + 2α]2

= n[(d− b)n + 2α][4(n + 1)2(d− b)− n2(d− b)− 2αn]

> n[(d− b)n + 2α][4(n + 1)2(d− b)− n2(d− b)− 2n(d− b)]

= n(d− b)[(d− b)n + 2α][3n2 + 6n + 4] > 0

by −α > −(d− b). Thus, we have x < y and ĉ < ĉc, which prove Claim 1.

4To meet the range requirements, we take the negative roots.
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Claim 2. Suppose d < b + α and ĉ ∈ (2(α − bn), 2[α−(1−n)d−b]
n+2

) with α > bn. We

then have ĉ < (d− b + α).

Proof. Plugging ĉ = d− b + α into (34) yields

L ≡
bn + d−b+α

2
− α

d + b− d−b+α
2

=
d + b(2n− 1)− α

d + 3b− α
≥ 1 by n ≥ 2, and

R ≡
dn + α− (n+1)(d−b+α)

2

d + b + d−b+α
2

=
d(n− 1) + b(n− 1)− α(n + 1)

3d + b + α
.

Thus

L−R =
−d2(n− 4)− b2(n + 4)− α2(n + 2) + 2nbd + 2dα(n− 1) + 2bα(3n + 1)

[d + 3b− α][3d + b + α]
.

Denote N ≡ −d2(n − 4) − b2(n + 4) − α2(n + 2) + 2nbd + 2dα(n − 1) + 2bα(3n + 1).

We then have

N > −(n− 4)(b + α)2 − b2(n + 4)− α2(n + 2) + 2nb2 + 2bα(n− 1) + 2bα(3n + 1)

= α2(−2n + 2) + bα(6n + 8)

> α2(−2n + 2) + α2(6n + 8)

= α2(4n + 10)

> 0.

The first inequality is due to d < b + α and the second inequality is by α > bn. These

imply L > R. Thus, to make ĉ satisfy (34), we must have ĉ < (d − b + α) to lower L

and raise R. Claim 2 is then proved.

Proof of Proposition 2: After some calculations, u is the minimum of k satisfying

(dk + α)− b(n− k) ≥ c[2k2 + 3k + 1]

6
, (16)

and v is the minimum of k satisfying

(d + b)k − α− dn ≥ −c[2(n2 + nk + k2) + 3(n + k) + 1]

6
. (17)

Define g(k) ≡ 2k2+3k+1− 6[(d+b)k+α−bn]
c

with g′(k) = 4k+3− 6(d+b)
c

and g′′(k) = 4 > 0

for all k. These imply that g(k) is a strictly convex function of k with g′(k) ≥ (≤) 0
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iff k ≥ (≤) k ≡ 6(d+b)−3c
4c

, g′(1) = 7 − 6(d+b)
c

≥ (≤) 0 iff c ≥ (≤) 6(d+b)
7

, k ≥ (≤) 1

iff c ≤ (≥) 6(d+b)
7

, and g(1) ≥ (≤) 0 iff c ≥ (≤) [d + b(1 − n) + α]. Since u is the

minimum of k satisfying g(k) ≤ 0 by (36), it depends on the values of g′(1) and g(1).

Thus, if c < 6(d+b)
7

, we have g′(1) < 0 and k > 1, which suggest

u =


1 if g(1) ≤ 0,

dkge if g(1) > 0 and g(k) < 0,

n if g(1) > 0 and g(k) > 0,

(18)

where kg satisfies g(kg) = 0. For c = 6(d+b)
7

, we have g′(1) = 0 and k = 1, which imply

u =

 1 if g(1) ≤ 0,

n if g(1) > 0.
(19)

In contrast, if c > 6(d+b)
7

, we have g′(1) > 0 and k < 1, which suggest

u =

 1 if g(1) ≤ 0,

n if g(1) > 0.
(20)

On the other hand, define h(k) ≡ 2(n2+nk+k2)+3(n+k)+1+ 6
c
[(d+b)k−α−dn]

based on k ≥ 1 with h′(k) = 2n+4k+3+ 6(d+b)
c

> 0 for all k ≥ 1, h′′(k) = 4 > 0 for all

k ≥ 1, h′(1) = 2n + 7 + 6(d+b)
c

> 0, and h(1) = 2n2 + 5n + 6 + 6(d+b)
c

− 6(α+dn)
c

≥ (≤) 0

iff c ≥ (≤) 6[d(n−1)+α−b]
2n2+5n+6

. These suggest that h(k) is a strictly convex function with

minimum value h(1). Accordingly, by (37), we have

v =

 1 if h(1) ≥ 0,

dkhe ≥ 2 if h(1) < 0,
(21)

where kh satisfies h(kh) = 0.

Now we are ready to get relative sizes of u and v by comparing g(k), h(k), and (38)-

(41). First, we need to know relative sizes of 6(d+b)
7

, 6[d(n−1)+α−b]
2n2+5n+6

, and [d+α+(1−n)b].
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Some calculations show

6(d+b)
7

− [d + α + (1− n)b] = −[d+7α−b(7n−1)]
7

≥ (≤) 0 iff d ≤ (≥) b(7n− 1)− 7α,(22)

6(d+b)
7

− 6[d(n−1)+α−b]
2n2+5n+6

= 6[d(2n2−2n+13)+b(2n2+5n+13)−7α]
7(2n2+5n+6)

> 0 by d > b > α, (23)

[d + α + (1− n)b]− 6[d(n−1)+α−b]
2n2+5n+6

= [d(2n2−n+12)−b(2n3+3n2+n−12)+α(2n2+5n)]
2n2+5n+6

≥ (≤) 0 iff d ≥ (≤) b(2n3+3n2+n−12)−α(2n2+5n)
2n2−n+12

. (24)

Moreover, since [b(7n− 1)− 7α] > b(2n3+3n2+n−12)−α(2n2+5n)
2n2−n+12

, (42)-(44) divide the values

of d into three mutually exclusive ranges as stated below.

Case 1: Suppose d ≥ [b(7n− 1)− 7α]. We then have

l1 ≡
6[d(n− 1) + α− b]

2n2 + 5n + 6
<

6(d + b)

7
< [d + α + (1− n)b].

These inequalities divide the values of c into four mutually exclusive intervals.

Case 1a: Suppose c ≥ [d + α + (1 − n)b]. We have h(1) > 0 by c > l1 and v = 1 by

(41). Then g(1) > 0 by c ≥ d + α + b(1− n) and g′(1) > 0 by c > 6(d+b)
7

, which imply

u = n by (40). Thus, S∗ = { ~D} and E(Tε) = ε−1.

Case 1b: Suppose 6(d+b)
7

≤ c < [d + α + (1 − n)b]. We have h(1) > 0 by c > l1 and

v = 1 by (41). Then g(1) < 0 by c < d + α + b(1 − n) and g′(1) ≥ 0 by c ≥ 6(d+b)
7

,

which imply u = 1 by (39)-(40). Thus, S∗ = {~C, ~D} and E(Tε) = ε0.

Case 1c: Suppose l1 ≤ c < 6(d+b)
7

. We have h(1) ≥ 0 by c ≥ l1 and v = 1 by (41). Then

g(1) < 0 by c < [d + α + b(1− n)] and g′(1) < 0 by c < 6(d+b)
7

, which imply u = 1 by

(38). Thus, S∗ = {~C, ~D} and E(Tε) = ε0.

Case 1d: Suppose c < l1. We have h(1) < 0 by c < l1 and v = dkhe ≥ 2 by (41). Then

g(1) < 0 by c < [d + α + b(1− n)] and g′(1) < 0 by c < 6(d+b)
7

, which imply u = 1 by

(38). Thus, S∗ = {~C} and E(Tε) = ε−1.

Propositions 2(ia), 2(ib) and 2(ic) are proved by the results of Case 1a, Cases 1b-1c

and Case 1d, respectively.
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Case 2: Suppose b[2n3+3n2+n−12]−α[2n2+5n]
2n2−n+12

≤ d < [b(7n− 1)− 7α]. We then have

l1 ≡
6[d(n− 1) + α− b]

2n2 + 5n + 6
< d + α + (1− n)b <

6(d + b)

7
.

These inequalities divide the values of c into four mutually exclusive intervals.

Case 2a: Suppose c ≥ 6(d+b)
7

. The results here are the same as Case 1a’s.

Case 2b: Suppose [d + α + (1 − n)b] ≤ c < 6(d+b)
7

. We have h(1) > 0 by c > l1 and

v = 1 by (41). Then g(1) > 0 by c > [d + α + b(1 − n)] and g′(1) < 0 by c < 6(d+b)
7

,

which imply u = n or dkge by (38). Thus, S∗ = { ~D} and E(Tε) = ε−1.

Case 2c: Suppose l1 ≤ c < [d + α + (1 − n)b]. The results here are the same as Case

1c’s.

Case 2d: Suppose c < l1. The results here are the same as Case 1d’s.

Propositions 2(iia), 2(iib) and 2(iic) are proved by the results of Cases 2a-2b, Case

2c and Case 2d, respectively.

Case 3: Suppose d ≤ b[2n3+3n2+n−12]−α[2n2+5n]
2n2−n+12

. We then have

[d + α + (1− n)b] < l1 ≡
6[d(n− 1) + α− b]

2n2 + 5n + 6
<

6(d + b)

7
.

These inequalities divide the values of c into four mutually exclusive intervals.

Case 3a: Suppose c ≥ 6(d+b)
7

. The results here are the same as Case 1a’s.

Case 3b: Suppose l1 ≤ c < 6(d+b)
7

. We have h(1) ≥ 0 by c ≥ l1 and v = 1 by (41). Then

g(1) > 0 by c > [d + α + b(1 − n)] and g′(1) < 0 by c < 6(d+b)
7

, which imply u = n or

dkge by (38). Thus, S∗ = { ~D} and E(Tε) = ε−1.

Case 3c: Suppose [d + α + (1 − n)b] ≤ c < l1. We have h(1) < 0 by c < l1 and

v = dkhe ≥ 2 by (41). Then g(1) > 0 by c > [d + α + b(1 − n)] and g′(1) < 0 by

c < 6(d+b)
7

, which imply u = n or dkge ≥ 2 by (38). We can show dkge < dkhe below,

and it implies S∗ = { ~D} and E(Tε) = ε−dkhe.
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Claim 3. We have dkge > dkhe.

Proof. Since kg satisfies g(kg) = 0, we have5

kg =
−3 + 6(d+b)

c
+

√
[3− 6(d+b)

c
]2 − 8[1− 6(α−bn)

c
]

4
.

Similarly, since kh satisfies h(kg) = 0, we have

kh =
−[2n + 3 + 6(d+b)

c
] +

√
[2n + 3 + 6(d+b)

c
]2 − 8[2n2 + 3n + 1− 6(α+dn)

c
]

4
.

Define A = [3− 6(d+b)
c

]2−8[1− 6(α−bn)
c

] and B = [2n+3+ 6(d+b)
c

]2−8[2n2+3n+1− 6(α+dn)
c

].

Then,

(kg − kh) =
2n + 12(d+b)

c
+
√

A−
√

B

4
.

To show kg > kh, it is enough to prove B < A + 2
√

A[2n + 12(d+b)
c

] + 4n2 + 48(d+b)
c

+

144(d+b)2

c2
. Some calculations reveal

B − A− 2
√

A[2n +
12(d + b)

c
]− 4n2 − 48(d + b)

c
− 144(d + b)2

c2

= −[
12(d + b)

c
− (3n + 1)]2 − 7n2 − 6n + 1− 4

√
A[n +

d + b

c
]

< 0.

These suggest kg > kh. Moreover, the above inequality remains true if we replace n

with (n− 4). It means kg > kh + 1. Thus, we will have Claim 3, dkge > dkhe.

Case 3d: Suppose c < [d + α + (1− n)b]. The results here are the same as Case 1d’s.

Propositions 2(iiia), 2(iiib) and 2(iiic) are proved by the results of Cases 3a-3b,

Case 3c and Case 3d, respectively.

Proof of Theorem 2: Before comparing Propositions 2 and C2, we need to know relative

5To have kg > 0 and kh > 0, we take the positive roots.
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sizes of the following variables:

6(d− b)

7
− [d + α + (1− n)b] =

−1

7
[d + 7α− b(7n− 13)]

≥ (≤) 0 iff d ≤ (≥) (7bn− 13b− 7α), (25)

α− (d− b)[2n2 − 2n + 13]

7
≥ (≤) 0 iff d ≤ (≥) b +

7α

2n2 − 2n + 13
, (26)

6(d− b)

7
− 6[d(n− 1) + α− b]

2n2 + 5n + 6
=

6[d(2n2 + 4n + 7)− b(2n2 + 5n + 5)− α]

7(2n2 + 5n + 6)

≥ (≤) 0 iff d ≥ (≤)
b(2n2 + 5n + 5) + α

2n2 + 4n + 7
, (27)

d− b + α− [d + α + (1− n)b] = b(n− 2) > 0 by n ≥ 3, (28)

6[d(n− 1) + α− b]

2n2 + 5n + 6
− 6[(d− b)(n− 1) + α]

2n2 + 5n + 6
=

6b(n− 2)

2n2 + 5n + 6
> 0 by n ≥ 3, (29)

6(d + b)

7
− [d− b + α] =

−(d− 13b + 7α)

7
≥ (≤) 0 iff d ≤ (≥) (13b− 7α),(30)

6(d− b)

7
− 6[(d− b)(n− 1) + α]

2n2 + 5n + 6
=

6(2n2 − 12n + 13)[d− b− 7α
2n2−12n+13

]

7(2n2 + 5n + 6)

≥ (≤) 0 iff d ≥ (≤) b +
7α

2n2 − 2n + 13
, (31)

[d + α + (1− n)b]− 6[(d− b)(n− 1) + α]

2n2 + 5n + 6

=
d(2n2 − n + 12)− b(2n3 + 3n2 − 5n) + α(2n2 + 5n)

2n2 + 5n + 6

≥ (≤) 0 iff d ≥ (≤)
b(2n3 + 3n2 − 5n)− α(2n2 + 5n)

2n2 − n + 12
. (32)

Next, according to relative sizes of the thresholds of d specified in Proposition 2,

there are three cases below.

Case 1: Suppose d ≥ [b(7n− 1)− 7α]. We then have

6[(d− b)(n− 1) + α]

2n2 + 5n + 6
<

6[d(n− 1) + α− b]

2n2 + 5n + 6
<

6(d− b)

7
<

6(d + b)

7

< [d + α + (1− n)b] < (d− b + α)

by (42), (47), (48), (49), and d ≥ [b(7n − 1) − 7α] > b[2n2+5n+5]+α
2n2+4n+7

. These inequalities

divide the values of c into seven exclusive ranges. At each range, we can derive the

LREs in both dynamics. Under the imitating-the-best-total dynamic; ~D is the LRE for
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c ≥ [d+α+(1−n)b] by Proposition 2(ia); {~C, ~D} is the LRE for c ∈ [6[d(n−1)+α−b]
2n2+5n+6

, [d+

α+(1−n)b]) by Proposition 2(ib); and ~C is the LRE for c < 6[d(n−1)+α−b]
2n2+5n+6

by Proposition

2(ic).

Under the imitating-the-best-average dynamic; ~D is the LRE for c > (d − b + α)

by Proposition C2(i); {~C, ~D} is the LRE for c ∈ [6(d−b)
7

, (d − b + α)] by Proposition

C2(iia) and α ≤ (d−b)[2n2−2n+13]
7

; {~C, ~D} is the LRE for c ∈ [6[(d−b)(n−1)+α]
2n2+5n+6

, 6(d−b)
7

) by

Proposition C2(iiib), c < 6(d−b)
7

, α ≤ (d−b)[2n2−2n+13]
7

implied by (46) and d ≥ [b(7n −

1) − 7α], and c ∈ [6[(d−b)(n−1)+α]
2n2+5n+6

, 6(d−b)
7

); and ~C is the LRE for c ∈ (0, 6[(d−b)(n−1)+α]
2n2+5n+6

)

by Proposition C2(iiia), c < 6(d−b)
7

, α ≤ (d−b)[2n2−2n+13]
7

implied by (46) and d ≥

[b(7n− 1)− 7α], and c < 6[(d−b)(n−1)+α]
2n2+5n+6

.

In summary, the c interval making ~C the LRE under the imitating-the-best-average

dynamic is (0, (d − b + α)], and the associated interval under the imitating-the-best-

total dynamic is (0, (d+α +(1−n)b)). Since (0, (d+α +(1−n)b)) ⊂ (0, (d− b+α)]

by (d − b + α) > [d + α + (1 − n)b] due to n ≥ 3, ~C is more likely to be the LRE

under the imitating-the-best-average dynamic than under the imitating-the-best-total

dynamic.

Case 2: Suppose (7bn − 7α − 13b) ≤ d < [b(7n − 1) − 7α]. Under the circumstance,

we need to know relative sizes of the thresholds of d specified in (45)-(51). Some

calculations reveal

b +
7α

2n2 − 2n + 13
<

b[2n2 + 5n + 5] + α

2n2 + 4n + 7
< 13b− 7α < 7bn− 7α− 13b < b(7n− 1)− 7α.

These inequalities divide the values of d into five mutually exclusive intervals.

Case 2a: Suppose (7bn− 7α− 13b) ≤ d < [b(7n− 1)− 7α]. We then have

6[(d− b)(n− 1) + α]

2n2 + 5n + 6
<

6[d(n− 1) + α− b]

2n2 + 5n + 6
<

6(d− b)

7
< [d + α + (1− n)b]

<
6(d + b)

7
< (d− b + α)

by (42), (45), (47), (49), and (50). These inequalities divide the values of c into seven
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mutually exclusive intervals. The results here are the same as Case 1’s by (d−b+α) >

[d + α + (1− n)b].

Case 2b: Suppose (13b− 7α) ≤ d < (7bn− 7α− 13b). We then have

6[(d− b)(n− 1) + α]

2n2 + 5n + 6
<

6[d(n− 1) + α− b]

2n2 + 5n + 6
< [d + α + (1− n)b] <

6(d− b)

7

<
6(d + b)

7
< (d− b + α)

by (44), (45), (49), and (50). These inequalities divide the values of c into seven

mutually exclusive intervals. Again, the conclusions here are the same as Case 1’s due

to (d− b + α) > [d + α + (1− n)b].

Case 2c: Suppose b[2n2+5n+5]+α
2n2+4n+7

≤ d < 13b− 7α. We then have

6[(d− b)(n− 1) + α]

2n2 + 5n + 6
<

6[d(n− 1) + α− b]

2n2 + 5n + 6
< [d + α + (1− n)b] <

6(d− b)

7

< (d− b + α) <
6(d + b)

7

by (44), (45), (49), and (50). These inequalities divide the values of c into seven

mutually exclusive intervals. Similarly, Propositions 2 and C2 imply that ~C is more

likely to emerge when countries adopt the imitating-the-best-average rule by (d− b +

α) > [d + α + (1− n)b].

Case 2d: Suppose b + 7α
2n2−2n+13

≤ d < b[2n2+5n+5]+α
2n2+4n+7

. We then have

6[(d− b)(n− 1) + α]

2n2 + 5n + 6
<

6(d− b)

7
<

6[d(n− 1) + α− b]

2n2 + 5n + 6
< [d + α + (1− n)b]

< (d− b + α) <
6(d + b)

7

by (44), (47), (48), (50), and (51). These inequalities divide the values of c into seven

mutually exclusive intervals. The results obtained here are the same as Case 1’s by

Propositions 2 and C2 due to (d− b + α) > [d + α + (1− n)b].
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Case 2e: Suppose d ≤ b + 7α
2n2−2n+13

. We then have

6(d− b)

7
<

6[(d− b)(n− 1) + α]

2n2 + 5n + 6
<

6[d(n− 1) + α− b]

2n2 + 5n + 6
< [d + α + (1− n)b]

< (d− b + α) <
6(d + b)

7

by (44), (48), (49), (50), and (51). These inequalities divide the values of c into seven

mutually exclusive intervals. Because (d− b + α) > [d + α + (1− n)b], ~C is more likely

to emerge in the long run under the imitating-the-best-average rule by Propositions 2

and C2.

Case 3: Suppose d < b[2n3+3n2+n−12]−α[2n2+5n]
2n2−n+12

. We can show

b[2n3+3n2+n−12]−α[2n2+5n]
2n2−n+12

< [7bn − 7α − 13b] by n ≥ 4. On the other hand, we have

b[2n3+3n2+n−12]−α[2n2+5n]
2n2−n+12

− (13b − 7α) < 0 if n < 13, and > 0 if n ≥ 13. Thus, the

situation of d ∈ [7bn − 7α − 13b, b(7n − 1) − 7α) discussed in Case 2a does not exist

here. Accordingly, we will start with the case of d ∈ [13b − 7α, 7bn − 7α − 13b) as

follows. In addition, we have

b[2n3 + 3n2 − 5n]− α[2n2 + 5n]

2n2 − n + 12
<

b[2n3 + 3n2 + n− 12]− α[2n2 + 5n]

2n2 − n + 12

by n ≥ 3.

Case 3a: Suppose (13b− 7α) ≤ d < (7bn− 7α− 13b). We then have

6[(d− b)(n− 1) + α]

2n2 + 5n + 6
< d + α + (1− n)b <

6[d(n− 1) + α− b]

2n2 + 5n + 6
<

6(d− b)

7

<
6(d + b)

7
< (d− b + α)

by (44), (47), (50), and (52) with d > b[2n3+3n2−5n]−α[2n2+5n]
2n2−n+12

assumed.6 These inequal-

ities divide the values of c into seven mutually exclusive intervals. At each range,

we can derive the LREs in both dynamics. Under the imitating-the-best-total dy-

namic; ~D is the LRE for c ≥ 6[d(n−1)+α−b]
2n2+5n+6

by Proposition 2(iiia); ~D is the LRE for

6If d ≤ b[2n3+3n2−5n]−α[2n2+5n]
2n2−n+12 , then we have [d+α+(1−n)b] < 6[(d−b)(n−1)+α]

2n2+5n+6 < 6[d(n−1)+α−b]
2n2+5n+6 <

6(d−b)
7 < 6(d+b)

7 < (d− b + α). Under the circumstance, the results of Case 3a remain true.
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c ∈ [d + α + (1 − n)b, 6[d(n−1)+α−b]
2n2+5n+6

) by Proposition 2(iiib); and ~C is the LRE for

c < [d + α + (1− n)b] by Proposition 2(iiic).

Under the imitating-the-best-average dynamic; ~D is the LRE for c > (d−b+α) by

Proposition C2(i); {~C, ~D} is the LRE for c ∈ [6(d−b)
7

, (d−b+α)] by Proposition C2(iia)

and α ≤ (d−b)[2n2−2n+13]
7

implied by (46) and d > b + 7α
2n2−2n+13

; {~C, ~D} is the LRE

for c ∈ [6[(d−b)(n−1)+α]
2n2+5n+6

, 6(d−b)
7

) by Proposition C2(iiib), c < 6(d−b)
7

, α ≤ (d−b)[2n2−2n+13]
7

implied by (46) and d > b + 7α
2n2−2n+13

, and c ∈ [6[(d−b)(n−1)+α]
2n2+5n+6

, 6(d−b)
7

); and ~C is the

LRE for c ∈ (0, 6[(d−b)(n−1)+α]
2n2+5n+6

) by Proposition C2(iiia), c < 6(d−b)
7

, α ≤ (d−b)[2n2−2n+13]
7

implied by (46) and d > b + 7α
2n2−2n+13

, and c < 6[(d−b)(n−1)+α]
2n2+5n+6

.

In summary, the c interval making ~C the LRE under the imitating-the-best-average

dynamic is (0, (d − b + α)], and the associated interval under the imitating-the-best-

total dynamic is (0, (d+(1−n)b+α)). Since (0, (d+(1−n)b+α)) ⊂ (0, (d− b+α)]

by (d − b + α) > (d + (1 − n)b + α), ~C is more likely to be the LRE under the

imitating-the-best-average dynamic than under the imitating-the-best-total dynamic.

Case 3b: Suppose b[2n2+5n+5]+α
2n2+4n+7

≤ d < (13b− 7α). Some calculations show

b[2n3 + 3n2 + n− 12]− α[2n2 + 5n]

2n2 − n + 12
>

b[2n3 + 3n2 − 5n]− α[2n2 + 5n]

2n2 − n + 12
>

b[2n2 + 5n + 5] + α

2n2 + 4n + 7
.

We then have

6[(d− b)(n− 1) + α]

2n2 + 5n + 6
< d + α + (1− n)b <

6[d(n− 1) + α− b]

2n2 + 5n + 6
<

6(d− b)

7

< (d− b + α) <
6(d + b)

7

by (44), (47), (50), and (52) with d > b[2n3+3n2−5n]−α[2n2+5n]
2n2−n+12

assumed.7 These inequali-

ties divide the values of c into seven mutually exclusive intervals. As in Case 3b, we ob-

tain that ~C is more likely to emerge under the imitating-the-best-average dynamic than

under the imitating-the-best-total dynamic due to (0, (d+(1−n)b+α)) ⊂ (0, (d−b+α)]

by Propositions 2 and C2.

7As in Case 3a, our results remain true if d ≤ b[2n3+3n2−5n]−α[2n2+5n]
2n2−n+12 .
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Case 3c: Suppose b+ 7α
2n2−2n+13

≤ d < b[2n2+5n+5]+α
2n2+4n+7

. We will always have d < b[2n3+3n2−5n]−α[2n2+5n]
2n2−n+12

<

b[2n3+3n2+n−12]−α[2n2+5n]
2n2−n+12

. Then

d + α + (1− n)b <
6[(d− b)(n− 1) + α]

2n2 + 5n + 6
<

6(d− b)

7
<

6[d(n− 1) + α− b]

2n2 + 5n + 6

< (d− b + α) <
6(d + b)

7

by (47), (50), (51), and (53) by d > b + 7α
2n2−2n+13

> (b−α)(2n2+5n)
2n2−2n+12

. These inequalities

divide the values of c into seven mutually exclusive intervals. Again, the results here

are the same as Case 3b’s due to (d− b + α) > [d + (1− n)b + α].

Case 3d: Suppose d < b+ 7α
2n2−2n+13

. Under the circumstance, we need to know relative

sizes of (d− b + α), 6[d(n−1)+α−b]
2n2+5n+6

, and 6[(d−b)(n−1)+α]
2n2+5n+6

. Some calculations show

(d− b + α)− 6[d(n− 1) + α− b]

2n2 + 5n + 6
=

[d(2n2 − n + 12)− (b− α)(2n2 + 5n)]

2n2 + 5n + 6

≥ (≤) 0 iff d ≥ (≤)
(b− α)(2n2 + 5n)

2n2 − n + 12
, (33)

(d− b + α)− 6[(d− b)(n− 1) + α]

2n2 + 5n + 6
=

(2n2 − n + 12)[d− b + α(2n2+5n)
2n2−n+12

]

2n2 + 5n + 6

≥ (≤) 0 iff d ≥ (≤) b− α(2n2 + 5n)

2n2 − n + 12
, (34)

b− α(2n2 + 5n)

2n2 − n + 12
− (b− α)(2n2 + 5n)

2n2 − n + 12
=

b(2n2 − n + 11)

2n2 − n + 12
> 0 by n ≥ 2, (35)

b− α(2n2 + 5n)

2n2 − n + 12
< b +

7α

2n2 − n + 12
. (36)

These suggest

(b− α)(2n2 + 5n)

2n2 − n + 12
< b− α(2n2 + 5n)

2n2 − n + 12
< b +

7α

2n2 − n + 12
,

and the inequalities imply that there are three sub-cases below.

Case 3d-1: Suppose b− α(2n2+5n)
2n2−n+12

≤ d < b + 7α
2n2−n+12

. We then have

d + α + (1− n)b <
6(d− b)

7
<

6[(d− b)(n− 1) + α]

2n2 + 5n + 6
<

6[d(n− 1) + α− b]

2n2 + 5n + 6

< (d− b + α) <
6(d + b)

7
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by (45), (49), (50), (51), and (53). These inequalities divide the values of c into seven

mutually exclusive intervals. As in Case 3b, ~C is more likely to emerge under the

imitating-the-best-average dynamic than under the imitating-the-best-total dynamic

due to (d− b + α) > 6[d(n−1)+α−b]
2n2+5n+6

by Propositions 2 and C2.

Case 3d-2: Suppose (b−α)(2n2+5n)
2n2−n+12

≤ d < b − α(2n2+5n)
2n2−n+12

. We then have (d − b + α) >

6[d(n−1)+α−b]
2n2+5n+6

by (53), and (d − b + α) < 6[(d−b)(n−1)+α]
2n2+5n+6

by (54). However, (49) implies

6[(d−b)(n−1)+α]
2n2+5n+6

< 6[d(n−1)+α−b]
2n2+5n+6

, which leads to a contradiction. Thus, no solution exists

in this case.

Case 3d-3: Suppose d ≤ (b−α)(2n2+5n)
2n2−n+12

. We then have

[d + α + (1− n)b] <
6(d− b)

7
< (d− b + α) <

6[(d− b)(n− 1) + α]

2n2 + 5n + 6

<
6[d(n− 1) + α− b]

2n2 + 5n + 6
<

6(d + b)

7

by (43), (45), (49), and (54). These inequalities divide the values of c into seven

mutually exclusive intervals. At each range, we can derive the LREs in both dynamics.

Under the imitating-the-best-total dynamic; ~D is the LRE for c ≥ 6[d(n−1)+α−b]
2n2+5n+6

by

Proposition 2(iiia); ~D can be the LRE for c ∈ [d + α + (1 − n)b, 6[d(n−1)+α−b]
2n2+5n+6

) by

Proposition 2(iiib); and ~C is the LRE for c ∈ (0, [d + α + (1 − n)b]) by Proposition

2(iiic).

Under the imitating-the-best-average dynamic; ~D is the LRE for c > (d−b+α) by

Proposition C2(i); ~C is the LRE for c ∈ [6(d−b)
7

, (d− b+α)] by Proposition C2(iib) and

α > (d−b)[2n2−2n+13]
7

and c ∈ [6(d−b)
7

, 6[(d−b)(n−1)+α]
2n2+5n+6

); and ~C is the LRE for c ∈ (0, 6(d−b)
7

)

by Proposition C2(iiic), c < 6(d−b)
7

, and α > (d−b)[2n2−2n+13]
7

.

Accordingly, the c interval making ~C the LRE under the imitating-the-best-average

dynamic is (0, (d − b + α)], and the associated interval under the imitating-the-best-

total dynamic is (0, (d+(1−n)b+α)). Since (0, (d+(1−n)b+α)) ⊂ (0, (d−b+α)), ~C

is more likely to be the LRE under the imitating-the-best-total dynamic than under
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the imitating-the-best-average dynamic.

In summary, the results of Cases 1-3 prove Theorem 2.

Proof of Proposition 3: If [d+α− b(n−1)] < c1, then [d+α− b(n−1)] <
Pk

i=1 ci

k
. That

is, (8) fails at k = 1, and hence u ≥ 2. On the other hand, [d(n− 1) + α− b] ≤
Pn

i=2 ci

n−1

implies that (11) holds at k = 1, and hence v = 1. We have S∗ = { ~D} and E(Tε) = ε−1

as shown by Proposition 3(i). In contrast, if [d + α− b(n− 1)] ≥ c1, then u = 1 due to

(8) holding at k = 1, and v = 1 by [d(n− 1) + α − b] ≤
Pn

i=2 ci

n−1
due to (11) holding at

k = 1. Thus, S∗ = {~C, ~D} and E(Tε) = ε0 as shown by Proposition 3(ii). Finally, if

[d + α − b(n− 1)] > cn, then we have [d + α − b(n− 1)] > cn >
Pk

i=1 ci

k
, which implies

u = 1 by (8). Moreover, we have d(n− 1) + α− b−
Pn

i=2 ci

n−1
> d(n− 1) + α− b− cn >

(n − 1)[cn + b(n − 1) − α] + α − b − cn = (n − 2)cn + b(n − 1)2 − α(n − 2) > 0 by

cn >
Pn

i=1 ci

(n−1)
and d > cn + b(n−1)−α. This suggests that (11) fails at k = 1, and hence

v ≥ 2. Thus, S∗ = {~C} and E(Tε) = ε−1 as shown by Proposition 3(iii).
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