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Proof of Proposition 7: Under (3), (4), (13) and (14), we re-derive all the Lemmas and Propositions 
in Section 4. First, the changed problems are stated. Then, the associated Lemmas and Propositions 
are provided.  

 Under the new set-up, problem (5) becomes  

                  
0

max
i

i i i i
q

a bq c r q f


          (5A) 

s.t. iq   

for ,i l h . To have optimal non-negative cargo-handling amounts for terminal operators, we need 

                                   ( )i i ir r a c    for ,i l h .      (6A) 

The solutions of problem (5A) are listed below.   

Lemma 1. Suppose the conditions in (6A) hold. Given concession contract  , ,r f  , operator i’s 

optimal behaviors are as follows.  

(i) If [0, ]i   with ( )
2

ia c r
i b   , then we have ( )

2
ia c rc

i ibq     with equilibrium service prices 
( )

2 0ia c rc
ip     and equilibrium profits 2( )c c

i ib q f    for ,i l h .  

(ii) If ( , )i

a

b
  , then we have c

iq   with equilibrium service prices ( ) 0c
ip a b    and 

equilibrium profits ( )c
i ia b c r f        for ,i l h . 

Proof of Lemma 1: Denote L  the terminal operator’s Lagrange function in problem (5A), 

    ,i i i iL a bq c r q f q         

where   is the Lagrange multiplier associated with the constraint in problem (5A).  Then, the 
corresponding Kuhn-Tucker conditions are 

2 0, 0i i i
i i

L L
a bq c r q

q q
 

       
 

, and      (A1) 

0, 0i

L L
q  

 
 

    
 

.         (A2) 

Based on the values of  , there are two cases below. 

Case 1: Suppose * 0  . We have 
 

2
ic

i

a c r
q

b

 
 . To guarantee  c

iq  , condition 

 
0

2
i c

i i

a c r
q

b
 

 
     should be met. Substituting c

iq  into (13) yields
 

0
2

ic
i

a c r
p

 
  , and 

into (14) yields  2c c
i ib q f    for ,i l h . These prove Lemma 1(i). 
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Case 2: Suppose * 0   .We have c
iq   and 

   * 2 2
2

i
i

a c r
b b

b
   

  
    

 
 by (A1) and 

(A2). To guarantee * 0  , conditions i   and i ir r  are needed. Substituting c
iq  into (13) yields 

( ) 0c
ip a b    if 

a

b
  , and into (14) gives  c

i ia b c r f        for ,i l h . These prove 

Lemma 1(ii).    

Under the new set-up, problem (7) becomes   

                                     
, ,

max
i i i

c
i i i

r f
rq f


                              (7A) 

s.t. 0 i

a

b
  , 0 i ir r  , 0if   and 0c

i   

for ,i l h . Its solutions are as follows.  

Lemma 2. Suppose the conditions in (6A) hold. The optimal concession contract ( , , )c c c
i i ir f   offered 

to the operator with marginal service cost , ,ic i l h , can be the fixed-fee contract 
 2

4
ic

i

a c
f

b


  

with minimum throughput requirement 0,
2

c i
i

a c

b
     

, the unit-fee contract 
2

c i
i

a c
r


  with 

minimum throughput requirement 
2

c i
i

a c

b
 

 , or the two-part tariff contract with 0,
2

c i
i

a c
r

  
 

,

   2

4

c
i i ic

i

a c a c r
f

b

  
 , and minimum throughput requirement 

2
c i
i

a c

b
 

 . However, the port 

authority’s equilibrium fee revenue always equals 
 2

4
ic

i

a c
R

b


 , ,i l h .  

Proof of Lemma 2:  

Case 1: Suppose 0,i i    . Lemma 1(i) implies  2
0c c

i if b q  , because the port authority will  

set f  as large as possible. However, since 0
c
i

f





, the optimal value of f  will satisfy 0c

i  .  

Accordingly, problem (7A) becomes 

 2

, ,
max
i i i

c c
i i i

r f
rq b q


  

s.t. 0 i i    and 0 i ir r  .       (A3) 

Its Lagrange function is 

     2

1 2
c c

i i i i i iL rq b q r r         , 
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where 1  and 2 are the respective Lagrange multipliers associated with the two inequality 

constraints in (A3). Then, the corresponding Kuhn-Tucker conditions are 

1 2

1

2
0, 0,

2 i i
i i

L b L
r r

r b r
  

     





      (A4) 

1 0, 0,i
i i

L L 
 
 

    
 

        (A5) 

1
1 1

0, 0,i i

L L  
 
 

    
 

and        (A6) 

2
2 2

0, 0.i i

L L
r r 

 
 

    
 

         (A7) 

Based on the values of 1  and 2 , there are four cases below. 

Case 1a:  Suppose  *
1 0   and *

2 0  . We have 0c
ir   by (A4). In addition, (A6) implies both 

0,c
i i     with 

2
i

i

a c

b
 
  and 

 2

0
4

ic
i

a c
f

b


   by Lemma 1(i). Thus, the port authority’s 

equilibrium fee revenue equals 

 2

4
ic

i

a c
R

b


 .        (A8) 

Case 1b: Suppose *
1 0  and *

2 0  . Then (A7) implies ( )c
i i icr r a   for ,i l h . This 

suggests 
 *

2 0
2

ib a c



    by (A4), which contradicts *

2 0  . Thus, no equilibrium exists. 

Case 1c:  Suppose  *
1 0   and *

2 0  . Then (A6) suggests 0i
c
i    and *

1 0   by (A5), 

which lead to a contradiction. Thus, there is no solution in this case. 

 Case 1d: Suppose *
1 0   and *

2 0  . As in Case 1c, we have *
1 0  . Again, no solution exists. 

Case 2:  Suppose ,i i

a

b
   

 
. As in Case 1, we have 0c

i   and  c
i i i i if a b r c      by 

Lemma 1(ii). Hence 0c
if   iff i i

i

a r c

b
  
  and i i ir r a c   . Problem (7A) thus becomes 

 
, ,

max
i i i

i i i i i i
r f

r a b r c


        

s.t. i i
i i

a r c

b
   
  , 0 i ir r   and 0if  .     (A9) 

Its Lagrange function is 
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     1 2 3
i i

i i i i i i i i i i i

a r c
L r a b r c r r

b
                       

, 

where 1 , 2 and 3 are the respective Lagrange multipliers associated with the inequality constraints 

in (A9). Then, the corresponding Kuhn-Tucker conditions are  

  1 22 0, 0,i i i
i i

L L
a b c   

 
 

       
 

      (A10) 

1
1 1

0, 0,i i

L L  
 
 

    
 

        (A11) 

 
2

2 2

0, 0,i i
i

a r cL L

b
 

 
  

    
 

 and       (A12) 

3
3 3

0, 0i i

L L
r r 

 
 

    
 

.         (A13) 

Constraint i i   suggests *
1 0   by (A11).  According to the sign of 2 , there are two sub-cases.  

Case 2a: If *
2 0  , then we have 

2
c i
i

a c

b
 

  by (A10) and 0,
2

c i
i

a c
r

   
 by (A12), and 

hence     2

4

c
i i ic c c c

i i i i i

a c a c r
f a b r c

b
 

  
     . Moreover, 

2
c i
i

a c

b
 

  and 0,
2

c i
i

a c
r

   
 

satisfy (A10)-(A13). Thus, the port authority’s fee revenue equals 

 2

4
ic

i

a c
R

b


 .         (A14) 

Case 2b: If *
2 0  , then we have 

 i ic
i

a r c

b


 
  by (A12) and  *

2 2 c
i ir a c     by (A10).  

In addition, we have ( ) 0
2

c
c i i
i i

a r c

b
   

    iff ( )c
i ir a c  , and *

2 0   iff 
2

c i
i

a c
r


 . Hence 

 i ic
i

a r c

b


 
 , ,

2
c i

i i

a c
r a c

   
 

. The port authority’s equilibrium fee revenue equals 

 c c
i i ic

i

r a r c
R

b

  
 .       (A15) 

Since 
2

0
c c
i i i
c

i

R a r c

r b

  
 


 for ,

2
c i

i i

a c
r a c

   
 

,  we have 
 c c

i i ic
i

r a r c
R

b

  
 

 2
1

2 2 4
ii i

i

a ca c a c
a c

b b

       
 

. 
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Thus, we have three solutions: 
 2

4
ic

i

a c
R

b


 in (A8) of Case 1a, 

 2

4
ic

i

a c
R

b


 in (A14) of 

Case 2a, and 
 c c

i i ic
i

r a r c
R

b

  
  in (A15) of Case 2b. Because

 

   2

4

c c
i i i i

r a r c a c

b b

   
 , the port 

authority should choose: 0c
ir  , 0,

2
c ia c

b
    

, and 
 2

4
ic a c

f
b


 as in Case 1a; or 0,

2
c i

i

a c
r

   
, 

2
c i
i

a c

b
 

 , and
  2

4

c
i i ic

i

a c a c r
f

b

  
  as in Case 2a. In summary, the optimal contact can be the 

fixed-fee scheme in Case 1a, the unit-fee scheme in Case 2a if 
2

c i
i

a c
r


 , or the two-part tariff 

scheme in Case 2a if 0,
2

c i
i

a c
r

  
 

.    

 Under the new set-up, problem (8) becomes  

 
0

max
i

i i i i
q

a bq c r q f


         (8A) 

s.t. , ,iq i l h  . 

Condition ( )h hr r a c    can guarantee optimal non-negative cargo-handling amounts for both-

type operators. Solving problem (8A) yields the results below.  

Lemma 3. Suppose the conditions in (6A) hold. Given contract  , ,r f  , operator i’s optimal 

behaviors are as follows for ,i l h .  

(i) For 1[0, ]p   with ( )
1 2 0ha c rp

b    , both-type operators’ equilibrium cargo-handling amounts 

are 
 

12
lp p

l

a c r
q

b


 
   and 1

p p
hq  , their equilibrium service prices are ( )

2 0ia c rp
ip    , and 

their equilibrium profits are 2( )p p
i ib q f    for ,i l h .  

(ii) For  1 2,p p      with ( )
2 12

la c rp p
b    , both-type operators’ equilibrium cargo-handling 

amounts are 
 

2
lp

l

a c r
q

b

 
  and p

hq  , their equilibrium service prices are ( )
2 0la c rp

lp     and 

0p
hp a b   , and their equilibrium profits are  2p p

l lb q f   and  p
h ha b c r f       . 

(iii) For 2 ,p a

b
   

 
, both-type operators’ equilibrium cargo-handling amounts are p

lq   and 

p
hq  , their equilibrium service prices are ( ) 0p p

l hp p a b    , and their equilibrium profits 

are  p
i ia b c r f        for ,i l h . 

Proof of Lemma 3: Denote 1L  and 2L  the respective Lagrange functions for the l-type and the h-type 

operators in problem (8A), 
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1 1

2 2 2

and

,

l l l l l

h h h h

L a bq q c r q f q

L a bq q c r q f q

 

 

      

      
 

where 1  and 2 are Lagrange multipliers for the l-type and the h-type operators, respectively. Then, 

the Kuhn-Tucker conditions for the l-type operator are 

1 1
12 0, 0l l l

l l

L L
a bq c r q

q q
 

       
 

 and      (A16) 

1 1
1

1 1

0, 0l

L L
q  

 
 

    
 

,       (A17) 

and for the h-type operator are  

2 2
22 0, 0 andh h h

h h

L L
a bq c r q

q q
 

       
 

    (A18) 

2 2
2

2 2

0, 0.h

L L
q  

 
 

    
 

        (A19) 

Based on the values of 1  and 2 , there are four cases below. 

Case 1: Suppose *
1 0   and *

2 0  .Then (A16) and (A18) become ( 2 ) 0l la bq c r     and 

( 2 ) 0h ha bq c r    , respectively. Solving the two equations yields 
 

2
lp

l

a c r
q

b

 
  and 

 
2

hp
h

a c r
q

b

 
 . To guarantee p

lq   and p
hq  , condition 

 
10

2
hp p

h

a c r
q

b
 

 
     should 

be imposed, because l hc c  suggests p p
l hq q  and p

hq   suggests p
lq  . Substituting p

lq  and p
hq  

into (13) yields 
   

0
2 2

h lp p
h l

a c r a c r
p p

   
    , and into (14) yields  2p p

i ib q f   for 

,i l h . These prove Lemma 3(i). 

Case 2: Suppose *
1 0   and *

2 0  . Then (A16), (A18) and (A19) imply ( 2 ) 0l la bq c r    ,

2( 2 ) 0h ha bq c r       and ( ) 0hq   . Solving these equations yields 
 

2
lp

l

a c r
q

b

 
 , p

hq   

and  *
2 12 pb    . To guarantee *

2 0  , conditions 1
p   and hr r  are needed. On the other 

hand, to have p
lq  , condition 2 2

p la c r

b
   
   should be imposed. Accordingly, the plausible 

range for   is  1 2,p p   . Substituting p
lq and p

hq  into (13) produces 

 
0

2
lp p

h l

a c r
p a b p

 
      if 2

p  , and into (14) gives  2p p
l lb q f    and 

 p
h ha b c r f       . These prove Lemma 3(ii). 
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Case 3: Suppose *
1 0   and *

2 0   .Then (A16)-(A18) suggest ( ) 0lq   , 

1( 2 ) 0l la bq c r       and ( 2 ) 0h ha bq c r    . Solving these equations yields p
lq  , 

 
2

hp
h

a c r
q

b

 
  and *

1 2
2

la c r
b

b
       

. To guarantee *
1 0  , condition 

 
2

la c r

b


 
  is 

needed; and p
hq   is guaranteed if 

 
2

ha c r

b


 
 . However, the two conditions are incompatible 

with each other because 
     

0
2 2 2

h l h la c r a c r c c

b b b

     
   . Thus, no solution exists in this 

case. 

Case 4: Suppose *
1 0   and *

2 0  . Then (A16)-(A19) suggest  p p
l hq q   , *

1 2 la b c r       

and *
2 2 ha b c r      .  To have *

1 0   and *
2 0  , conditions 2 2

p la c r

b
   
   and 

( )lr a c   are needed. Note that we have ( )lr a c   because of h hr r a c    and l hc c . 

Substituting p p
l hq q    into (13) produces ( ) 0p p

l hp p a b     if 
a

b
  , and into (14) gives 

 p
i ia b c r f       for ,i l h . These prove Lemma 3(iii).     

 Under the new set-up, problem (9) becomes  

    
, ,

max 1p p
l h

r f
R rq f rq f


          (9A) 

s.t. 0
a

b
  , 0, 0,r f  0p

l   and 0p
h  .  

Solving this problem yields the results below. 

Proposition 1. Suppose the conditions in (6A) hold. Then, we have the following.  

(i) If  ,h l hc c c   with 
2

l
h

a c
c


 , then the two-part tariff contract is the port authority’s best choice. 

The optimal scheme and minimum throughput guarantee are  
 

2
h lp c c

r






, 

   
 

2 2 2

4 2
l h l hp

a c c a c c
f

b

 


      


, and 
 

 
2 2

2 2
l hp a c c

b

 



  




. At the equilibrium, the 

port authority’s fee revenue equals
   

 

2 2 22 2 2 2 2

4 2
h l h l hp a ac c c c c

R
b

   


     



. 

(ii) If  ˆ,h hh cc c   with 
 2

ˆ
2

l
h

a c
c

  
 , then the unit-fee scheme is the port authority’s best 

choice. The optimal scheme and minimum throughput guarantee are 
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2 2 1

2 2
l hp a c c

r
  


   




 and 
 

 
2 2

2 2
l hp a c c

b

 



  




. At the equilibrium, the port 

authority’s fee revenue equals
   

 

2
2 2 1

8 2
l hp

a c c
R

b

  


     


. 

(iii) If  ˆ ,hhc c a , then the unit-fee scheme is the port authority’s best choice. The optimal scheme 

and minimum throughput guarantee are ( )p
h hr r a c    and 0p  . At the equilibrium, the port 

authority’s fee revenue equals
  

2
h h lp a c c c

R
b

  
 . 

Proof of Proposition 1: According to Lemma 3, we have three cases below.  

Case1: Suppose 1[0, ]p  . Lemma 3(i) implies p p
l h  . Again, 0

R

f





and 0p

h 
 
suggest

 2
0p p

hf b q  , and hence 0p
h   and 0p

l  . Problem (9A) then becomes 

     
, ,

max 1p p
l h

r f
R rq f rq f


       

s.t. 10 p    and 0 hr r  .  

Its Lagrange function is  

          2

1 1 21p p p p
h l h hL b q r q r q r r               , 

where 1  and 2 are the respective Lagrange multipliers associated with the two inequality 

constraints of this problem. The corresponding Kuhn-Tucker conditions are 

  1 2

11
0, 0,

2 2h l

L L
c c

b
r r

r b r
  

 
         

     (A20) 

1 0, 0,
L L 
 
 

    
 

         (A21) 

1 1
1 1

0, 0,pL L  
 
 

    
 

 and        (A22) 

2
2 2

0, 0.h

L L
r r 

 
 

    
 

         (A23) 

Based on the values of 1  and 2 , we have four sub-cases. 

Case 1a: Suppose *
1 0  and *

2 0  . Constraint  (A20) suggests   0p
h lc cr    . It remains 
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to check whether p
hr r  holds. By some calculations, we have p

hr r  iff 1 1
l

h hp

a c
c c





 


. 

Moreover, (A22) implies both 10,p p     with 
   

1

1

2 2

p
h l hp

a c r a c c

b b

 


    
   and

  2
1

0
2

l hp a c c
f b

b

    
  

 
. Thus, a solution exists when 1h hpc c , and the port authority’s 

equilibrium fee revenue equals 

 2 2 2 2 2

11

2 2 1

4
h l h l hp

a ac c c c c
R

b

      
 .    (A24) 

Case 1b: Suppose *
1 0   and *

2 0  . Constraints (A20) and (A23) imply ( )p
h hr r a c   , and 

 *
2

1
0

2
l ha c c

b

 


   
  iff 1hh pc c . Moreover, (A22) suggests 0p   by 

 
1 0

2
hp a c r

b


 
  , 

and 0pf  . Thus, for 1hh pc c , the port authority’s equilibrium fee revenue equals 

  
12 2

h l hp c c a c
R

b

  
 .       (A25) 

Case 1c: Suppose *
1 0  and *

2 0  . Constraint (A22) suggests 1 0p p   . If 1 0p  , then 
*
1 0   by (A21). It is a contradiction. Thus, no solution exists in this case. If 1 0p  , then p

hr r  

and the solution is same as Case 1b’s. 

 Case 1d: Suppose *
1 0   and *

2 0  . The solution is the same as Case 1b’s for 1hh pc c . 

Case 2: Suppose  1 2,p p     . Similar to Case 1, we have  p
hf a b c r     , and 0pf   iff 

ha c r

b
   
   and h hr r a c   . Moreover,   2

p    iff   2l hr r a c c     . Thus, there 

are two sub-cases. 

Case 2a: Suppose ( 2 )l hr r a c c    . Problem (9A) becomes 

     
, ,

max 1p p
l h

r f
R rq f rq f


       

s.t. 1 2
p p     and 0 r r          (A26) 

Its Lagrange function is

           1 1 2 2 32 1 .
2

p p
h l

r
L a b c r a c r b r r

b
                               

The corresponding Kuhn-Tucker conditions are 

  1 2 3

1 1
2 2 0, 0,

2 2 2l

L L
a r c b r

r b b b r

     
         

 
     (A27) 
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1 22 0, 0,h

L L
a b c r    

 
 

        
 

     (A28) 

1 1
1 1

0, 0,pL L  
 
 

    
 

        (A29) 

2 2
2 2

0, 0,pL L  
 
 

    
 

 and        (A30) 

3
3 3

0, 0,
L L

r r 
 
 

    
 

         (A31) 

where 1 , 2 and 3  are the respective Lagrange multipliers associated with the inequality constraints 

in (A26). Constraint 1
p   suggests *

1 0   by (A29). Based on the values of 2 and 3 , there are 

four sub-cases. 

Case 2a-1: Suppose *
2 0   and *

3 0  . Then, (A27) and (A28) suggest 

 2 2 0
2 la r c b
b

      and ( 2 ) 0ha b c r     .  Solving the two equations yields 
2

p h lc c
r







 

and 
 

 
2 2

2 2
l hp a c c

b

 



  




. By some calculations, we have 
   

 1

1
( ) 0

2 2
h lp p c c

b


 


 

  


, 

 
 2( ) 0

2 2
h lp p c c

b
 




  


 and 
     

 
2 3 5 2

( ) 0
2

l hp a c c
r r

  


    
  


  iff 

   
 2

2 3

5 2
l

h hp

a c
c c

 


  
 


. Thus, a solution exists when 2h hpc c  with 

2
p h lc c

r






,

 
 

2 2

2 2
l hp a c c

b

 



  




 and 
   

 
2 2 2

4 2
l h l hp

a c c a c c
f

b

 


      


, and the port authority’s 

equilibrium fee revenue equals  

   
 

2 2 2

21

2 2 2 2 2

4 2
h l h l hp a ac c c c c

R
b

   


     



.      (A32) 

Case 2a-2: Suppose *
2 0   and *

3 0  . Then, (A27), (A28) and (A31) suggest 

  32 2 0
2 la r c b
b

       , ( 2 ) 0ha b c r      and ( ) 0r r  . Solving these equations yields 

( 2 )p
l hr a c c   ,    1

1 1 2
2

p
l ha c c

b
           and

     *
3

2 3 5 2

2
l ha c c   


        . It remains to check whether 1 2

p p p    , 0pr   and 

*
3 0   hold.  By some calculations, we have   1

1
( ) 1 2 0

2
p p

l ha c c
b

         iff  
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2
l

h h

a c
c c


  ,  iff h hc c  ,      2

1
( ) 1 2 3 2 0

2
p p

l ha c c
b

                iff 

   1 2

3 2
l

h

a c
c

 


  



, and *

3 0   iff 2h hpc c . Moreover, we have 

     
  2

1 2
0

3 2 3 2 5 2
l l

hp

a c a c
c

 
  

   
  

  
, and 

 
 2( ) 0

2 5 2
l

h hp

a c
c c




  


 . Thus, a solution 

exists for 2hp h hc c c    and the port authority’s equilibrium fee revenue equals  

     
     

2 2 2

22 2 2 2

1 2 3 2 1 5 21

4 2 7 2 4 1 12 4

l hp

l h l h

a ac ac
R

b c c c c

    

     

      
 
        

.   (A33) 

Case 2a-3: Suppose *
2 0   and *

3 0  . Then, (A27), (A28) and (A30) suggest 

  2

1
2 2 0

2 2la r c b
b b

       , 2( 2 ) 0ha b c r        and 2( ) 0p   . Solving these 

equations yields ( ) 0p
h lr c c   , 

2
p ha c

b
 

  and  *
2 0h lc c     . Thus, no solution exists in 

this case. 

Case 2a-4: Suppose *
2 0   and *

3 0  . Then, (A27), (A28), (A30) and (A31) suggest 

  2 3

1
2 2 0

2 2la r c b
b b

         , 2( 2 ) 0ha b c r       , ( ) 0r r   and 2( ) 0p   . 

Solving these equations yields 2p
l hr r a c c    , 2

( )p p h lc c

b
  

  ,

     *
2 1 2 3 2 0l ha c c           iff 

   
 

1 2

3 2
l

h

a c
c

 


  



, and   

 *
3

1
2 3 0

2 l ha c c
b

       iff 
2

3
l

h

a c
c


 .  Since 

   
 

 
 

1 2 2
0

3 2 3 3 2
l ll

a c a ca c  
 

    
  

 
, 

we cannot have both *
2 0   and *

3 0   together. Thus, no solution exists in this case. 

Case 2b: Suppose ( 2 )l hr r a c c    . Note that   0p
hf a b c r       if 

( )ha c r

b
   
  , and   2

p    iff  r r   .  Assuming r r  , we reduce constraint 

1 2
p p     to 1

p     .  Thus, problem (9A) becomes 

     
, ,

max 1p p
l h

r f
R rq f rq f


       

s.t. 1
p      and hr r r  .      (A34) 

Its Lagrange function is 

             1 1 2 3 42 1 .
2

p
h l h

r
L a b c r a c r b r r r r

b
                              

 

The corresponding Kuhn-Tucker conditions are  

0pr 
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  1 2 3 4

1 1
2 2 0, 0,

2 2l

L L
a r c b r

r b b b r

      
          

 
    (A35) 

1 22 0, 0,h

L L
a b c r    

 
 

        
 

     (A36) 

1 1
1 1

0, 0,pL L  
 
 

    
 

        (A37) 

2
2 2

0, 0,
L L  
 
 

    
 

         (A38) 

3
3 3

0, 0,
L L

r r 
 
 

    
 

  and        (A39) 

4
4 4

0, 0,h

L L
r r 

 
 

    
 

        (A40) 

where 1 , 2 , 3 , and 4 are the respective Lagrange multipliers associated with the inequality 

constraints in (A34). Constraints 1
p   and r r suggest *

1 0   and *
3 0   by (A37) and (A39). 

If *
4 0  , then p

h hr r a c    by (A40). Moreover, we obtain 1 0p    by p
hr r , which 

contradicts the requirement of 1
p     . Thus, we must have *

4 0  . Based on the value of 2 , 

there are two sub-cases below. 

Case 2b-1: Suppose *
2 0  . Then, (A35) and (A36) suggest  2 2 0

2 la r c b
b

      and 

( 2 ) 0ha b c r     . Solving these equations yields 
2

p h lc c
r







 and 
 

 
2 2

2 2
l hp a c c

b

 



  




. It 

remains to check whether 1
p p      and p

hr r r   hold. By some calculations, we obtain

   
 1

1
( ) 0

2 2
h lp p c c

b


 


 

  


, 
2

( ) 0
2

p l ha c c

b
   
    iff 

2
l

h h

a c
c c


  , 

     
 

2 3 5 2
( ) 0

2
l hp a c c

r r
  


     

  


  iff 2h hpc c , and 

   
 

2 3
( ) 0

2
l hp

h

a c c
r r

 


   
  


 iff 

 
 

2

3
l

h

a c
c




 



. In addition, we have 

 
 

  
 

2 1
0

3 2 3
l l

h

a c a c
c

 
 

   
  

 
  and 

   
  

2

2

2
( ) 0

3 5 2
l

h hp

a c
c c


 

 
  

 
 . Thus, a solution exists 

for 2hp h hc c c   , and the port authority’s equilibrium fee revenue equals  

   
 

2 2 2

21

2 2 2 2 2

4 2
h l h l hp a ac c c c c

R
b

   


     



.      (A41) 
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Case 2b-2: Suppose *
2 0  . Then, (A35), (A36) and (A38) suggest 

  2

1
2 2 0

2 la r c b
b b

        , 2( 2 ) 0ha b c r       , and ( ) 0   . Solving these 

equations yields 
   

 
2 2 1

2 2
l hp a c c

r
  


   




, 
 

 
2 2

2 2
l hp a c c

b

 



  




 and

 *
2

2

2
l ha c c


  

 . It remains to check whether 1
p p  , 

p
hr r r   and *

2 0   hold. By some 

calculations, we obtain 
 

 1

2 2
( ) 0

4 2
l hp p a c c

b

 
 


  

  


 iff
 2

ˆ
2

l
h h

a c
c c

  
  , 

     
 

2 4 2 3
( ) 0

2 2
l hp a c c

r r
  


     

  


  iff 
   

 
2 4

2 3
l

h

a c
c

 


  



, 

 
 

2 2
( ) 0

2 2
l hp a c c

r r
 


  

  


 iff 
 2

2
l

h

a c
c

  
 , and *

2 0   iff 
2

l
h h

a c
c c


   . In addition, 

we have 
    2 1

0
2 2 2

l ll
a c a ca c     

    and 
   

 
 
 

2 4
0

2 2 3 2 3
l ll

a c a ca c  
 

   
  

 
. 

Thus, 1
p p  , 

p
hr r r   and *

2 0   hold if ˆh h hc c c  . Under the circumstance, the port 

authority’s equilibrium fee revenue equals  

   
 

2

23

2 2 1

8 2
l hp

a c c
R

b

  


     


.       (A42) 

Case 3: Suppose 2 ,p a

b
   

 
. Lemma 3(iii) then implies p p

l h  , and hence

 p
hf a b c r      with 0pf   iff 

( )ha c r a

b b
   
    and ( )h hr r a c   . In addition, 

2( ) p    iff  ( ) ( 2 )l hr r a c c     .  If r r  , then 2
p  . To have 0pf  , we need    . 

Since   should belong to the interval of  2 ,p a , the two conditions contradict with each other. 

Thus, we must have  r r   and 2
p  . Combining  2 ,p a   and 0pf  , we have 2( , ]p    .  

Accordingly, problem (9A) becomes 

     
, ,

max 1p p
l h

r f
R rq f rq f


       

s.t. 2
p      and 0 .r r          (A43) 

Its Lagrange function is 

       1 2 2 3
p

hL a b c r r                  . 

The corresponding Kuhn-Tucker conditions are  
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1 2 3

1 1
0, 0,

2

L L
r

r b b r
   

     
 

       (A44) 

  1 22 0, 0,h

L L
a b c   

 
 

       
 

     (A45) 

2 1
1 1

0, 0,pL L  
 
 

    
 

        (A46) 

2
2 2

0, 0
L L  
 
 

    
 

 , and        (A47) 

3
3 3

0, 0
L L

r r 
 
 

    
 

 ,        (A48) 

where 1 , 2 , and 3  are the respective Lagrange multipliers associated with the inequality 

constraints in (A43). Since constraints 2
p  and r r   are strict inequalities, we must have 

* *
1 3 0    by (A46) and (A48). If *

2 0  , then we obtain 2

1
0

L

r b


  


 by (A44), 

( )p ha c

b
  

   by (A47), and  *
2 0ha c      by (A45), which contradicts requirement *

2 0  . 

Thus, we must have *
2 0  , and hence (A45) suggests 

2
p ha c

b
 

 . It remains to check whether 

2
p p     , 

pr r   and *
2 0   hold. By some calculations, we have 

 
2( ) 0

2 2 2
h lp p h l

r c ca c a r c

b b b
 

   
      if  h lr c c  , 

2
( ) 0

2 2
p h h ha r c a c a c r

b b b
      
      if 

2
ha c

r


 , and ( 2 )p
l hr r a c c    . Since  

  2 3
0

2 2
h l h

h l

a c a c c
c c

  
     iff 

2

3
l

h

a c
c


 , we have 

   2 2 3 0l h h l l ha c c c c a c c         iff 
2

3
l

h

a c
c


 , and 

   2 3
2 0

2 2
h l h

l h

a c a c c
a c c

  
       iff   2

3
l

h

a c
c


  . When 

2

3
l

h

a c
c


 , constraint 

2
p p      cannot hold. Thus, for 

2

3
l

h

a c
c


 , a solution exists with ,

2
p h

h l

a c
r c c

    
 and 

2
p ha c

b
 

 , and the port authority’s equilibrium fee revenue equals  

 2

3 4
hp a c

R
b


 .        (A49) 
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Cases 1-3 imply that problem (9A) has seven solutions. By comparing them, we can derive the 

port authority’s best choices. Because 
   

 1

1
ˆ( ) 0

2 1
l

h hpc
a c

c
 


 

  


, 

  
 1

1
) 0

2 1
( l

hp h

c
cc

a


 
  


 , 

   
  

2

2

2
( ) 0

3 5 2
l

h hp

a c
c c


 

 
  

 
 , and 

  
 2

12
( ) 0

3 3 5 2
ll

hp

a ca c
c




 
  


, we have 2 1

2
ˆ

3
l

hp h hp h

a c
c c c c


    , and there are the 

following six cases.  

Case A: Suppose 
2

3
l

h

a c
c


 . Three solutions appear: 

 

 2 2 2 2 2 2

11

2 2 1

4
h l h l hp

a ac c c c c
R

b

      
  

for 1hh pc c  defined in (A24),  
   

 

2 2 2

21

2 2 2 2 2

4 2
h l h l hp a ac c c c c

R
b

   


     



 for 2h hpc c  

defined in (A32), and 
 2

3 4
hp a c

R
b


  for 

2

3
l

h

a c
c


  defined in (A49).  Since

   
 

2 2

21 11

1
( ) 0

4 2
h lp p c c

R R
b

 


 
  


 and 

 22

11 3( ) 0
4
h lp p c c

R R
b

 
   , we have 21 11 3

p p pR R R  .  

Case B: Suppose 2

2

3 h
l

hpc
a c

c


 . Two solutions appear: 

 2 2 2 2 2 2

11

2 2 1

4
h l h l hp

a ac c c c c
R

b

      
  defined in (A24) and 

   
 

2 2 2

21

2 2 2 2 2

4 2
h l h l hp a ac c c c c

R
b

   


     



 defined in (A32). Because

   
 

2 2

21 11

1
( ) 0

4 2
h lp p c c

R R
b

 


 
  


, we have 21 11

p pR R .  

Case C: Suppose 2hp h hc c c   . Three solutions appear: 

 2 2 2 2 2 2

11

2 2 1

4
h l h l hp

a ac c c c c
R

b

      
  defined in (A24), 

     
     

2 2 2

22 2 2 2

1 2 3 2 1 5 21

4 2 7 2 4 1 12 4

l hp

l h l h

a ac ac
R

b c c c c

    

     

      
 
        

 defined in (A33), and

 
   

 

2 2 2

21

2 2 2 2 2

4 2
h l h l hp a ac c c c c

R
b

   


     



 defined in (A41). Because 

   
 

2 2

21 11

1
( ) 0

4 2
h lp p c c

R R
b

 


 
  


 and

     
 

2

21 22

2 3 5 2
( ) 0

4 2
l hp p

a c c
R R

b

   


        


, we 

have 21
pR  the largest.   
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Case D: Suppose 1h h hpc c c  . Two solutions appear: 

 2 2 2 2 2 2

11

2 2 1

4
h l h l hp

a ac c c c c
R

b

      
  defined in (A24) and 

   
 

2

23

2 2 1

8 2
l hp

a c c
R

b

  


     


 defined in (A42). Since 

       
 

2 2
23 11

2 1 3

2 2

p p
l h

h

a c cR R

c b

    



         
 

 ,
   

 

2 2
23 11

2

3
0

2 2

p p

h

R R

c b

 



   
 

 
,  

     
 

2
23 11 1

0
4 2

p p

l

h

R R a c

c b

 


   
 

 
, 

   
 

2 2

23 11

1
( ) 0

16 2
lp p a c

R R
b

 


 
  


 at h hc c  , 

     
   

23 11 1
0

2 1 2

p p

l

h

R R a c

c b

 
 

    
 

  
, and 

   
  

2 22

23 11 2

1
( ) 0

8 2 1
lp p a c

R R
b

 

 

 
  

 
 at 1h hpc c , we have 

23 11
p pR R  for 1h h hpc c c  .  

Case E: Suppose 1 ˆhp h hc c c  . Two solutions appear: 

  
12 2

h l hp c c a c
R

b

  
  defined in (A25) and 

   
 

2

23

2 2 1

8 2
l hp

a c c
R

b

  


     


 defined in (A42).  

Since 
 

 

2

23 12

2 2
( ) 0

8 2
l hp p

a c c
R R

b

 


      


, we have 23 12
p pR R . 

Case F: Suppose ˆh hc c . The unique solution is 
  

12 2
h l hp c c a c

R
b

  
  defined in (A25). 

We find that 21
pR  is optimal when h hc c   by Cases A-C, 23

pR  is optimal when ˆh h hc c c   by 

Cases D-E, and 12
pR  is optimal when ˆh hc c  by Case F.   

In summary, for h hc c  , the port authority should adopt the two-part tariff scheme with  

2
p h lc c

r






, 
   

 
2 2 2

4 2
l h l hp

a c c a c c
f

b

 


      


, minimum throughput requirement 

 
 

2 2

2 2
l hp a c c

b

 



  




, and equilibrium fee revenue 

   
 

2 2 22 2 2 2 2

4 2
h l h l hp a ac c c c c

R
b

   


     



 as in (A32). These prove Proposition 1(i). For

ˆh h hc c c  , the port authority ought to adopt the unit-fee scheme with 

   
 

2 2 1

2 2
l hp a c c

r
  


   




, minimum throughput requirement 
 

 
2 2

2 2
l hp a c c

b

 



  




, and 
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equilibrium fee revenue 
   

 

2
2 2 1

8 2
l hp

a c c
R

b

  


     


as in (A42). These prove Proposition 

1(ii). Finally, for ˆh hc c , the port authority should offer the unit-fee scheme with p
hr r , 0p  , 

and equilibrium fee revenue 
  

2
h h lp a c c c

R
b

  
  as in (A25). These prove Proposition 1(iii).     

 Under the new set-up, problem (10) becomes  

 
0

max
i

i i i l i l
q

a bq c r q f


          (10A) 

s.t. i lq   

for ,i l h . Its solutions are given below.  

Lemma 4. Suppose the conditions in (6A) hold. Given contract  , ,l l lr f  , operator i’s optimal 

behaviors are as follows.  

(i) For [0, ]l l    with ( )
2

h la c r
l b    , both-type operators’ equilibrium cargo-handling amounts are 

 
2

l lsl
l l

a c r
q

b


 
   and 

 
2

h lsl
h l

a c r
q

b


 
  , their equilibrium service prices are 

( )
2 0i la c rsl

ip    , and their equilibrium profits are 2( )sl sl
i i lb q f    for ,i l h .  

(ii) For  ,l l l     with ( )
2

l la c r
l lb     , both-type operators’ equilibrium cargo-handling amounts 

are 
 

2
l lsl

l

a c r
q

b

 
  and sl

h lq  , their equilibrium service prices are ( )
2 0l la c rsl

lp     and 

( ) 0sl
h lp a b   , and their equilibrium profits are  2sl sl

l l lb q f    and 

 sl
h l l h l la b c r f       . 

(iii) For ,l l

a

b
   

 
, both-type operators’ equilibrium cargo-handling amounts are sl

l lq   and 

sl
h lq  , their equilibrium service prices are ( ) 0sl sl

l h lp p a b    , and their equilibrium profits 

are  sl
i l l i l la b c r f        for ,i l h . 

Proof of Lemma 4: Denote 1L  and 2L  the respective Lagrange functions for the l-type and the h-

type terminal operators in problem (10A), 

   1 1l l l l l l lL a bq c r q f q         and    2 2 ,h h l h l h lL a bq c r q f q         

where 1  and 2  are their associated Lagrange multipliers. Then, the corresponding Kuhn-Tucker 

conditions for the l-type operator are 

1 1
12 0, 0l l l l

l l

L L
a bq c r q

q q
 

       
 

 and     (A50) 
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1 1
1

1 1

0, 0l l

L L
q  

 
 

    
 

,        (A51) 

and for the h-type operator are  

2 2
22 0, 0h h l h

h h

L L
a bq c r q

q q
 

       
 

and     (A52) 

2 2
2

2 2

0, 0.h l

L L
q  

 
 

    
 

        (A53) 

Based on the values of 1 and 2 , there are four cases below. 

Case 1: Suppose *
1 0   and *

2 0  . Then, (A50) and (A52) suggest 

2
sl l l
l

a c r
q

b

 
 and 

2
sl h l
h

a c r
q

b

 
 . To have sl

l lq   and sl
h lq  , we need to impose condition 

0
2

slh l
l l h

a c r
q

b
       . That is because l hc c  implies sl sl

l hq q , and hence sl
h lq   implies 

sl
l lq  . Substituting sl

lq and sl
hq  into (13) yields 0

2 2
sl slh l l l
h l

a c r a c r
p p

   
    , and into (14) 

yields  2sl sl
i i lb q f    for ,i l h . These prove Lemma 4(i). 

Case 2: Suppose *
1 0   and *

2 0  . Then, (A50), (A52) and (A53) suggest ( 2 ) 0l l la bq c r    ,

2( 2 ) 0h h la bq c r       and ( ) 0h lq   . Solving these equations yields 
2

sl l l
l

a c r
q

b

 
 , 

sl
h lq   and  *

2 2 l h lb a c r     . To guarantee *
2 0  , condition l l    is needed; and to have 

sl
l lq  , condition 

2
l l

l l

a c r

b
     is needed. Thus, the plausible range for l  is ( , ]l l l    . 

Substituting sl
lq and sl

hq  into (13) produces ( ) 0
2

sl sl l l
h l l

a c r
p a b p  

      if l l   , and into 

(14) gives  2sl sl
l l lb q f    and  sl

h l l h l la b c r f       . These prove Lemma 4(ii). 

Case 3: Suppose *
1 0   and *

2 0  .Then, (A50)-(A52) suggest ( ) 0,l lq  

1( 2 ) 0l l la bq c r       and ( 2 ) 0h h la bq c r    . Solving these equations yields sl
l lq  , 

2
sl l h
h

a r c
q

b

 
  and  *

1 2 l l lb a c r     . To guarantee *
1 0  , condition 

2
l l

l

a c r

b
  

  is 

needed. On the other hand, sl
h lq   holds if 

2
l h

l

a r c

b
  
 . However, these two cannot hold 

simultaneously because 
 

0
2 2 2

h ll h l l
c ca r c a c r

b b b

    
   . Thus, no solution exists in this case. 

Case 4: Suppose *
1 0   and *

2 0   . Thus, (A50)-(A53) suggest  sl sl
l h lq q   , 

 *
1 2 l l lb a c r      and  *

2 2 l h lb a c r     . To have *
1 0   and *

2 0  , conditions l l  
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and ( )lr a c   are needed. Substituting sl sl
l h lq q    into (13) produces ( ) 0sl sl

l h lp p a b     if 

l

a

b
  , and into (14) gives  sl

i l l i l la b c r f        for ,i l h . These prove Lemma 4(iii). 

 Under the new set-up, problem (11) becomes 

 
0

max
i

i i i h i h
q

a bq c r q f


           (11A) 

s.t. i hq   

for ,i l h . Its solutions are presented below.  

Lemma 5. Suppose the conditions in (6A) hold. Given contract  , ,h h hr f  , operator i’s optimal 

behaviors are as follows.  

(i)  For [0, ]h h    with ( )
2
h ha c r

h b    , both-type operators’ equilibrium cargo-handling amounts are 

 
2

l hsh
l h

a c r
q

b


 
   and 

 
2

h hsh
h h

a c r
q

b


 
  , their equilibrium service prices are 

( )
2 0i ha c rsh

ip    , and their equilibrium profits are 2( )sh sh
i i hb q f    for ,i l h .  

(ii) For  ,h h h     with ( )
2

l ha c r
h hb     , both-type operators’ equilibrium cargo-handling 

amounts are 
 

2
l hsh

l

a c r
q

b

 
  and sh

h hq  , their equilibrium service prices are ( )
2 0l ha c rsh

lp     

and 0sh
h hp a b   , and their equilibrium profits are  2sh sh

l l hb q f    and 

 sh
h h h h h ha b c r f       . 

(iii) For ,h h

a

b
   

 
, both-type operators’ equilibrium cargo-handling amounts are sh

l hq   and 

sh
h hq  , their equilibrium service prices are ( ) 0sh sh

l h hp p a b    , and their equilibrium profits 

are  sh
i h h i h ha b c r f        for ,i l h . 

Proof of Lemma 5: Since the proofs for Lemma 5 and Lemma 4 are similar, it is omitted.  

 Under the new set-up, problem (12) becomes   

   
    

, , , , ,
max 1

l l l h h h

sl sh
l l l h h h

r f r f
R r q f r q f

 
          (12A) 

s.t. 0 l

a

b
  , 0 h

a

b
  , 0lf  , 0hf  , 0sl

l  , 0sh
h  , sl sh

l l  and sh sl
h h  . 

It solutions are listed below.  

Proposition 2. Suppose the conditions in (6) hold. Then, we have the following. 
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(i) If  ,h l hc c c   with 
   

 
1 2

3 2
l

h

a c
c

 


  
 


, the port authority will offer the two-part tariff 

scheme and minimum throughput requirement  , ,
Ts s s

h h hr f  , or the unit-fee scheme and minimum 

throughput requirement  ,
Us s

h hr   to the h-type operator; and offer the two-part tariff scheme and 

minimum throughput requirement  , ,
Ts s s

l l lr f  , the unit-fee scheme and minimum throughput 

requirement  ,
Us s

l lr  , or the fixed-fee scheme and minimum throughput requirement  ,
Fs s

l lf   to 

the l-type operator. Here  

 

 
   

 
       

 
 

 

2

1 1 2
, ,

1 2 1

1 1 1 2 2 1
, , ,

4 1

1

2 1

l hs h l
h

s
T l h l h hs s s s

h h h h

l hs
h

a c cc c
r

a c c a c c r
r f f

b

a c c

b

  
 

     




 




     
     

                  
 

    
 
 

,

     
 

 
 

1 1 2 1
, ,

2 1 2 1

U l h l hs s s s
h h h h

a c c a c c
r r

b

    
 

 
              

, 

 

       
  

          
 

2 2 2

2 2 2

1 2 1 2 1 1 2
0, ,

2 1

1 2 1 2 1 1 2 2 1
, , , ,

4 1

2

h l h l hs
l

l

s
T h l h l h l ls s s s

l l l l

s l
l

a ac c c c c
r

a c

a ac c c c c a c r
r f f

b

a c

b

   


    






         
      

               
 

 
  

         
  

2 2 21 2 1 2 1 1 2
, , ,

2 1 2

U h l h l hs s s s l
l l l l

l

a ac c c c c a c
r r

a c b

   
 


                

 and

         
 

2 2 21 2 1 2 1 1 2
, , 0, .

4 1 2

F h l h l hs s s s l
l l l l

a ac c c c c a c
f f

b b

   
 


                   

 At  

equilibrium, the port authority’s fee revenue always equals 

   
 

2 2 21 2 1 2

4 1
h l h l hs a ac c c c c

R
b

   


     



. 

(ii) If  ,hh hc cc    with 
 2 1

2
l

h

a c
c

 


 
 


, then the optimal contract for the h-type operator is the 

unit-fee scheme 
   

 
2 2 1

4 3
l hs

h

a c c
r

  


   



 with minimum throughput guarantee 

   
 

2 1 2

4 3
l hs

h

a c c

b

  



   




. By contrast, the optimal contract for the l-type operator can be the 
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two-part tariff scheme and minimum throughput requirement  , ,
Ts s s

l l lr f  , the unit-fee scheme and 

minimum throughput requirement  ,
Us s

l lr  , or the fixed-fee scheme and minimum throughput 

requirement  ,
Fs s

l lf  . Here      2 1
, , 0, , ,

2 2

Ts s s s s s s l
l l l l l l l l

l

a cbB
r f r f B a c r

a c b b
 

               
,

   
2

, ,
2

Us s s s l
l l l l

l

a cbB
r r

a c b
 

       
,  , , 0,

2

Fs s s s l
l l l l

a c
f f B

b
          

, and

 
         

 2

6 5 8 7 2 1 2 2 1

4 4 3

l h l ha c c a c c
B

b

     



              


. At equilibrium, the port 

authority’s fee revenue always equals
   

 

2
2 2 1

4 4 3
l hs

a c c
R

b

  


     


. 

(iii) If  ,h h ac c , then the optimal contract for the h-type operator is the unit-fee scheme 

( )s
h h hr r a c    with minimum throughput guarantee 0s

h  . By contrast, the optimal contract for 

the l-type operator can be the two-part tariff scheme and minimum throughput requirement 

 , ,
Ts s s

l l lr f  , the unit-fee scheme and minimum throughput requirement  ,
Us s

l lr  , or the fixed-fee 

scheme and minimum throughput requirement  ,
Fs s

l lf  . Here 

    
 

    2 2 2
, , 0, , , ,

2 4 2

s
T h l h h l h l ls s s s s s l

l l l l l l
l

a c a c c a c a c c a c r a c
r f r f

a c b b
 

                    

    
 

2
, ,

2 2

U h l hs s s s l
l l l l

l

a c a c c a c
r r

a c b
 

          
, and

    2
, , 0,

4 2

F h l hs s s s l
l l l l

a c a c c a c
f f

b b
 

          
. At equilibrium, the port authority’s fee 

revenue always equals
  2

4
h l hs a c a c c

R
b

   
 . 

Proof of Proposition 2: We first explore whether the constraints of individual rationality and 
incentive compatibility bind at equilibrium. To simplify the analyses, we define sl sl

l l lf   , 
sh sh
l l hf   , sh sh

h h hf   , and sl sl
h h lf   . The sl

l  is 2( )sl
lb q  in Lemma 4(i)-(ii), or 

[ ]l l l la b c r     in Lemma 4(iii); the sh
l  is 2( )sh

lb q  in Lemma 5(i)-(ii), or [ ]h h l ha b c r     in 

Lemma 5(iii); the sl
h  is 2( )sl

hb q  in Lemma 4(i), or [ ]l l h la b c r     in Lemma 4(ii)-(iii); and  the 
sh
h  is 2( )sh

hb q  in Lemma 5(i), or [ ]h h h ha b c r     in Lemma 5(ii)-(iii). Then, we can rewrite the 

four constraints in problem (12A) as follows.  

                                        0sl sl
l l lf     ,                       ( )LIR   

                                       0sh sh
h h hf     ,                       ( )HIR  
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     sl sl sh sh
l l l l l hf f       ,    ( )LIC  

                                      sh sh sl sl
h h h h h lf f      .     ( )HIC  

Based on these, we acquire the following lemmas.  

Lemma A. If  ( )LIC  and ( )HIR  hold, then ( )LIR  holds as well.  

Proof.  Since l hc c , we have sl sl
l h   and sh sh

l h  . Accordingly, if ( )LIC  and ( )HIR  hold and 
sh sh
l h  , then we can get  0sl sh sh

l l h     . This implies ( )LIR .  

Lemma B. Constraint  ( )LIR  will not bind at equilibrium. 

Proof. If ( )LIR  binds at equilibrium, then 0sl
l  . We thus have 0sh sl

l l    by ( )LIC  and 

0sh sh sl
h l l      by sh sh

l h  .  These contradict ( )HIR . Therefore, constraint ( )LIR  does not bind 

at equilibrium.  

Lemma C. Constraint  ( )LIC  will bind at equilibrium. 

Proof.  Since 0
l

R

f





 and sl sh

l l l hf f    by ( )LIC , the optimal fixed-fee will be  

sl sh
l l l hf f   . This implies ( )LIC . 

Lemma D. Constraint  ( )HIR  will bind at equilibrium. 

Proof.  Since 0
h

R

f





 and sh

h hf    by ( )HIR , the optimal fixed-fee will be sh
h hf   . This implies 

( )HIR . 

Lemmas A-D suggest that in deriving the ensuing separating equilibria, we can ignore  ( )LIR  

and substitute sl sh
l l   and 0sh

h   into the port authority’s fee revenue function, which then 

becomes [ ] (1 )[ ]sl sl sh sh sh sh
l l l l h h h hR rq r q         with sl

l  a function of sl
lq ,  sh

l  a 

function of sh
lq , and  sh

h  a function of sh
hq .  After obtaining the optimal concession contracts and 

their minimum throughput requirements, we can verify that ( )HIC  holds at equilibrium. On the other 

hand, according to the ranges of l  in Lemma 4 and the ranges of h  in Lemma 5, we have nine 

cases.  Note that sl
lq in Lemmas 4(i) and 4(ii) are the same, but sl

hq  in Lemmas 4(i) and 4(ii) differ.  

Moreover, since sl
hq  will not appear in the port authority’s objective function in (A54), the optimal 

contracts derived under constraint [0, ]l l    will always be the same as those derived under 

constraint [ , ]l l l    . Thus, we only need to consider the six cases below.  
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Case 1: Suppose  0,l l    with 
2

l l
l

a c r

b
   , and [0, ]h h    with 

2
h h

h

a c r

b
    . Lemmas 4(i)-

(ii) and Lemma 5(i) imply that  2sl sl
l l lb q f    and  2sh sh

h h hb q f   . This in turn suggests 

 2
0sh

h hf b q   and      2 2 2sl sh sh
l l l hf b q q q     

 by ( LIC ) and ( HIR ). Thus, problem (12A) 

becomes 

 
 

         2 2 2 2

, , ,
, ,

max 1
l l l

h h h

sl sl sh sh sh sh
l l l l h h h h

r f
r f

R r q b q b q b q r q b q



                
 

s.t.  0 l l    , 0 h h    , 0 ( )l lr a c    and 0 h hr r  .     (A54) 

Its Lagrange function is 

         
       

2 2 2 2

1 2 3 4

1

,

sl sl sh sh sh sh
l l l l h h h h

l l h h l l h h

L r q b q b q b q r q b q

a c r r r

 

       

               
         

 

where i , 1, 2,3, 4i  , are the respective Lagrange multipliers associated with the four inequality 

constraints in (A54). The corresponding Kuhn-Tucker conditions are  

1 3

1 1
0, 0,

2 2l l
l l

L L
r r

r b b r
   

      
 

       (A55) 

1 0, 0,l
l l

L L 
 
 

    
 

         (A56) 

    2 4

1 1
1 0, 0,

2 2h l h h
h h

L L
c c r r

r b b r
    

           
    (A57) 

2 0, 0,h
h h

L L 
 
 

    
 

         (A58) 

1
1 1

0, 0,l l

L L  
 
     
 

         (A59) 

2
2 2

0, 0,h h

L L  
 
     
 

        (A60) 

3
3 3

0, 0l l

L L
a c r 

 
 

     
 

, and        (A61) 

4
4 4

0, 0.h h

L L
r r 

 
 

    
 

         (A62) 
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Since 1 3

1 1
0

2 2l
l

L
r

r b b
  

    


 by (A55), we have 0s
lr   and *

3 0   by (A61). If *
1 0  , then 

0s
l l    , which implies *

1 0   by (A56). This is a contradiction. Thus, we must have *
1 0  . 

Based on the values of 2 and 4 , there are four sub-cases. 

Case 1a: Suppose *
2 0   and *

4 0  . Then 
 
 

0
1

h ls
h

c c
r





 


 by (A57). It remains to check 

whether s
h hr r  holds. By some calculations, we have s

h hr r  iff  1 1h hs lc c a c     . Thus, we 

can obtain [0, ]s
h h    with 

 
 

1

2 2 1

s
l hh h

h

a c ca c r

b b

 



     


,  0,s

l l    with  

2 2

s
l l l

l

a c r a c

b b
      ,

 
 

2
1

0
2 1

l hs
h

a c c
f b

b

 


   
   

, and

     
 

 
 

2 22
1 1 2 1

0
4 2 1 2 1

l l h l hs
l

a c a c c a c c
f b b

b b b

    
 

          
          

 by (A58), (A59) and 

(A60). It remains to show sh sl
h h   at equilibrium. Note that 

2

2

s
s h h

h

a c r
f b

b

  
  

 
, 

2 2

2 2

s s
s sl l l h

l h

a c r a c r
f b b f

b b

      
     

   
, 

2

2

s
sh sh h
h h

a c r
b f

b


  
  

 
,

2

2

s
sl sh l
h l

a c r
b f

b


  
  

 
 if 

 0,s
l l   , sl s s s s

h l l h l la b c r f          if  ,s
l l l    , and 

2

2

s
s s s h l
l l h l

a c r
a b c r b

b
 

         
 

if s
l l   .  Thus, for  0,s

l l   , we have 

2 2 2 2

2 2 2 2

s s s s
sh sl l l l h h l h h
h h

a c r a c r a c r a c r
b

b b b b
 

                 
              
             

 

 
0

2 2 2

s s s
l l l

s s s
h h h

r r r h ll h

r r r

c ca r c a r c
b dr dr b dr

b b b

                due to s s
h lr r . In summary, for 

1h hsc c , the port authority’s equilibrium fee revenue equals 

     
 

2 2 2 2 2 2

1

1 2 1 2 1

4 1
h l h l hs

a ac c c c c
R

b

     



       



.    (A63) 

Case 1b: Suppose *
2 0   and *

4 0  . Then, (A57) and (A62) suggest ( )s
h h hr r a c   , and 

 *
4

1
0

2
l ha c c

b

 


   
   iff 1h hsc c . Moreover, (A59) and (A60) imply 0s

h   by 0h   , 

 0,s
l l    with 

2 2

s
l l l

l

a r c a c

b b
     , 0s

hf   and
  2

4
h l hs

l

a c a c c
f

b

  
 . As in Case 1a, we 

can prove that sh sl
h h   holds at equilibrium. Thus, for 1h hsc c , the port authority’s equilibrium fee 

revenue equals 
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12

2

4
h l hs a c a c c

R
b

   
 .      (A64) 

Case 1c: Suppose *
2 0   and *

4 0  . Then (A60) suggests 0s
h h    . If 0h   , then *

2 0   

by (A59). This is a contradiction. Thus, no solution exists in this case. If 0h   , then s
h hr r  and the 

solution is same as that in Case 1b. 

Case 1d: Suppose *
2 0   and *

4 0  . The solution is the same as that in Case 1b for 1h hsc c . 

Case 2: Suppose  0,l l    with 
2

l l
l

a c r

b
   , and  ,h h h     with 

2
l h

h

a c r

b
    . Then, 

Lemmas 4(i)-(ii) and Lemma 5(ii) imply that the l-type operator’s equilibrium profit is 
2

2
sl l l
l l

a c r
b f

b
     

 
, and the h-type operator’s equilibrium profit is 

 sh
h h h h h ha b r c f       . The binding  ( LIC ) and ( HIR )  suggest 

 
2 2

0
2 2

s l l l h
l h h h h

a c r a c r
f b a b r c

b b
                

   
 and  s

h h h h hf a b r c     . We 

have 0s
hf   iff 

( )h h
h h

a r c

b
   

   and h hr r . Moreover,  2
( ) 0

2
l h h

h h

a c c r

b
         iff 

  ( 2 )h h l hr r a c c     . Thus, there are several sub-cases. 

Case 2a: Suppose 2h h l hr r a c c    . Then, problem (12A) becomes 

   
    

, , , , ,
max 1

l l l h h h

sl sh
l l l h h h

r f r f
R r q f r q f

 
       

s.t. 0 l l    , h h h     , 0 ( )l lr a c    and 0 h hr r   .    (A65) 

Its Lagrange function is 

       
2 2

2 4 4
l l l l l l h

h h h h

r a c r a c r a c r
L a b r c

b b b
  
       

       
  

 

       1 21 h h h h h h l l h hr a b r c                        

     3 4 5h h l l h ha c r r r           , 

where 1 2 3 4, , ,     and 5  are the respective Lagrange multipliers associated the inequalities in 

(A65). The corresponding Kuhn-Tucker conditions are 

 1 4

1
0, 0,

2 2l l
l l

L L
r r

r b b r

   
      

 
      (A66) 
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   2 3 5

1 1
2 0, 0,

2 2 2l h h h
h h

L L
a c r b r

r b b b r

     
         

 
   (A67) 

 1 0, 0,l
l l

L L 
 
 

    
 

        (A68) 

 2 32 0, 0,h h h h
h h

L L
a c r b    

 
 

       
 

     (A69) 

 1
1 1

0, 0,l l

L L  
 
     
 

       (A70) 

 2
2 2

0, 0,h h

L L  
 
     
 

       (A71) 

 3
3 3

0, 0,h h

L L  
 
     
 

       (A72) 

 4
4 4

0, 0,l l

L L
a c r 

 
 

     
 

and                     (A73) 

5
5 5

0, 0.h h

L L
r r 

 
 

    
 

           (A74) 

Since 1 4

1 1
0

2 2l
l

L
r

r b b
  

    


 by (A66), we have 0s
lr   and *

4 0   by  (A73). If *
1 0  , then 

0s
l l     by (A68), which implies *

1 0  . This is a contradiction. Thus, we must have *
1 0  . 

Moreover, constraint h h    suggests *
2 0   by (A71).  

Based on the values of 3  and 5 , there are four sub-cases. 

Case 2a-1: Suppose *
3 0   and *

5 0  . Then, (A67) and (A69) become 

 1
2 0

2 l h ha c r b
b
      and ( 2 ) 0h h ha c r b     . Solving the two equations yields 0s

lr  , 

 1
s h l

h

c c
r







 and 
 

 
1

2 1
l hs

h

a c c

b

 



  




. We have 
     

 
1 2 3 2

( ) 0
1

l hs
h h

a c c
r r

  


    
  


  iff 

   
 

1 2

3 2
l

h h

a c
c c

 


  
 


, ( ) 0

2
s h l
h h

c c

b
     , and ( ) 0s

h h    through calculations. 

Moreover, we have  0,s
l l    with 

2 2

s
l l l

l

a r c a c

b b
      by (A70), 

       
 2

1 1 2 3 2

4 1

l h l hs
h

a c c a c c
f

b

    



              


, and
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2 2 21 2 1 2 1 1 2

4 1
h l h l hs

l

a ac c c c c
f

b

   


       



. It remains to show sh sl

h h   at 

equilibrium. Note that  s s s s
h h h h hf a b r c      , 

2 2

2 2

s s
s sl l l h

l h

a c r a c r
f b f

b b

       
      
     

, 

s
h h   , 

2

2

s
sl sh l
h l

a c r
b f

b


  
  

 
 if  0,s

l l   , sl s s s s
h l l h l la b c r f          if  ,s

l l l    , 

and 

2

2

s
s s s h l
l l h l

a c r
a b c r b

b
 

         
 

if s
l l   .  Thus, for  0,s

l l   , we have 

 
2 2 2

( )
2 2 2

s s s
sh sl sl l l h h l
h h h h h h

a c r a c r a c r
b b a b c r

b b b
   

                              
           

 

     2
0

4

s s
h l h l h lc c r r c c

b

        by 
 

( )
1 2

s s h l h l
h l

c c c c
r r


 

  


.  In summary, a solution exists 

under 
   

 
1 2

3 2
l

h

a c
c

 


  



 with the port authority’s equilibrium fee revenue  

   
 

2 2 2

21

1 2 1 2
.

4 1
h l h l hs a ac c c c c

R
b

   


     



    (A75)                           

Case 2a-2: Suppose *
3 0  and *

5 0  . Then, (A67), (A69) and (A74) become   

  52 0
2 l h ha c r b
b

       , ( 2 ) 0h h ha c r b      and ( ) 0h hr r  . Solving these equations 

yields 0s
lr  , ( 2 )s

h h l hr r a c c    ,    1
1 1 2

2
s
h l ha c c

b
           and

     *
5 1 2 3 2

2 l ha c c
b

            . We obtain ( 2 ) 0s
h h l hr r a c c      iff  

2 2
l

h hs

a c
c c


  ,   1

( ) 1 2 0
2

s
h h l ha c c

b
         iff 2 2

l
h hs

a c
c c


  , 

     1
( ) 1 2 3 2 0

2
s

h h l ha c c
b

                iff 
   

 
1 2

3 2
l

h h

a c
c c

 


  
 


, and *

5 0   

iff h hc c  with 2h hsc c   through calculations. Hence 

         1 2 1 1 2 3 2

4
l h l hs

h

a c c a c c
f

b

                      , 

   2 2
4

4
l h ls s

l h

a c c c
f f

b

  
   and

  0,s
l l    with 

2 2

s
l l l

l

a r c a c

b b
      by  (A70).  It remains 

to check whether sh sl
h h   holds at equilibrium. Because  s s s s

h h h h hf a b r c      ,
2 2

2 2

s s
s sl l l h

l h

a c r a c r
f b f

b b

       
      
     

, 

2

2

s
sl sh l
h l

a c r
b f

b


  
  

 
 if  0,s

l l   , 
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sl s s s s
h l l h l la b c r f          if  ,s

l l l    , and 

2

2

s
s s s h l
l l h l

a c r
a b c r b

b
 

         
 

if s
l l   ; 

for  0,s
l l   , we have 

 
2 2 2

( )
2 2 2

s s s
sh sl s s sl l l h h l
h h h h h h

a c r a c r a c r
b b a b r c

b b b
   

             
               
           

 

       2 2 22 1 3 2 4 4 2
0

4

l h l ha c c a c c

b

                  iff 

   
 
2 2

2

1 3 2

4 4 2

l

h

a c
c

  

 

   


 
 with 

   
 

   
 

2 2

2

1 3 2 1 2

3 24 4 2

l l
h

a c a c
c

    
 

      
 

 
. This 

suggests that sh sl
h h   when h hc c . In summary, a solution exists under 2h h hsc c c    with the port 

authority’s equilibrium fee revenue 

     
     

2 2 2

22 2 2 2

1 2 2 2 1 3 21

4 2 5 2 3 1 8 4

l hs

l h l h

a ac ac
R

b c c c c

     

     

       
 
        

.  (A76)                           

       Case 2a-3: Suppose *
3 0   and *

5 0  . Then, (A67), (A69) and (A72) become   

  3

1
2 0

2 2l h ha c r b
b b

       , 3( 2 ) 0h h ha c r b        and ( ) 0h h   . Solving these 

equations yields *
3 0  , which contradicts *

3 0  . Thus, no solution exists in this case.                                         

Case 2a-4: Suppose *
3 0   and *

5 0  . Then, (A67), (A69), (A72) and (A74) become  

  3 5

1
2 0

2 2l h ha c r b
b b

         , 3( 2 ) 0h h ha c r b       , ( ) 0h h    and ( ) 0h hr r  . 

Solving these equations yields *
3 0  . This is a contradiction. Thus, no solution exists in this case.                       

Case 2b: Suppose 2h h l hr r a c c    . Since   0s
h h h h hf a b r c       iff 

( )h h
h h

a c r

b
   

  . Under condition h hr r  , we have h h   . Thus, conditions h h h      and  

h h    can be combined into h h h      . Thus, problem (12A) becomes 

   
    

, , , , ,
max 1

l l l h h h

sl sh
l l l h h h

r f r f
R r q f r q f

 
       

s.t. 0 l l    , h h h      , 0 l lr a c    and h h hr r r  .    (A77) 

Its Lagrange function is 

       
2 2

2 4 4
l l l l l l h

h h h h

r a c r a c r a c r
L a b r c

b b b
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       1 21 h h h h h h l l h hr a b r c                        

       3 4 5 6h h l l h h h ha c r r r r r               , 

where 1 2 3 4, , ,    , 5  and 6  are the respective Lagrange multipliers associated with the inequalities 

in (A77). The corresponding Kuhn-Tucker conditions are 

 1 4

1
0, 0,

2 2l l
l l

L L
r r

r b b r

   
      

 
      (A78)

 

  2 3 5 6

1 1
2 0, 0,

2 2l h h h
h h

L L
a c r b r

r b b b r

      
          

 
   (A79) 

1 0, 0,l
l l

L L 
 
 

    
 

        (A80) 

2 32 0, 0,h h h h
h h

L L
a c r b    

 
 

       
 

     (A81) 

1
1 1

0, 0,l l

L L  
 
     
 

        (A82) 

2
2 2

0, 0,h h

L L  
 
     
 

       (A83) 

 3
3 3

0, 0,h h

L L  
 
 

    
 

         (A84) 

4
4 4

0, 0,l l

L L
a c r 

 
 

     
 

       (A85) 

 
5

5 5

0, 0,h h

L L
r r 

 
 

    
 

  and        (A86) 

6
6 6

0, 0.h h

L L
r r 

 
 

    
 

        (A87) 

Since 1 4

1 1
0

2 2l
l

L
r

r b b
  

    


 by  (A78), we have 0s
lr  . Hence *

4 0   by (A85). If *
1 0  , 

then 0s
l l     by (A82), which implies *

1 0   by (A80). This is a contradiction. Thus, we must 

have *
1 0  . If *

6 0  , then h hr r  by (A87). This suggests 
( ) ( )

0
2 2

h h h h
h h

a c r a c r

b b
           

at  ( )h h hr r a c   , which contradicts h h h      . Thus, we must have *
6 0  . Moreover, 

constraints h h    and h hr r  suggest * *
2 5 0    by (A83) and (A86).  
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Based on the values of 3 , there are two sub-cases. 

Case 2b-1: Suppose *
3 0  . Then, (A79) and (A81) become  2 0

2 l h ha c r b
b

      and 

( 2 ) 0h h ha c r b     . Solving the two equations yields 0s
lr  , 

 1
s h l

h

c c
r







 and 

 
 

1

2 1
l hs

h

a c c

b

 



  




. Since 
     

 
1 2 3 2

( ) 0
1

l hs
h h

a c c
r r

  


     
  


  iff 

   
 

1 2

3 2
l

h h

a c
c c

 


  
 


, 

     
 

1 2 3 2
( ) 0

2 1
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h h

a c c

b

  
 


    

  


  iff  h hc c , we cannot 

have s
h hr r   and s

h h   at the same time. Thus, no solution exists in this case. 

Case 2b-2: Suppose *
3 0  . Then, (A79), (A81) and (A84) become   

  3

1
2 0

2 l h ha c r b
b b

       , 3( 2 ) 0h h ha c r b        and ( ) 0h h   . Solving these 

equations yields 0s
lr  , 

   2 2 1

4 3
l hs

h

a c c
r

  


   



, 

   
 

2 1 2( )

4 3

s
l hs h h

h h

a c ca c r

b b

  
 


    

  


  and
 

     
 

*
3

1 2 3 2

4 3
l ha c c   




       


.  

Note that
     2 1 2 3 2

( ) 0
4 3

l hs
h h

a c c
r r

  


         


  iff h hc c ,  

   
 

2 1 2
( ) 0

2 4 3
l hs

h h

a c c

b

  
 


   

  


 iff 
 2 1

2
l

h h

a c
c c

 


 
 


, and

   
 

2 1 2
( ) 0

4 3
l hs

h h

a c c
r r

  


   
  


 iff h hc c . We have 

   
  

1 4 3
( ) 0

2 3 2
l

h h

a c
c c

 
 

  
   

 
 

through calculations. It remains to show sh sl
h h   at equilibrium. Because 0s

hf  ,
 2 2

2 2

s s
s sl l l h

l h

a c r a c r
f b f

b b

       
      
     

, 

2

2

s
sl sh l
h l

a c r
b f

b


  
  

 
 if  0,s

l l   , 

sl s s s s
h l l h l la b c r f          if  ,s

l l l    , and 

2

2

s
s s s h l
l l h l

a c r
a b c r b

b
 

         
 

 if 

s
l l   ; for  0,s

l l   , we have 
2 2 2

( )
2 2 2

s s s
sh sl l l l h h l
h h

a c r a c r a c r
b

b b b
 

           
         
       

 

 
     
     

2 2 2 2

2 2 2 2 2

4 1 2 8 8 2 12 16 51

4 4 3 16 1 8 7 20 32 13

l h

l h l h
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H

b c c c c

    

     

        
  
         

. On the other hand, 
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20 32 13
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2 4 3h

H

c b

 



  
 

 
, 

  
 

22

2

1
0

4 3 2

la c
H

b





 
 


 at h hc c , and

  
 

2

2

1
0

2
la c

H
b

 



 
 


 

at h hc c . Thus, we get ( ) 0sh sl
h h H     for h h hc c c   , and a solution exists under h h hc c c   . 
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The optimal fee contract and minimum throughput are 0s
lr  , 

         
 2

6 5 8 7 2 1 2 2 1

4 4 3

l h l hs
l

a c c a c c
f

b

     



              


,  0,s
l l    with 

2 2

s
l l l

l

a r c a c

b b
     , 

   2 2 1

4 3
l hs

h

a c c
r

  


   



, 0s

hf   and 

   
 

2 1 2

4 3
l hs

h h

a c c

b

  
 


   

 


 , and the port authority’s equilibrium fee revenue equals 

   
 

2

23

2 2 1
.

4 4 3
l hs

a c c
R

b

  


     


     (A88) 

Case 3: Suppose  0,l l    with 
2

l l
l

a r c

b
   , and ,h h

a

b
   

 
 with 

2
h l

h

a r c

b
    . Lemmas 

4(i)-(ii) and Lemma 5(iii) imply that the l-type operator’s equilibrium profit is 
2

2
sl l l
l l

a c r
b f

b
     

 
 and the h-type operator’s profit is  sh

h h h h h ha b r c f       .  Again, 

the binding  ( LIC ) and ( HIR )  suggests 

   
2

0
2

s l l
l h h h l h h h h

a c r
f b a b r c a b r c

b
                

 
 and  s

h h h h hf a b r c     . 

We have 0s
hf   iff 

( )h h
h h

a r c

b
   

   and h hr r . Moreover, 
2

( ) 0
2

l h h
h h

a c c r

b
        iff 

2h h l hr r a c c    . Thus, problem (12A) becomes  

   
    

, , , , ,
max 1

l l l h h h

sl sh
l l l h h h

r f r f
R r q f r q f

 
       

s.t. 0 l l    , h h h      , 0 l lr a c    and 0 h hr r   .    (A89) 

We rewrite the port authority’s objective function as  

       
2

2 4
l l l l l

h h h l h h h h

r a c r a c r
R a b r c a b r c

b b
    
     

           
  

 

   1 h h h h h hr a b r c             

         
2

1
2 4

l l l l l
h h l h h h

r a c r a c r
c c a b c

b b
    
     

         
  

; 

and its Lagrange function is 
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2

11
2 4

l l l l l
h h l h h h l l

r a c r a c r
L c c a b c

b b
       
                 
  

   

       2 3 4 5h h h h l l h ha c r r r                 , 

where 1 2 3 4, , ,     and 5  are the respective Lagrange multipliers associated with the inequalities in 

(A89). The corresponding Kuhn-Tucker conditions are 

 1 4

1
0, 0,

2 2l l
l l

L L
r r

r b b r

   
      

 
      (A90) 

 2 3 5

1 1
0, 0,

2 h
h h

L L
r

r b b r
   

     
 

      (A91) 

 1 0, 0,l
l l

L L 
 
 

    
 

        (A92) 

     2 31 2 1 0, 0,l h h h
h h

L L
a c c b      

 
 

         
 

   (A93) 

 1
1 1

0, 0,l l

L L  
 
     
 

       (A94) 

 2
2 2

0, 0,h h

L L  
 
     
 

       (A95) 

 3
3 3

0, 0,h h

L L  
 
 

    
 

        (A96) 

 4
4 4

0, 0,l l

L L
a c r 

 
 

     
 

and        (A97) 

5
5 5

0, 0.h h

L L
r r 

 
 

    
 

          (A98) 

Since 1 4

1 1
0

2 2l
l

L
r

r b b
  

    


 by (A90), we have 0s
lr   and *

4 0   by (A97). If *
1 0  , then 

0s
l l     by (A94), which implies *

1 0   by (A92). This is a contradiction. Thus, we must have 
*
1 0  . Moreover, constraints h h    and h hr r   suggest * *

2 5 0   by (A95) and (A98). If *
3 0  , 

then 0s
hr   by (A91) and 

( ) ( )s
s h h h
h h

a r c a c

b b
    

    by (A96). Hence (A93) suggests

          *
3 1 1 2 1 1 2 1 0l h h h ha c c a c c a c                        . This is a 

contradiction. Thus, we must have *
3 0  . Therefore, 

 
 

1

2 1
l hs

h

a c c

b

 



  




 by (A93). Note that 
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1
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  if 
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l h
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, and 

( 2 )s
h l hr a c c   . By some calculations, we have
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l h l hh l
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h

a c
c
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2
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l

h
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. 

It remains to check whether sh sl
h h   at equilibrium. Because  s s s s

h h h h hf a b r c      , 
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l h h h l h
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, 

2

2

s
sl sh l
h l
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b


  
  

 
 if  0,s
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sl s s s s
h l l h l la b c r f          if  ,s

l l l    , and 
2

2

s
s s s h l
l l h l

a c r
a b c r b

b
 

         
 

if s
l l   ; 

for  0,s
l l   , we have 

   
2 2
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s s
sh sl s s s s s sl l h l
h h h h h l h h h h

a c r a c r
b a b r c a b r c

b b
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. The optimal fee contract and minimum 

throughout exist for 
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l
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,
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h

a c cc c
r

  
 

    
    

, 

 0,s
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2 2

s
l l l

l

a r c a c

b b
     , 
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1 1 1 2 2 1

4 1

s
l h l h hs

h

a c c a c c r
f

b

     



              


, 

       
 

2 2 21 2 1 2 1 1 2

4 1
h l h l hs

l

a ac c c c c
f

b

   


       



, and the port authority’s equilibrium fee 

revenue equals 

   
 

2 2 2

21

1 2 1 2
.

4 1
h l h l hs a ac c c c c

R
b

   


     



    (A99) 

Case 4: Suppose ,l l

a

b
   

 
 with 

2
l l

l

a r c

b
   , and [0, ]h h    with 

2
h h

h

a r c

b
    . Lemma 

4(iii) and Lemma 5(i) then imply that  sl
l l l l l la b r c f       ,  2sh sh

h h hb q f   ,  2sh
h hf b q , 
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and    2sh
l l l l l l hf a b r c b q f        by the binding ( LIC ) and ( HIR ). Problem (12A) thus 

becomes 

 
 

         2 2 2

, , ,
, ,

max 1
l l l

h h h

sh sh sh sh
l l l l l l l h h h h

r f
r f

R r a b r c b q b q r q b q



                      
 

s.t.  l l

a

b
   , 0 h h    , 0 l lr a c    and 0 h hr r  .      (A100) 

Its Lagrange function is 

         

     

2 2 2

1 2 3 4

1

,

sh sh sh sh
l l l l h h h h

l l h h l h h

L a b c b q b q r q b q

a
r r

b

   

        

                
          
 

 

where 1 2 3, ,   and 4  are the respective Lagrange multipliers associated with the inequalities in 

(A100). The corresponding Kuhn-Tucker conditions are  

  1 32 0, 0,l l l
l l

L L
a b c    

 
 

        
 

     (A101) 

    2 4

1 1
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2 2h l h h
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L L
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r b b r
    

           
                       

2 0, 0,h
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1
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        (A102) 

2
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3
3 3

0, 0l

L a L

b
 

 
 

    
 

, and        (A103) 

4
4 4

0, 0.h h

L L
r r 

 
 

    
 

                                                                    

Constraint l l a    suggests * *
1 3 0    by (A102) and (A103), and hence 

2
s l

l

a c

b
 

  by 

(A101). Problem (12A) then becomes  

 
 

         
2

2 2 2

, ,
max 1

4h h h

l sh sh sh sh
l h h h h

r f
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R b q b q r q b q

b
 
              

, 
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in which the port authority’s objective function is not affected by  lr . Note that the port authority’s 

maximization problem in (A54) given 0lr   is  

            
 

         
2

2 2 2

, ,
max 1

4h h h

l sh sh sh sh
l h h h h

r f

a c
R b q b q r q b q

b
 
              

, 

because 
( )

2
sl l
l

a c
q

b


  at 0lr   by Lemmas 4(i)-(ii). This implies that the optimal concession 

contract  , ,s s s
h h hr f   here is the same as that in Case 1. By contrast, the optimal contract  , ,s s s

l l lr f   

for the l-type operator in Case 1 is 0s
lr  , and s

lf  and s
l  satisfy the constraints of Case 1, while the 

optimal contract  , ,s s s
l l lr f   for the l-type operator here is 

2
s l

l

a c

b
 

 ,  and s
lr and s

lf  satisfy the 

constraints of this case. Nevertheless, these differences do not affect the port authority’s equilibrium 

profits. They are the same in Case 1 and here. The optimal contract  , ,s s s
h h hr f   for the h-type 

operator here is the same as that in Case 1, but the optimal contract  , ,s s s
l l lr f   for the l-type 

operator is different. Accordingly, we also have two sub-cases. 

Case 4a:  As in Case 1a, under 1h hsc c  with  1 1hs lc a c    , the optimal concession 

contract  , ,s s s
h h hr f   is 

 
 

0
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. The optimal concession contract  , ,s s s
l l lr f   is 
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b
 

 , 
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l
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 It remains to 

show sh sl
h h   at equilibrium. Since 

2
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,

2

2

s
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b


  
  

 
 , and

sl s s s s
h l l h l la b c r f         , we have 
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2 2

s s
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h h l l l l l l h l

a c r a c r
a b r c b a b c r b
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   2
0

4

s
h l h h lc c r c c

b

      . Thus, the port authority’s equilibrium fee revenue is 1
sR  as in (A63). 
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Case 4b:  As in Case 1b, under 1h hsc c  with  1 1hs lc a c    , the optimal concession 

contract  , ,s s s
h h hr f   is  ( )s

h h hr r a c   , 0s
h   and 0s

hf  . The optimal concession contract 

 , ,s s s
l l lr f   is 

2
s l

l

a c

b
 

 , 
  

 
2

0,
2
h l hs

l
l

a c a c c
r

a c

   
   

, and 

    2 2

4

s
h l h l ls

l

a c a c c a c r
f

b

    
 . In addition, sh sl

h h   holds at equilibrium as in Case 4a.  

Thus, the port authority’s equilibrium fee revenue equals 12
sR  as in (A64). 

Case 5: Suppose ,l l

a

b
   

 
 with 

2
l l

l

a r c

b
   , and  ,h h h     with 

2
h l

h

a r c

b
    . Lemma 

4(iii) and Lemma 5(ii) then imply  sl
l l l l l la b r c f        and  sh

h h h h h ha b r c f        

with     
2

2
s l h

l l l l l h h h h

a c r
f a b r c b a b r c

b
              

 
 and  s

h h h h hf a b r c     . 

Problem (12A) thus becomes 
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2

1
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l l l h h h h h h h

a c r
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b
       
  

            
  

  

s.t.  l l

a

b
   , h h h     , 0 l lr a c    and 0 h hr r  .    (A104) 

Similar to Case 4, we discover that 
2

s l
l

a c

b
 

 , and s
lr and s

lf meet the constraints in (A104). Thus, 

the optimal concession contract  , ,s s s
h h hr f   in Case 5 is same as that in Case 2, and there are three 

similar sub-cases.  

Case 5a:  As in Case 2a-1, when 
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c

 


  



, the optimal contract for the h-type 

operator is  , ,s s s
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 and 

       
 2

1 1 2 3 2

4 1

l h l hs
h

a c c a c c
f

b

    



              


. The optimal contract for the l-type 

operator is  , ,s s s
l l lr f   with 
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, 
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 . It remains 

to show sh sl
h h   at equilibrium. Since  s s s s
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2

0
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.  Thus, the port authority’s equilibrium fee revenue equals 21
sR  as in (A75). 

Case 5b: As in Case 2a-2, when 2h h hsc c c    with 2 2
l
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a c
c


  and

   
 

1 2

3 2
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, 

the optimal contract for the h-type operator is  , ,s s s
h h hr f   with ( 2 )s

h h l hr r a c c    ,  
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4
l h l hs
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f
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                       and 
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1 1 2

2
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b
          . The optimal contract for the l-type operator is  , ,s s s
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       2 2 22 1 3 2 4 4 2
0

4

l h l ha c c a c c

b

                  if h hc c .  Thus, the port 

authority’s equilibrium fee revenue equals 22
sR  as in (A76). 

Case 5c:  As in Case 2b-2, when h h hc c c    with 
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 and
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, the optimal contract for the h-type operator is  , ,s s s
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hf   and 
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 . The optimal 

contract for the l-type operator is  , ,s s s
l l lr f   with
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It remains to check whether sh sl
h h  . Since   0s s s s

h h h h hf a b r c       , 
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f a b r c b

b
 

  
       

 
,  sh s s s s
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 for h h hc c c   . Thus, 

the port authority’s equilibrium fee revenue equals 23
sR  as in (A88). 

Case 6: Suppose ,l l

a

b
   

 
 with 

2
l l

l

a r c

b
   , and ,h h

a

b
   

 
 with 

2
h l

h

a r c

b
    . 

Lemma 4(iii) and Lemma 5(iii) then imply  sl
l l l l l la b r c f        and 

 sh
h h h h h ha b r c f        with 

      0s
l l l l l h h h l h h h hf a b r c a b r c a b r c                    and

 s
h h h h hf a b r c     .  Constraint h h

a

b
    will guarantee 0s

hf  . Thus, constraints 

h h

a

b
     and  h h    can be combined into h h h      . Problem (12A) thus becomes  
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, , ,
, ,

max
l l l

h h h

l l l l l l h h h l h h h h
r f
r f

R r a b r c a b r c a b r c



                        

   1 h h h h h hr a b r c             

       1l l l h h l h h ha b c c c a b c                   

s.t. l l

a

b
   , h h h      , 0 l lr a c    and 0 h hr r   .    (A105) 

Similar to Case 3, we discover 
2

s l
l

a c

b
 

 , and s
lr  and s

lf  satisfy the constraints in (A105). The 

optimal contract  , ,s s s
h h hr f   is the same as that in Case 3. It remains to show sh sl

h h   at 

equilibrium. Since  s s s s
h h h h hf a b r c      ,  sh s s s s

h h h h h ha b r c f        ,

     s s s s s s s s s s
l l l l l h h h l h h h hf a b r c a b r c a b r c                     and

sl s s s s
h l l h l la b c r f         , we have 

       ( )sh sl s s s s s s s s s s s s
h h l l l l h h h l h h h h l l h la b r c a b r c a b r c a b c r                            

     
 

2

0
2 1

h ls s
h l l h

c c
c c  




    


. Thus, the port authority’s equilibrium fee revenue equals 21
sR  

as in (A99). 

Therefore, there exist five solutions. By comparing them, we can find the port authority’s 

optimal contracts. Since 
  

   2

2 3
( ) 0

2 2
l

h hs

a c
c c




 
    


 iff   2

3
   , 

  
 1

1
( 0

2
)h

l
sh

a
c

c
c

 


 
  


 ,

    2 1

2
)

1
( 0

2
l

sh hs

a c
c c

  
    iff   1

2
   , 

   
 1

2
2 1

)
3 2

( 0h
l

s h

c
cc

a


 
  


 and 

 
 2 ) 0

2 3 2
( s hh

la
c

c
c




  


, we have three sub-cases according 

to the values of   as follows. 

Case A: Suppose 
1

2
  . If 

1

2
  , then 2 1h hs hs hc c c c    .  However, if 

1

2
  , then 

2 1h hs hs hc c c c    . In either case, we have four sub-cases.  

Case A-1: For h hc c , there are two solutions:
      

 

2 2 2 2 2 2

11

1 2 1 2 1

4 1
h l h l hs

a ac c c c c
R

b

     



       



 as 1hh sc c , and

   
 

2 2 2

21

1 2 1 2

4 1
s h l h l ha ac c c c c

R
b

   


     



 as h hc c . Since 

 2

21 11( ) 0
4

h ls s c c
R R

 
   , 

revenue 21
sR  is optimal. 
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Case A-2: For 1h h hsc c c   , there are three solutions:
      

 

2 2 2 2 2 2

11

1 2 1 2 1

4 1
h l h l hs

a ac c c c c
R

b

     



       



 as 1hh sc c ,

     
     

2 2 2

22 2 2 2

1 2 2 2 1 3 21

4 2 5 2 3 1 8 4

l hs

l h l h

a ac ac
R

b c c c c

     

     

       
 
        

 as 2h h hsc c c   , and

   
 

2

23

2 2 1

4 4 3
l hs

a c c
R

b

  


     


 as h h hc c c   . Since 

       
  

2 2 2
23 11

3 5 2 2 5 5

2 1 4 3

s s
l h

h

a c cR R

c b

     

 

          
  

,
 

   
  

2 2
23 11

2

5 5
0

2 1 4 3

s s

h

R R

c b

  

 

    
 

  
, 

    
 

23 11 1
0

2 3 2

s s

l

h

R R a c

c b

 


   
 

 
, 

   
 

2 2

23 11 2

1
( ) 0

4 3 2
ls s a c

R R
b

 



 
  


 at h hc c , 

     
 

23 11 1 2
0

2 4 3

s s

l

h

R R a c

c b

  


     
 

 
 and 

   
 

2 22

23 11

1
( ) 0

4 4 3
ls s a c

R R
b

 


 
  


 at 1h hsc c ,  we have 23 11

s sR R  for 1h h hsc c c   . Moreover, by 

     
 

2

23 22

3 1 2 3 2
( ) 0

4 4 3
l hs s

a c c
R R

b

   


        


, we obtain 23 11
s sR R  and 23 22

s sR R  for 

1h h hsc c c   . 

Case A-3: For 1hs h hc c c  , there are two solutions:
 

  
12

2

4
h l hs a c a c c

R
b

   
  as 1hh sc c , 

and 
   

 

2

23

2 2 1

4 4 3
l hs

a c c
R

b

  


     


 as h h hc c c   .  Since

   
 

2

23 12

2 1 2
( ) 0

4 4 3
l hs s

a c c
R R

b

  


       


, we have 23 12
s sR R  for 1hs h hc c c  . 

Case A-4: For h hc c , there is a unique solution:
 

  
12

2

4
h l hs a c a c c

R
b

   
  as 1hh sc c . 

Thus, revenue 12
sR  is optimal for h hc c . 

Case A-1 to Case A-4 imply that 21
sR is the largest when hhc c , that 23

sR  is the largest when 

h h hc c c   , and that 12
sR  is the largest when h hc c  for 

1

2
  . 

Case B: Suppose 
1 2

2 3
  . If 

1 2

2 3
  , then 1 2h hs hs hc c c c    . However, if 

2

3
  , then 

1 2h hs hs hc c c c    . In either case, we have three sub-cases.  
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Case B-1: For hhc c  , there are two solutions: 11
sR  and 21

sR . As in Case A-1, revenue 21
sR is 

larger. 

Case B-2: For h h hc c c   , there are four solutions:
 

11
sR  for 1hh sc c , 12

sR  for 1hh sc c , 22
sR  for 

2h h hsc c c   , and 23
sR  for h h hc c c   .  As in Case A-2, we have 23 11

s sR R  for 1h h hsc c c   , and 

23 22
s sR R  for 2h h hsc c c   . As in Case A-3, we have 23 12

s sR R  for 1hs h hc c c  . Thus, revenue 23
sR  

is optimal for h h hc c c   . 

Case B-3: For h hc c , there is a unique solution: 12
sR  for 1hh sc c . Thus, revenue 12

sR  is optimal 

for h hc c . 

Case C: Suppose
2

1
3

  . Then 1 2h hs h hsc c c c    .  There are four sub-cases as follow. 

Case C-1: For hhc c  , there are two solutions: 11
sR  and 21

sR . As in Case A-1, revenue 21
sR  is 

larger. 

Case C-2: For h h hc c c   , there are four solutions:
 

11
sR   for 1hh sc c , 12

sR  for 1hh sc c , 22
sR  for 

2h h hsc c c   , and 23
sR  for h h hc c c   . As in Case A-2, we have 23 11

s sR R  when 1h h hsc c c   , and 

23 22
s sR R  when h h hc c c   . As in Case A-3, we have 23 12

s sR R  when 1hs h hc c c  . Thus, revenue 

23
sR  is optimal when h h hc c c   . 

Case C-3: For 2h h hsc c c   , there are two solutions: 12
sR  and 22

sR . Since

       12 22 2 21
1 3 2 2 2 1 7 4

2

s s

l h
h

R R
a c c

c b
     

 
          

         
 

2 2 3 1 3 21
1 3 2 2 2 1 7 4 0

2 2 2
l

l h

a c
a c c

b b

  
     


               

 due to 

 21 7 4 0      when 2
1

3
  , we have  

 12 22
0

s s

h

R R

c

 



 for 2h h hsc c c    and 

2
1

3
  . 

Moreover, we have 
    

 

2 2

12 22 2

3 4 3 1
( ) 0

4 2
ls s a c

R R
b

  



  
  


 at h hc c , and hence 12 22

s sR R  

when 2h h hsc c c    and 
2

1
3

  .  

Case C-4: For 2h hsc c , the unique solution is 12
sR .  

Based on Case C-1 to Case C-4, we find that 21
sR  is the largest when hhc c  , that 23

sR  is the 

largest when h h hc c c   , and that 12
sR  is the largest when h hc c  and 

2
1

3
  . 
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In summary, the results of Cases A-C suggest that 21
sR  is the largest when hhc c  , that 23

sR  is 

the largest when h h hc c c   , and that 12
sR  is the largest when h hc c  for all values of  . Note that 

21
sR  occurs in Case 2a-1, Case 3, Case 5a, and Case 6; that 23

sR  appears in Case 2b-2 and Case 5c; 

and that 12
sR  exists in Case 1b and Case 4b. Thus, for  ,h l hc c c   with 

   
 

1 2

3 2
l

h

a c
c

 


  
 


, the 

port authority’s best choice  , ,s s s
l l lr f   for the l-type operator is the fixed-fee scheme with 

       
 

2 2 21 2 1 2 1 1 2

4 1
h l h l hs

l

a ac c c c c
f

b

   


       



 and 0,

2
s l
l

a c

b
    

 as in Case 2a-1 and 

Case 3; or the two-part tariff scheme with   

       
  

2 2 21 2 1 2 1 1 2
0,

2 1
h l h l hs

l
l

a ac c c c c
r

a c

   


        
    

 ,

          
 

2 2 21 2 1 2 1 1 2 2 1

4 1

s
h l h l h l ls

l

a ac c c c c a c r
f

b

    


          



 and 

2
s l
l

a c

b
 

  as 

in Case 5a and Case 6. In particular, at 
       

  

2 2 21 2 1 2 1 1 2

2 1
h l h l hs

l
l

a ac c c c c
r

a c

   


       


 
, 

we will have 0s
lf   and 

2
s l
l

a c

b
 

 , which is an optimal unit-fee contract. On the other hand, the 

optimal two-part tariff contract and minimum throughput guarantee  , ,s s s
h h hr f   for the h-type 

operator are 
 1

s h l
h

c c
r







,

 

       
 2

1 1 2 3 2

4 1

l h l hs
h

a c c a c c
f

b

    



              


 and 

 
 

1

2 1
l hs

h

a c c

b

 



  




 as in Case 2a-1 and Case 5a; or 
 

   
 

1 1 2
,

1 2 1
l hs h l

h

a c cc c
r

  
 

    
    

,

       
 2

1 1 1 2 2 1

4 1

s
l h l h hs

h

a c c a c c r
f

b

     



              


 and 
 

 
1

2 1
l hs

h

a c c

b

 



  




 as 

in Case 3 and Case 6. In particular, at 
   

 
1 1 2

2 1
l hs

h

a c c
r

  


   



, we will have 0s

hf   and 

(1 )

2 (1 )
s l h
h

a c c

b

 


  



, which is an optimal unit-fee contract. No matter which contracts are offered 

to the operators, the port authority’s equilibrium fee revenue is always

   
 

2 2 21 2 1 2

4 1
h l h l hs a ac c c c c

R
b

   


     



.  This is what Proposition 2(i) shows.  

When  ,hh hc cc    with 
 2 1

2
l

h

a c
c

 


 
 


, the port authority’s optimal contract is the fixed-

fee scheme for the l-type operator with

         
 2

6 5 8 7 2 1 2 2 1

4 4 3

l h l hs
l

a c c a c c
f

b

     



              


 and 0,
2

s l
l

a c

b
    

 as in 
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Case 2b-2; or the two-part tariff scheme with 

         
   2

6 5 8 7 2 1 2 2 1
0,

2 4 3

l h l hs
l

l

a c c a c c
r

a c

     



                    
,
 

             
 

2

2

6 5 8 7 2 1 2 2 1 2 4 3

4 4 3

s
l h l h l ls

l

a c c a c c a c r
f

b

      



                 


 and 

2
s l
l

a c

b
 

  as in Case 5c. In particular, at 

         
   2

6 5 8 7 2 1 2 2 1

2 4 3

l h l hs
l

l

a c c a c c
r

a c

     



              
 

, we will have 0s
lf   and 

2
s l
l

a c

b
 

 , which is a unit-fee scheme. On the other hand, the optimal unit-fee contract and 

minimum throughput requirement for the h-type operator are 
   

 
2 2 1

4 3
l hs

h

a c c
r

  


   



 and 

   
 

2 1 2

4 3
l hs

h

a c c

b

  



   




  as in Case 2b-2 and Case 5c. No matter which contracts are offered 

to the operators, the port authority’s equilibrium fee revenue is always

   
 

2
2 2 1

4 4 3
l hs

a c c
R

b

  


     


. This is the content of Proposition 2(ii).  

Finally, when  ,h h ac c , the best offer to the l-type operator is the fixed-fee contract  with 

  2

4
h l hs

l

a c a c c
f

b

  
  and 0,

2
s l
l

a c

b
    

 as in Case 1b, or the two-part tariff contract with  

  
 

2
0,

2
h l hs

l
l

a c a c c
r

a c

   
   

 , 
    2 2

4

s
h l h l ls

l

a c a c c a c r
f

b

    
  and 

2
s l
l

a c

b
 

  as in Case 

4b. In particular, at 
  

 
2

2
h l hs

l
l

a c a c c
r

a c

  



, we will have 0s

lf   and 
2

s l
l

a c

b
 

 , which is an 

optimal unit-fee contract. On the other hand, the optimal unit-fee contract and minimum throughput 
requirement for the h-type operator are ( )s

h h hr r a c    and 0s
h   as in Case 1b and Case 4b. No 

matter which contracts are offered to the operators, the port authority’s equilibrium fee revenue 

always equals 
  2

4
h l hs a c a c c

R
b

   
 . This is what Proposition 2(iii) states.    

To sum up, we discover that the change from equation (1) to equation (13) only alter some 
constant terms of the optimal concession contracts derived in Section 4. This implies that the port 
authority’s optimal concession contracts stay the same qualitatively when the demand function 
becomes more general as in (13). Thus, it is obvious that the results derived in Section 5 remain true 
qualitatively as well under the general demand function (13).  This proves Proposition 7.  

 


