Proof of Proposition 7: Under (3), (4), (13) and (14), we re-derive all the Lemmas and Propositions
in Section 4. First, the changed problems are stated. Then, the associated Lemmas and Propositions
are provided.

Under the new set-up, problem (5) becomes

max 7, =(a—bg,—c —r)qg,— f (5A)
st.g =20
for i =1, h. To have optimal non-negative cargo-handling amounts for terminal operators, we need
r<r=(a-c) fori=Ih. (6A)

The solutions of problem (5A) are listed below.

Lemma 1. Suppose the conditions in (6A) hold. Given concession contract (r, f, 5) , operator i’s
optimal behaviors are as follows.

(i) If 6 €[0, 5] with &, =5 then we have qf =3 = & with equilibrium service prices

c (a+c +r)

P = >0 and equmbrlum profits z° =b(q°)* - f for i=1h.

(i) If 5€(5, %) , then we have g =& with equilibrium service prices p; =(a—bd) >0 and
equilibrium profits 77 =(a—bo—c,—r)o—f fori=1,h.
Proof of Lemma 1: Denote L the terminal operator’s Lagrange function in problem (5A),

=(a-bg,—c,-r)g - f +1(q,-9),

where A is the Lagrange multiplier associated with the constraint in problem (5A). Then, the
corresponding Kuhn-Tucker conditions are

S_L:a—qui—ci—H/isO, qi-S—L:O,and (A1)
A _g-s201%-0. (A2)
o4 oA

Based on the values of A1, there are two cases below.

:(a—ci—r)

Case 1: Suppose A" =0. We have ¢f o

. To guarantee g’ >, condition

0<5<3 = % _ ¢ should be met. Substituting ¢¢ into (13) yields pt = >+ 5 ")

into (14) yields 7z = b(qf)2 —f for i=1,h. These prove Lemma 1(i).

>0, and



Case 2: Suppose 4" >0 .We have g° =6 and A" =2b| & —W} = 2b(§—5_i) by (A1) and

(A2). To guarantee A~ >0, conditions & > 3, and r. <T. are needed. Substituting g’ into (13) yields
p’ =(a-bsd)>0 if 5<%, and into (14) gives 7/ =6(a—bs—c,—r)— f for i=1,h. These prove
Lemma 1(ii). o

Under the new set-up, problem (7) becomes

g + f. (7TA)

for i =1, h. Its solutions are as follows.

Lemma 2. Suppose the conditions in (6A) hold. The optimal concession contract (r.°, f,°, 5°) offered

(a-c )2

to the operator with marginal service cost c,, i =1,h, can be the fixed-fee contract f,° = m

with minimum throughput requirement &' € [O,az;bci} , the unit-fee contract r° :% with

o . a—c, : - i
minimum throughput requirement &° = L, or the two-part tariff contract with r° e (O, a ZCI )

(a_ci)(a_ci _Zﬁc)

f° = ™ , and minimum throughput requirement o :%. However, the port
: _ (a-c) .
authority’s equilibrium fee revenue always equals R® = 4—bl Ji=lh.

Proof of Lemma 2:

Case 1: Suppose ¢, € [O, 5] . Lemma 1(i) implies f.° = b(qic )2 >0, because the port authority will

(o

. . or . . .
set f as large as possible. However, since 81" <0, the optimal value of f will satisfy z; =0.

Accordingly, problem (7A) becomes

max g +b(qf)

n. 56
st.0<5 <5 and 0<r <T . (A3)
Its Lagrange function is

L=} +b(af) +4(8-0)+ A (7).

2



where 4 and 4, are the respective Lagrange multipliers associated with the two inequality
constraints in (A3). Then, the corresponding Kuhn-Tucker conditions are

oL b 1 oL

e 2= -2,<0,r-Z =0, A4
oL oL

—=-2<0,6-—=0, AS
55 A 26 (A5)
A5 550420 and (A6)
o4 04

izri_riz(),g?.i:o, (A7)
0, 04,

Based on the values of 4, and A, , there are four cases below.
Case 1a: Suppose 4 =0 and 4, =0.We have r° =0 by (A4). In addition, (A6) implies both
2
o' € [05] with &, = az;bci and f.° :% >0 by Lemma 1(i). Thus, the port authority’s

equilibrium fee revenue equals

RC = (a;;i) . (A8)

Case 1b: Suppose 4 =0and 4, >0. Then (A7) implies r° =T =(a—c;) for i =1, h. This

suggests A, = — b(a2— ) <0 by (A4), which contradicts A, >0. Thus, no equilibrium exists.

Case 1c: Suppose A4 >0 and A, =0. Then (A6) suggests &° =4, >0 and 4 =0 by (A5),
which lead to a contradiction. Thus, there is no solution in this case.

Case 1d: Suppose 4, >0 and A4, >0. As in Case 1c, we have 4 =0. Again, no solution exists.
Case 2: Suppose e(é_‘,%j As in Case 1, we have 77 =0 and f° =6 (a—bs,—r,—c;) by

. . a-r—c _
Lemma 1(ii). Hence f.° >0 iff o, Sf and r, <T, =a-c;. Problem (7A) thus becomes

<— 1 3 0<r<F and f,>0. (A9)

Its Lagrange function is



L=1,-6,+,(a=b8 1 —¢)+ 4 () -am[a—g—ﬁ —cz}ﬂg(ﬁ—n).

where A, 4, and A, are the respective Lagrange multipliers associated with the inequality constraints
in (A9). Then, the corresponding Kuhn-Tucker conditions are

s—;z(a—zba}—ci)ml—/gso,a}-g—;‘i:o, (A10)
gzzgi_a‘izo,z,g_z: | (A1)
;Lz:(a—g %) _s zo,@-s—z:o, and (A12)
%:f—qzo,ﬂa-%zo. (A13)

Constraint 5_, <&, suggests 4 =0 by (A11). According to the sign of 4,, there are two sub-cases.
« a—c ¢ a-c
Case 2a: If 4, =0, then we have & :Z—b' by (Al0) and r; € {OT'} by (Al12), and

a-c¢)(a-¢-2r° —c —c

hence f¢ =357 (a—bs! -1 —c,):( (a2 ) Moreover, 5° =2—% and r* | 0,2=%
4b 2b 2

satisfy (A10)-(A13). Thus, the port authority’s fee revenue equals

R® = (a;;i) . (A14)

. a-r—c )
Case 2b: If 4, >0, then we have &' =(—t')') by (A12) and 4, =2r° —(a—c;) by (A10).
In addition, we have (5i°—ci)=%b_ci>o iff r° <(a—c,), and A >0 iff r* > 2
a-r—c -c
so_lazrn-c) ’ (a c

i e|—=,a-c
b 2

. Hence

j. The port authority’s equilibrium fee revenue equals

- . (A15)

S oa-2r'—c —C, -(a-r—¢
Since R _azan ¢ <0 for rf E(a G ,a—cij, we have R’ = ( )
or’ b 2 b

<




2 2
a—_C. a—_C
Thus, we have three solutions: R’ :( 4bl) in (A8) of Case 1a, R’ :( 4bl) in (A14) of

woa-n-a) wo(a-r-c) (a-c)
Case 2a,and R° = . in (A15) of Case 2b. Because . < 4b| , the port

2
—c a—c
authority should choose: r°=0,6° € [O,az—bc'] and f¢ :%as in Case la; or . {0 —C}

‘ 2
a—g¢; (a_ci)(a_ci_zric)

of =——=",and ff =
2b 4b

as in Case 2a. In summary, the optimal contact can be the

fixed-fee scheme in Case 1a, the unit-fee scheme in Case 2a if r° = %, or the two-part tariff

scheme in Case 2a if r, (0 %) O

Under the new set-up, problem (8) becomes

max 7z, =(a-bg —c,—r)g — f (8A)

;20
st.g>6,i=1h.

Condition r <T, =(a—c,) can guarantee optimal non-negative cargo-handling amounts for both-
type operators. Solving problem (8A) yields the results below.

Lemma 3. Suppose the conditions in (6A) hold. Given contract (r, f ,5) , operator i’s optimal
behaviors are as follows for i =1, h.

(i) For 6 €[0, §°] with 57 =2 5 0, both-type operators’ equilibrium cargo-handling amounts

(a+c +r)

are q° = M > ¢, and gf =5, their equilibrium service prices are p/ = >0, and

2b
their equilibrium profits are z° =b(qg’)* - f for i=1I,h.

(ii) For 5 (51",52"] with &) =3 5 5P hoth-type operators” equilibrium cargo-handling

(a+C| +r)

a—-c -—r
amounts are g :M and g? =&, their equilibrium service prices are p’ = >0 and

2b
p? =a—bs >0, and their equilibrium profits are z” = b(ql”)2 ~fand 7} =5[a-bs—c,—r]-f.
(iii) For o € (5;’,%) , both-type operators’ equilibrium cargo-handling amounts are g” =6 and

. =0, their equilibrium service prices are p” = p? =(a—bs) >0, and their equilibrium profits
are 77 =6[a—-bhs—c,—r]-f fori=1,h.

Proof of Lemma 3: Denote L, and L, the respective Lagrange functions for the I-type and the h-type
operators in problem (8A),




L, =(a-bg)q —(c +r)g - f+4(q-5) and
I—z (a_bqh)qZ_(Ch +r)qh —f +ﬂ’2(qh _5)'

where A, and 4, are Lagrange multipliers for the I-type and the h-type operators, respectively. Then,
the Kuhn-Tucker conditions for the I-type operator are

oy oL,

—=a-2bg,—-¢,—-r+4<0,q-—=0 and Al6
a0 a -G A q, o (A16)
oL oL

—+=0,-020,4-—=0, Al7
o, q 4 o, (A7)

and for the h-type operator are

a—LZ::;1—2bqh—ch—r+ﬂbzso, qh-%:Oand (A18)
On aa,

oL, oL

“2-q,-6>0,4,-—2=0. Al9
o, O 4 o, (A19)

Based on the values of 4, and 4,, there are four cases below.
Case 1: Suppose 4 =0 and A, =0.Then (A16) and (A18) become (a—2bg, —¢,—r)=0 and

(a—2bg, —c, —r) =0, respectively. Solving the two equations yields g = W and

ar = W. To guarantee g° >6 and gf >, condition 0<5< 5P = W =qy should

be imposed, because ¢, <c, suggests g° >q, and g” > & suggests g > . Substituting g” and g/
_(atc,+r)_ , (a+c+r)

into (13) yields p/ =———>p T>o ,and into (14) yields z? =b(q/ )2 — f for

i =1,h. These prove Lemma 3(i).
Case 2: Suppose 4 =0 and A, >0. Then (A16), (A18) and (A19) imply (a—2bg, —¢, —r)=0,
(a—2bqg, —c,—r+4,)=0 and (g, —9) =0. Solving these equations yields g = M , QP =0

2b
and 4, = 2b(§—51'°) . To guarantee 4, >0, conditions & > &, and r <T, are needed. On the other

a-c¢—r

hand, to have g > &, condition § <65 = should be imposed. Accordingly, the plausible

range for § is (é‘f,&z"] . Substituting g”and g, into (13) produces

(a+c+r)

P’ =a—bs>pP = >0 if 5<67, and into (14) gives 7’ =b(g?) — f and

zy =8[a—bs—c, —r]- f . These prove Lemma 3(ii).



Case 3: Suppose 4, >0 and 4, =0 .Then (A16)-(A18) suggest (g, —5) =0,
(a—2bg, —c,—r+4)=0 and (a—2bg, —c, —r)=0. Solving these equations yields ¢° =&,

(a—c —r) .

a-c —r
is
2b

q’ _(a=6-r) and ﬂf=2b{5—

2 } . To guarantee 4, >0, condition & >

a—c —r . . .
(2—{:‘)) . However, the two conditions are incompatible

(a-c,—r) (a-¢-r) —(c,—-¢)

with each other because - = < 0. Thus, no solution exists in this
2b 2b 2b

needed; and ¢f > is guaranteed if § <

case.

Case 4: Suppose 4, >0 and 4, >0. Then (A16)-(A19) suggest q° =q° =5, 4, =—a+2bs+c, +r
a—c —r
2b
r <(a—c,) are needed. Note that we have r <(a—c,) because of r <T, =a—c, and ¢, <c,.

and A, =-a+2b5+c,+r. Tohave 4 >0 and 4, >0, conditions & > & = and

Substituting g° =g =& into (13) produces p’ = p; =(a—bod) >0 if 5<%, and into (14) gives
z? =6[a-bs—c,—r]- f for i =1,h. These prove Lemma 3(iii). o
Under the new set-up, problem (9) becomes

max R =0(rgP + f)+(1-0)(rg? + f) (9A)

s.t. 035<%, r>0, f>0,z">0and z’ >0.

Solving this problem yields the results below.
Proposition 1. Suppose the conditions in (6A) hold. Then, we have the following.

a+c

(i)Ifc, e (c,,Ch] with ¢, = , then the two-part tariff contract is the port authority’s best choice.

. . c,—C
The optimal scheme and minimum throughput guarantee are r? = M

2-60
a+c,—-2¢,)(2-0)a+6c —-2c - -
fp:( +6,-26,)[ (2-0)a+0k, “],and 5p:(2 0)a+ 0o -2, . At the equilibrium, the
4b(2-6) 2b(2-0)
port authority’s fee revenue equalsR® = (2-0)a’-2(2-0)ac, ~ 2066, + 66 + 26, :
4b(2-0)

(2-0)a+6c,

(i)If c, e (c'h, éh) with ¢, = , then the unit-fee scheme is the port authority’s best

choice. The optimal scheme and minimum throughput guarantee are



(2-0)a-6c,—2(1-6)c, d s _(2-6)a+0c, -2,
2(2-0) aned o= 2b(2-0)

[(2-6)a-6c,~2(1-0)c, |
8b(2-6) '

re = . At the equilibrium, the port

authority’s fee revenue equalsR" =

(i) If ¢, [éh,a), then the unit-fee scheme is the port authority’s best choice. The optimal scheme
and minimum throughput guarantee are r? =T, =(a—c,) and 6" = 0. At the equilibrium, the port

f(a-c,)(c,—¢) |

authority’s fee revenue equalsR” = 2

Proof of Proposition 1: According to Lemma 3, we have three cases below.

Casel: Suppose 6 €[0, 5°]. Lemma 3(i) implies 7" > z?. Again, Z—I]? >0and 7z >0 suggest
fP= b(qrf’)2 >0, and hence z? =0 and 7" >0. Problem (9A) then becomes

max R= e(rq, +f) (1—6’)(rqr§)+f)

r,f,o
st. 0<0<45" and O<r<T,.

Its Lagrange function is

2
L:b(qﬁ) +¢9(r-q,p)+( )( )+/11( )+/1( r,
where 4 and A, are the respective Lagrange multipliers associated with the two inequality

constraints of this problem. The corresponding Kuhn-Tucker conditions are

o 1 oL

~ % o(c r]——xl 7, <0,1-—==0, (A20)
5L=—4< 5%20, (A21)
%:5;’—520, 4-%:0, and (A22)
§—Z=n—rzo,@'j—i=0- (A23)

Based on the values of 4, and A,, we have four sub-cases.

Case 1a: Suppose 4, =0and 4, =0. Constraint (A20) suggests r” = 6(c,—c,)>0. It remains



- _ o N
to check whether r® <T, holds. By some calculations, we have r® <T iff ¢, <c,, E_al 6;3! .
+

a—c,—r°) _a+6c —(1+0)c,
20 2b

and

Moreover, (A22) implies both &° €[ 0,5 | with &/ =(

0 _p a+oc —(1+6
2b
equilibrium fee revenue equals

2
C : . :
) “} >0. Thus, a solution exists when ¢, <c,,, and the port authority’s

a—2ac, —26%cc. +6°c’+(1+6°)c?
h 1~h | h
Rﬁ = 0 ) (A24)

Case 1b: Suppose 4, =0 and 4, > 0. Constraints (A20) and (A23) imply r°? =T, = (a—c,), and

. —a—-6c,+(1+0)c . a—-c —T
)= I;b( +0)G > 0iff ¢, >c,,. Moreover, (A22) suggests 6° =0 by & =%=0,
and f* =0. Thus, for ¢, > Cyp1» the port authority’s equilibrium fee revenue equals
R = d(c,—¢c )(a-c,) (AZ5)

2 2b '
Case 1c: Suppose 4, >0and 4, =0. Constraint (A22) suggests 5° =& >0. If & >0, then

A, =0 by (A21). It is a contradiction. Thus, no solution exists in this case. If 5” =0, then r° =T
and the solution is same as Case 1b’s.

Case 1d: Suppose 4, >0 and A4, >0. The solution is the same as Case 1b’s for ¢, > Chpa -

Case 2: Suppose 56(51",52"]. Similar to Case 1, we have f* =6(a—bs—c,—r),and f*>0 iff

a—c,—r

§<8= and r <T, =a—c,. Moreover, 5 > (<) iff r < (>) F =a+c, - 2c,. Thus, there

are two sub-cases.

Case 2a: Suppose r <7 =(a+c, —2c,). Problem (9A) becomes

max R=0(rg’ + f)+(1-0)(rq! + f)

r,.f,o
st. 6/ <0<d) and 0<r<¥F (A26)

Its Lagrange function is
L=s(a-bs—c, —r)+2—rb[0(a—cl —1)+20(1-0)5 |+ 4, (6 -6 )+ A4, (8F =)+ A4, (F ).

The corresponding Kuhn-Tucker conditions are

oL 6 1 1 oL
—=—o (a-2r-¢-2b0)+—A4 ——A1, -4, <0, r-—=0, A27
or 2b( ! ) 2b/11 2bﬂ? % or (A27)



oL oL

—=a-2bd6-c -Or+4-4,<0,6-—=0, A28
oy h A=2 Py (A28)
ﬂzg_glp Zo,ﬂl.iza (A29)
04 04
L sr_s520 4 0, and (A30)
04, 04,
A _rrso 4L (A31)
024 024

where 4, 4, and A, are the respective Lagrange multipliers associated with the inequality constraints

in (A26). Constraint & <& suggests 4 =0 by (A29). Based on the values of A,and 4,, there are
four sub-cases.

Case 2a-1: Suppose 4, =0 and A4, =0. Then, (A27) and (A28) suggest
i(a— 2r—c,—2bs)=0 and (a—2bd—c, —6r)=0. Solving the two equations yields r° = GG

2b 2-6
(2-6)a+6c, -2c, (1—49)((:h—c|)>

and 6° = 20(2-0) . By some calculations, we have (6" —6) = 20(2-0) :
(529—5P)=M>0 and (r—rp)=(2_9)a+(3_9)c' ~(5-20)c, >0 iff

2b(2-06) (2-0)

(2-0)a+(3-0)c C, —C,

| - - -
Cp < Cppo . Thus, a solution exists when ¢, <c,, with r® =——,

(5-20) 2-6
p_(2-0)aroc-2c, o, _(a+g-2c)[(2-0)a+0c -2, |
2b(2-0) 4b(2-0)
equilibrium fee revenue equals

, and the port authority’s

(2-6)a’-2(2-0)ac, —26c,c, +6c] +2c;

R} =
“ 4b(2-6)

(A32)

Case 2a-2: Suppose 4, =0 and A, >0. Then, (A27), (A28) and (A31) suggest

2%(a—Zr —¢, —2b5)-24,=0, (a—2bs—c,—6r)=0 and (F—r)=0. Solving these equations yields

1
r’=(a+c¢ -2c,), 6" =%[(1—9)a—9c, -(1-26)c, | and

. —0[(2-0)a+(3-0)c,—(5-20)c, |
% = 2
A, >0 hold. By some calculations, we have (5° — &) =2—1b(1—9)(a+c, -2¢,)>0 iff

. It remains to check whether 6" <6” <6, r? >0 and

10



. a-+¢
C, <C, =

P20 0ff ¢, <6, (67 —5%:%[—(1—9)6[—(2—9)(:, +(3-20)c,]>0 iff
>(1—49)a+(2—6?)c

h <

L, and 4; >0 iff ¢, >c,,. Moreover, we have

3-20
Chpz_(l—H)a+(2—9)cl = (a—cl) >0, and (Ch—chpz):M>O.Thus,asolution
3-20 (3-20)(5-26) 2(5-20)

exists for c,,, <c, <¢, and the port authority’s equilibrium fee revenue equals

. 1|(1-6)a*-20(3-0)ac, ~2(1-50+26" )ac,

p_ L _ (A33)
4b| +20(7-20)cc, - 0(4-0)c} +(1-120+46°)c}

Case 2a-3: Suppose 4, >0 and A, =0. Then, (A27), (A28) and (A30) suggest

%(a—Zr—cl —2b5)—2—1b/12 0, (@a-2b5—¢,—Or—1,)=0 and (5° —5)=0. Solving these

equations yields r° =(c,—¢c,) >0, &° :a;_bch and 4, =—6(c, —c,) <0. Thus, no solution exists in

this case.
Case 2a-4: Suppose 4, >0 and A4, >0. Then, (A27), (A28), (A30) and (A31) suggest
%(a—Zr—c, —2b5)—2ibﬂbz—ﬂ3 =0, (a-2bs—-c,—0r—4,)=0, (F-r)=0 and (5, —9)=0.

Solving these equations yields r* =F=a+c, -2c,, 6° =0, =M,

b
« . 1-0 2-60
A, =(1-0)a+(2-0)c,—(3-20)c, >0 iff <( EZjég) )c , and
ﬂgzi[—a—ZC, +3c,]>0 iff c, S8728  Since (1-9)a+(2-9)a a+2q _-0(aa) <0,
2b (3-20) 3 (3-20)

we cannot have both 2, >0 and A; >0 together. Thus, no solution exists in this case.

Case 2b: Suppose r > T =(a+¢ —2c,). Note that f?=5(a-bs—c,—r)>0 if

535;%

Of <5<5P to 82 <5<45. Thus, problem (9A) becomes

,and & > (<)sy iff r<(>) F. Assuming r > F, we reduce constraint

max R=0(rg’ + f)+(1-0)(rq! + f)

r,f,o
st 8<5<5 and F<r<rt,. (A34)
Its Lagrange function is

L=6(a-b5—c,~r)+[0(ac 1) +20(1-0)6]+ 4 (567 )+ 1, (§-5)+ A (r=F)+ A (=),

The corresponding Kuhn-Tucker conditions are
11



a_o 1
or 2b
%

i:é‘_é‘lp Zo’ﬂj.i:o,
oA o4
izé"v_é‘zo’ﬂ?.izo,
oA, o4,
i:r_rzo,zg.i:o, and
oA, 0/
i:rh—rzo, ,14.2:0,
oA, 04,

=a-2bd-c. -O0r+1 -1,<0,0-
5 h A=A Y-

=—(a-2r—g —2b§)+%ﬂl—%ﬂz+ﬂ3

oL

—24S0, I’-a—=

oL
r

0, (A35)

(A36)

(A37)

(A38)

(A39)

(A40)

where A, 4,, A, and A, are the respective Lagrange multipliers associated with the inequality
constraints in (A34). Constraints 6 <& and ¥ <rsuggest 4 =0 and A, =0 by (A37) and (A39).
If 2, >0,then r° =T, =a—c, by (A40). Moreover, we obtain 6 =5 =0 by r° =T, , which
contradicts the requirement of §° <& <. Thus, we must have 4, =0. Based on the value of 2, ,

there are two sub-cases below.

Case 2b-1: Suppose 4, = 0. Then, (A35) and (A36) suggest %(a —2r—¢,—2bh5)=0 and

(a—2bo —c, —6r)=0. Solving these equations yields r° = Cz“—_;' and 6° = (

2—-0)a+06c —2c,
2b(2-6)

remains to check whether 6° <6° <6 and ¥ <r® <T, hold. By some calculations, we obtain

(5"—51"):(1_25()&0‘)%) >0, (5—5"):%;20“20 iff ¢, <¢, =

(rp_r):—(Z—a)a—(fz—fzc);, +(5-20)c, >0 iff ¢, >c,,, and

— o _(2-0)a+c-(3-0)c, _ . . (2-0)a+c

(r,—r’)= (2-0) >0 iff chS—(3_9)

(2—0)a+cl_. _(1-9)(a-q) - _(2—9)2(a—cl)
Goo) 7 203-g) 0 G %) =505 20)

a+cg

. In addition, we have

> 0. Thus, a solution exists

for ¢,,, <C, <¢,, and the port authority’s equilibrium fee revenue equals

p_
R21_

12

(2-6)a’-2(2-0)ac, —26c,c, +6c +2c;
4b(2-9) '

(A41)

At



Case 2b-2: Suppose 4, > 0. Then, (A35), (A36) and (A38) suggest
i(a—2r—c,—2b5)—£/12 =0, (a—2b5—c,—Or—4,)=0,and (5-5)=0. Solving these
(2-6)a—-6c,—2(1-06)c, 5p_(2—9)a+0c,—20h and

equations yields r” = , 00 =
AHetonsy 2(2-0) 20(2-6)
. —O(a+c-2c,) : b P .
A, = . It remains to check whether 6," < 6", F<r” <T and A, >0 hold. By some
2
2—-0)a+0c —2c 2—
calculations, we obtain (5"—51"):( )a+6,- 26, >0 iffc, <&, z(e)ﬂ,
4b(2-0) 2

o o —(2-0)a-(4-0)c +2(3-0)c, _ (2-6)a+(4-0)c
(r°-r)= 2(2_0) >0 iff ¢, > 2(3_9)

2_ *
(220306 ang 4250 iff ¢, > 2% —¢, . In addition
2

i)

(2-0)a+6c -2c,

(Fr-rP)= 2(2-0) >0 iff ¢, <
we have (2-0)a+6c a+c _(1-0)(a-¢) 20 and 26 (2-9)a+(4-0)c _(a-c) o
2 2 2 2 2(3-0) 2(3-0)

Thus, & <8P, F<rP<T and 4, >0 hold if ¢, <c, <¢,. Under the circumstance, the port
authority’s equilibrium fee revenue equals

[(2-6)a—6c,-2(1-6)c, |
8(2-0) ' (A42)

p
RZS

Case 3: Suppose 5@(52",%). Lemma 3(iii) then implies z,” > z?, and hence

£ =5(a-bs—c,—r)with f*>0iff 5<5==%=0 3 ang r < =(ac,). In addition,
b b

5> ()6F iff r<(X)F=(a+c—2c,). If r>F,then §<5°. Tohave f°>0, weneed 5§<5.
Since & should belong to the interval of (52",a) , the two conditions contradict with each other.
Thus, we must have r<f and & > 5. Combining 5e(§2p,a) and f°>0,wehave 5 (5),5].
Accordingly, problem (9A) becomes

max R :6’(rq,p + f)+(1—6’)(rq,f + f)

r,f,o

st. 6P <s<5and 0<r<F. (A43)

Its Lagrange function is
L=5(a=bs—C,)+4 (6= )+ 4 (5-8)+4(F-r).

The corresponding Kuhn-Tucker conditions are

13



o 1 1 oL
—=—-=1-1,<0,r-—=0,
or 2b/11 biZ % or

= —(a-260-0,)+4-450.0-
i:é‘—észO,ﬂl-i=0,

oA o4

AL 55204 _0, and
oA, o4,
izf—rzo,ﬂg-izo

oA, 0

oL
00

0,

(A44)

(A45)

(A46)

(A47)

(A48)

where 4,4, , and A, are the respective Lagrange multipliers associated with the inequality
constraints in (A43). Since constraints J, <dand r < are strict inequalities, we must have

A =7, =0 by (A46) and (A48). If 4, >0, then we obtain Z—L
r

SP 25‘: (a_ch)

—%@ <0 by (A44),

by (A47),and 2, =—(a—c,)<0 by (A45), which contradicts requirement A, >0.

Thus, we must have 4, =0, and hence (A45) suggests 5° = a;—;“. It remains to check whether

5P <8P <5, r’ <t and 4 >0 hold. By some calculations, we have

(57 -8)) = a;bch _a—zrb—c, = r—(chb—c,) >0 if r>(c,—c),

5-s7)=2 L G a;bch =a_2‘b_2r20 if rs%,and r’<f=(a+c —2c,). Since
a—zch_(ch_ I)=a+20,—3ch 0 iff h<a+20I we have
(a+c,—2c,)—(c,—¢ )=a+2c —3c, >0 iff ch<a+2C' , and

(a+c —2ch)—a_2Ch = a+2cé—3ch >(<)0 iff c, <(>)a+2c, .When ¢, > 2

5P <57 <& cannot hold. Thus, for ¢, <>

+ 2¢,

, a solution exists with r° e (ch -c,

of = a—% , and the port authority’s equilibrium fee revenue equals
2
RP = (a_ch) .
: 4b

14
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2
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Cases 1-3 imply that problem (9A) has seven solutions. By comparing them, we can derive the
0(1-0)(a-c)
2(1+6)

2
(1-6)(a—¢) .0, (Ch—Chp2)=(2_9) (a-c)
2(1+0) (3-6)(5-20)
arzc,_ (1-0)(a-a) >0, we have 2+2¢
3 3(5-20)
following six cases.

>0,

port authority’s best choices. Because (C, —¢C,,) =

(Chpl - Ch) =

>0, and

(Chp2 — < Cypp <G, <Cypy <&, and there are the

a’ —2ac, —26°c,c, +0°c’ +(1+6%)c}
Case A: Suppose ¢, < a+2q . Three solutions appear: Rf = " : :1b ' ( ) "
(2-6)a’-2(2-0)ac, —26c,c, + bc +2c;

for ¢, <c,, defined in (A24), R} = ™ for ¢, <¢,,

4b(2-0)
defined in (A32), and R/ :% for c, <a+T20| defined in (A49). Since
(R —Ri) = 9(1:1(5222(?'0;(;' I >0 and (R} -RP) _Oe-a) >0, we have R}, >R >RP.
a+2c

Case B: Suppose <¢, <c¢,,,- Two solutions appear:

a’ - 2ac, - 20°¢,c, +0°¢] +(1+ 6% )¢

Rf = s " defined in (A24) and
— 2 _ _ _ 2 2
RS = (2-0)a"-2(2 4? (azch 0)2 oa.c, + 66 +2¢, defined in (A32). Because
6(1-6) (¢, —c, )’
(RE-Rf) = ( 4b22(—h0) ) >0, we have R} >R}.

Case C: Suppose ¢, <, <¢,. Three solutions appear:

a’-2ac, —20°cc, +0°¢, +(1+ 6% )¢t
R} = s defined in (A24),

1| (1-6)"a*~20(3-0)ac, —2(1-50+20° )ac,

4b| +20(7-20)cc, —0(4-0)c; +(1-120+46°)c;
_ 2 _ _ 2 2

(2-0)a" ~2(2-0)ac, 206, + 06 +26, defined in (A41). Because

4b(2-0)

0(1-6) (c,-¢)’
4b(2-6)

have R); the largest.

p
2

defined in (A33), and

p_
RZl_

0[(2-0)a+(3-0)¢,—(5-20)c, |
4b(2-6)

(Rzpl - Rﬁ) = >0 and (RZpl - Rzpz =

>0, we

15



Case D: Suppose €, <¢, <. Two solutions appear:

a’ - 2ac, - 20°c,c, +0°¢] +(1+ 6% )¢

Rf = m defined in (A24) and
R}, = [(2-0)a—6c -2(1-0)c, defined in (A42). Since
8b(2-6)
(R~ Rlp) 9[(2—9)a+(1+9—9 )e,~(3-6 )ch] 182(R2"3—Rﬁ):—9(3—02)<01
ac, 2b(2-6) ac,’ 2b(2-6)
a(R2p3—R1’;)_9(1_9)2(a_c|) o oy 01— ‘9)2( |) _a
o,  4b(2-6) >0 (Ra—Ra)= 16b(2-0) Z0aG =6,

8(R2'33—R1pl):—9(l—9)(a—0|)<O' and (R Rip)_gz(l 0) ( ') >0 at C, =C,,, We have
o, 2b(1+6)(2-0) 8b(2-0)(1+06) i

Ry, >R for¢, <c, <c,,.

Case E: Suppose €, <C, < ¢, . Two solutions appear:

R = (=A%) eineg in (a25) and Ry, = L2=0)2= % ~2(1-0)c ]
2b 80(2-0)
[(2-0)a+6c —2ch]2

8b(2-0)

defined in (A42).

Since (Rzpa -Rj) =

>0, we have R}, >R/,.

A . . é(c, — - . .
Case F: Suppose ¢, > €, . The unique solution is R, = (c: Cég(a ) defined in (A25).

We find that R}, is optimal when ¢, <¢, by Cases A-C, Ry, is optimal when ¢, <c, <C, by
Cases D-E, and R}, is optimal when ¢, > ¢, by Case F.

In summary, forc, <¢,, the port authority should adopt the two-part tariff scheme with
=G r_ (a+c —2c,)[(2-0)a+6c -2, |

rP— - 4b(2 9) , minimum throughput requirement
2—-0)a+6c, —2c
P = (2-9) " and equilibrium fee revenue
2b(2-6)
R — (2-6)a’-2(2-0)ac, —26c,c, +6c] + 2¢;

as in (A32). These prove Proposition 1(i). For
(2-0) (A32) p p (i)

¢, <¢C, <C,, the port authority ought to adopt the unit-fee scheme with

(2-0)a-04 -2(1-0)c, , minimum throughput requirement §° = (2-0)a+06 -2, ,
2(2-0) 20(2-0)

re=

and

16



[(2-6)a—6c,-2(1-0)c, |
8b(2-0)
1(ii). Finally, for ¢, >¢,, the port authority should offer the unit-fee scheme with r’ =T, 5° =0,

d(a-c,)(c,—¢)
2b

equilibrium fee revenue R” = as in (A42). These prove Proposition

and equilibrium fee revenue R =

as in (A25). These prove Proposition 1(iii). O

Under the new set-up, problem (10) becomes

max 7, =(a-bg,—c —r)q - f (10A)
620
s.t. g, 24
for i =1, h. Its solutions are given below.

Lemma 4. Suppose the conditions in (6A) hold. Given contract (r,, f,0 ) , operator i’s optimal
behaviors are as follows.

(i) For &, €[0, 57 with & =1 'poth-type operators’ equilibrium cargo-handling amounts are

t = (a;—lb)> 6/ and g, —% 6, , their equilibrium service prices are
p? =51 > 0, and their equilibrium profits are z&' =b(q')? ~ f, for i=1,h.

(ii) For 6, (&, 6] with &'= (o 1 W o, , both-type operators’ equilibrium cargo-handling amounts

are g’ =% and g =, their equilibrium service prices are p;' = &% > 0 and

py' = (a—bds,) >0, and their equilibrium profits are 7" = b(qf' )2 — f, and
7y =6 [a=bd —c,—r]- .

(iii) For o, € (5,”,%} , both-type operators’ equilibrium cargo-handling amounts are g* = &, and

g =&, their equilibrium service prices are p = pi' = (a—bg,) >0, and their equilibrium profits
are ' =6,[a—hs, —c —n]-f, fori=1,h.

Proof of Lemma 4: Denote L, and L, the respective Lagrange functions for the I-type and the h-
type terminal operators in problem (10A),

|-1=(a_bq -G _rl)Q| -1 +/11(Q| _é‘l) and L, z(a_bqh_ch_rl)qh_ fi +22(Qh_5|)'

where 4 and A, are their associated Lagrange multipliers. Then, the corresponding Kuhn-Tucker
conditions for the I-type operator are

ZLl_a 2bq, - c,—r,+/1130,q,-2—|‘1=0 and (A50)

q, |

17



A g - L
on " 4920420, (AS1)

and for the h-type operator are

oL, oL
—2=a-2bg. —-c —-r+4,<0,0 -—==0 and A52
aqh qh h | //{2 qh aqh ( )
oL, oL

—q.-5 20, 4-22-0, A53
oA, =020 % oA, (A53)

Based on the values of 4, and 4, , there are four cases below.

Case 1: Suppose 4 =0 and A, =0. Then, (A50) and (A52) suggest

s =%and q =%. Tohave g > ¢ and ¢ >, we need to impose condition
0<6, <6 = %*l‘)_r' = ¢ . That is because ¢, <c, implies g > ¢, and hence g > &, implies
g >, Substituting g and @ into (13) yields p' :W> p! :w> 0, and into (14)

yields 7' =b(g’ )2 —f, for i =1,h. These prove Lemma 4(i).

Case 2: Suppose 4, =0 and A4, >0. Then, (A50), (A52) and (A53) suggest (a—2bg, —¢, —1r) =0,
a-c -1,
2b
gy =6, and A, =2bs, —(a—c,-1). To guarantee 4, >0, condition & > & is needed; and to have

(a—2bg,—c,—r+4,)=0 and (g, —5,) =0. Solving these equations yields g =

o' >4, condition & <&"=2"9""is needed. Thus, the plausible range for & is &, € (5, 5].
20

Substituting ¢ and ¢ into (13) produces p{' = (a-bds,) > p' =%> 0 if & <o, and into

(14) gives 7' =b(g;’ )2 —f, and 7' =5,[a—bs, —c, —1,]- f,. These prove Lemma 4(ii).

Case 3: Suppose 4, >0 and A4, =0.Then, (A50)-(A52) suggest (q, —&,) =0,
(a—2bg, —¢, -1 +4)=0 and (a—2bg, —c, —1r) =0. Solving these equations yields g =5,

q =% and 4" =2bs, —(a-c, —r). Toguarantee 4 >0, condition &, >% is

needed. On the other hand, g > &, holds if &, S%. However, these two cannot hold

. a-r-c, a-c¢-r —(c,—c _ .
simultaneously because 2|b h _ 2Ib L= ( ;b ) <0. Thus, no solution exists in this case.

Case 4: Suppose 4 >0 and A, >0 . Thus, (A50)-(A53) suggest ¢ =q’ =3,

A =2bs,—(a—c, -1 ) and 4, =2bs, —(a—c,—r,). Tohave 4 >0 and 4, >0, conditions & > &’
18



and r<(a ¢,) are needed. Substituting g =g =4, into (13) produces p' = pi' =(a—bs) >0 if

o) 2 . ,and into (14) gives 7;' =5, [a—bs, —c, — 1] f, for i =1,h. These prove Lemma 4(iii).

Under the new set-up, problem (11) becomes

max 7z, =(a-hg,—c,—r,)q—f, (11A)
;20
s.t. g, =9,
for i =1, h. Its solutions are presented below.

Lemma 5. Suppose the conditions in (6A) hold. Given contract (rh, f., 5h) , operator i’s optimal
behaviors are as follows.

(i) For &, €[0, 5,1 with o = & ) %) both-type operators’ equilibrium cargo-handling amounts are

Q" = % > ¢! and g (a_(zzhb_ W) _ 5!, their equilibrium service prices are
p" = &%) 5 0 and their equilibrium profits are z™" =b(q")? - f, for i=1,h.

(ii) For &, (&, 7] with oy =22 > 5, both-type operators’ equilibrium cargo-handling
amounts are " =(a+'b_h) and g = 5, , their equilibrium service prices are p" = &%) 50
and p;" =a-bs, >0, and their equilibrium profits are 7;" = b(qlSh )2 —f_and

=¢,[a-bs, —c,—r,]- f,

(iii) For ¢, € 5”& , both-type operators’ equilibrium cargo-handling amounts are g™ = 5, and
h h b I h

q." = 5, their equilibrium service prices are p" = p;" = (a—bd,) >0, and their equilibrium profits
are 7" =6,[a—bs, —¢,—r,]- f, for i=1,h.

Proof of Lemma 5: Since the proofs for Lemma 5 and Lemma 4 are similar, it is omitted.

Under the new set-up, problem (12) becomes
= sl sh
(n,f,,ﬁm?rh)?fhﬁh) R —H(I’,q, + f')+(1_9)(rhqh + fh) (12A)

s.t.0£5|<%,035h Z £20, f,20, 2920, 220, 2 > 7" and 2" > 7

It solutions are listed below.

Proposition 2. Suppose the conditions in (6) hold. Then, we have the following.

19



(1-6)a+(2-0)

i , the port authority will offer the two-part tariff
(3-20)

(i) If ¢, (¢, ¢y ] with ¢ =

scheme and minimum throughput requirement (rhs, fe, o )T , or the unit-fee scheme and minimum
throughput requirement (rhs,ﬁhS )U to the h-type operator; and offer the two-part tariff scheme and
minimum throughput requirement (rls, 7,0 )T , the unit-fee scheme and minimum throughput

requirement (rﬁ,b‘f )U , or the fixed-fee scheme and minimum throughput requirement (fﬁ,é,s)F to
the I-type operator. Here
. | c,—¢ (1-6)a-6c —(1-26)c,
rh € 1 l
(1-9) 2(1-0)

(2,10 = fs:[(1—9)a+0c,—ch]-[(l—e)a—acl—(1—29)ch—2(1—0)r;]
h h*™h h 4b(1—9)2

) H

_(1-0)a+6c —c,
" 2b(1-0)

S

_(1-9)a-6c,—(1-20)c, . (1-6)a+6c —c,

2(1-0) N 2b(1-9) }

s elo (1-9)a*-2(1-0)ac, —2(1+0)cc, +(1+6)c’ +2c;
S y 1
' 2(1-0)(a-¢)
T 1-0)a*-2(1-60)ac, —2(1+0)cc, +(1+6)cf +2¢. -2(1-0)(a—c)r’
s s oS s h 1~h [ h 1)°1
(r|7f|’5|) = f| = 4b(1—9) 1 (1
é‘lsza_cl
2b
(r.6) = o _(1-0)a’-2(1-0)ac, ~2(1+0)cc, +(1+0)c +2¢; o a-—g and
H ! 2(1-6)(a-c,) 2 |
N . (1-0)a*-2(1-0)ac, -2(1+0)cc, +(1+0)cf +2¢. a—c
(10,57 {f O 2O s O 1100625 e .}}_At

equilibrium, the port authority’s fee revenue always equals

RS — (1-0)a’-2(1-0)ac, —26c,c, +6c +c;
- 4b(1-6) '
2(1-0)a+0 , then the optimal contract for the h-type operator is the

(ii) If ¢, e(cy,c) with ¢ =

(2-6)a-6c,-2(1-0)c,
(4—30)
2(1-0)a+6c, —(2-0)c
b(4—36)

unit-fee scheme r;’ = with minimum throughput guarantee

o, = ", By contrast, the optimal contract for the I-type operator can be the

20



two-part tariff scheme and minimum throughput requirement (r,s, £, )T , the unit-fee scheme and
minimum throughput requirement (rf',&f )U , or the fixed-fee scheme and minimum throughput

2bB 1 a-c
== ,fS:B__ _ 5’§S:—| ,
(a—c,)] ' 2b(a Q)1 2b }

s os\Y s 2bB s a—_C s os\F s s a—_C
(ﬁ 15|) :{r‘ :(a_q),@ _ 2b|},(f| ,5,) :{fI =B, §, E[O,T}},and

6-50)a—(8-76 2(1-0 2-6)a—-6c,-2(1-6
B=[( Ja—( )& +2( )C“][z( Ja-06-2( )C“].Atequilibrium,the port
4b(4-30)

requirement (f,s,é‘f)F . Here (rls, fﬁ,éﬁ)T :{rf e(O,

[(2-6)a—6c,-2(1-0)c, |
4b(4-30)

authority’s fee revenue always equals R® =

(i) If ¢, [c,;’, a), then the optimal contract for the h-type operator is the unit-fee scheme

r, =T, =(a—c,) with minimum throughput guarantee &, =0. By contrast, the optimal contract for
the I-type operator can be the two-part tariff scheme and minimum throughput requirement

(rﬁ, f°,0 )T , the unit-fee scheme and minimum throughput requirement (rﬁ,&f )U , or the fixed-fee

scheme and minimum throughput requirement (f|5,5,5)F . Here

(ﬁs, fls’é‘ls)T ={ﬁs E(O,(a—ch)(a—Zc, +ch)]’ oo (a-c,)(a-2c +c,)-2(a—c)rK’ oo a—c, }

2(a—¢) 4b 2b

(r.07)" ={rf =(a_c*‘2)((§__c2|c)' Y =%} and

_ ) _
(fﬁ,&f)F ={f|S = (2 Ch)(?lb G+6) O e[o, aZbCI }} At equilibrium, the port authority’s fee

revenue always equals R® = o(a-c, )(41_ 26, +¢,) _

Proof of Proposition 2: We first explore whether the constraints of individual rationality and
incentive compatibility bind at equilibrium. To simplify the analyses, we define z* =TT — f

At =T1"—f,, 7" =T1"~ f,,and z7 =TT — f . The IT;" is b(q")? in Lemma 4(i)-(ii), or
5,[a—bd, —c, —r] in Lemma 4(iii); the TT" is b(q™)? in Lemma 5(i)-(ii), or &,[a—bs, —¢, —r,] in
Lemma 5(iii); the TT;' is b(qg')? in Lemma 4(i), or &,[a—bds, —c, —r,] in Lemma 4(ii)-(iii); and the
IT" is b(g™)? in Lemma 5(i), or 8,[a—bs, —c, —r.] in Lemma 5(ii)-(iii). Then, we can rewrite the
four constraints in problem (12A) as follows.

=11 — f >0, (IR.)

" =T1" - f >0, (IR,)
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=10~ f 22" =T1" - 1, (IC,)
=" - f 22 =11 - f,.  (IC,)
Based on these, we acquire the following lemmas.

LemmaA. If (IC)) and (IR, ) hold, then (IR ) holds as well.

Proof. Since ¢, <c,,we have 7' >z and 7" > z;". Accordingly, if (IC,) and (IR,) hold and
7" >, then we can get 7" >z > 72" >0. This implies (IR,).

Lemma B. Constraint (IR_) will not bind at equilibrium.

Proof. If (IR,) binds at equilibrium, then 7' =0. We thus have 7" <z =0 by (IC,) and
it <x" <z’ =0 by 7" >z, These contradict (IR,,). Therefore, constraint (IR ) does not bind
at equilibrium.

Lemma C. Constraint (IC_ ) will bind at equilibrium.

Proof. Since 2—fR> 0 and f, <IT —IT"+ f, by (IC,), the optimal fixed-fee will be

f =TT —IT" + f,. This implies (IC,).

Lemma D. Constraint (IR,,) will bind at equilibrium.

Proof. Since (;—R>0 and f, <TI" by (IR,), the optimal fixed-fee will be f, =TI:". This implies

(IR,).

Lemmas A-D suggest that in deriving the ensuing separating equilibria, we can ignore (IR )
and substitute 7' =z and 7" =0 into the port authority’s fee revenue function, which then
becomes R =4[rg’ +1T" —TT" + 1"+ (1-O)[r.g>" +TT"] with IT" a function of ¢, IT" a
function of ¢, and IT." a function of ¢". After obtaining the optimal concession contracts and
their minimum throughput requirements, we can verify that (IC,,) holds at equilibrium. On the other
hand, according to the ranges of ¢, in Lemma 4 and the ranges of &, in Lemma 5, we have nine

cases. Note that ¢ in Lemmas 4(i) and 4(ii) are the same, but ¢ in Lemmas 4(i) and 4(ii) differ.
Moreover, since g will not appear in the port authority’s objective function in (A54), the optimal

contracts derived under constraint 5, [0, 5,'] will always be the same as those derived under

constraint & €[5, ,6,]. Thus, we only need to consider the six cases below.
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37570 and g, €[0, 5] with & =%. Lemmas 4(i)-

Case 1: Suppose &, €[0, 6] with &=
(ii) and Lemma 5(i) imply that 7" = b(qf' )2 —f and 7" = b(qﬁh )2 — f,. This in turn suggests
f,=b(g") >0 and f, :b[(qf' ) (") +(q,§“)2} by (1C, ) and (IR,,). Thus, problem (12A)
becomes

max R=0|rq +b(q ) ~b(q" )" +b(a" )’ | +(1-0)| ra" +b(a )’

(T fo1dh)
st. 0<5,<5",0<6,<68,,0<r<(a-¢) and 0<r, <T. (A54)
Its Lagrange function is
L=6| na' +b(")" ~b(q") +b(a")" | +(2-0) " +b(a)’ |
+4,(6/=6,)+ A, (6, - )+/13(a ¢ —n)+4(%-n),

where 4, 1=1,2,3,4, are the respective Lagrange multipliers associated with the four inequality
constraints in (A54). The corresponding Kuhn-Tucker conditions are

oL 1 1 oL

o= a-a<0r-Lop, A55
or T Lo .
oL oL

el 0,6 -—=0, A56
a6, A=0.9 a6, (A%9)
oo 1 1 oL

—=—0(c,—¢)-(1-9)r, |-=—4,-4,<0,1,-—=0, AST7
o = plf(G o) (=) -5 k=2 <0k o (AS57)
oL oL

= 0,8, —=0, A58
05, %= 05, (A%9)
oL =5"-5>0,1,- i: 0, (A59)
on 0%

oL

A _s 0,4 o (A60)
of, ﬂz

&t ol c,—r|>0/13—L—O and (A61)
04, 04,

AL o rrs04- Lo (A62)
6/1 04,
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Since %:_2_1130“ —z—lb/il—ﬂg <0 by (A55), we have r* =0 and A, =0 by (A61). If 4’ >0, then
|
5° =6">0, which implies 4, =0 by (A56). This is a contradiction. Thus, we must have 4, =0.

Based on the values of 4,and 4, , there are four sub-cases.

. . é(c,—c¢ .
Case 1a: Suppose A4, =0 and 4, =0. Then r; :Elh—é?)l)> 0 by (A57). It remains to check

whether r; <T, holds. By some calculations, we have 1, <T, iff ¢, <c,, =(1-8)a+6c,. Thus, we
a-c,—r° (1-6)a+6c —c,

can obtain &; [0, 5.] with & = = , &, €0, 6" with
he[ h] h 2b Zb(l_g) | E[ I]
2
¢ -r* a- 1-6)a+6c, -
é‘II!: a C| r-| — a C| , th — b ( )a+ C| Ch > 0, and
2b 2b 2b(1-0)

S_(a—cl)z_ (1-60)a—(1-26)c, - 6c, i (1-68)a+6c, —c, i
fr == b B0 +b| =2 o) >0 by (A58), (A59) and

s \2
(A60). It remains to show 7z;" > 7, at equilibrium. Note that f,’ :b(—a_czhb_ h j :

S 2 S 2 _ _yS 2 _ _ S 2
f*=b a—&-n -b a6 +f°, 7" =b azC - —f°. 7' =b a-&-h — £ if
2b 2b 2b 2b

5:<[0,8]], m =57 [a=bs —c, - |- £ if &7 «(&,57], and

S 2
5 [a—bé‘f —c, —rﬁ] < b[%j if o7 >4/, Thus, for & €[0, 6], we have

S 2 S 2 S 2 S 2
22 > h a-¢—-r’) f(a-¢-r’ || |[a-¢c-K ) [a-c -1
2b 2b 2b 2b

rls —r — r|5 —r — ns C.—C
S Y ks 1 A k1 —(“—')dr>0 due to 1’ >r’°. In summary, for
f 2b R 2b 0 2b

C, <C,, , the port authority’s equilibrium fee revenue equals

(1-0)a’* -2(1-6)ac, —260°cc, + 0°C; +(1-0+6°)c}
4b(1-6) '

R’ (AB3)
Case 1b: Suppose 4, =0 and 4, >0. Then, (A57) and (A62) suggest ° =T =(a—c,), and
. —(1-0)a-6c, +c,
A=

2b

>0 iff ¢, >c,,. Moreover, (A59) and (A60) imply &, =0 by &; =0,

a-r’—¢ _a-¢ a—c,)(a-2¢ +c,)
b 2o 4b

can prove that 7" >z, holds at equilibrium. Thus, forc, > c,,, the port authority’s equilibrium fee

revenue equals

5 €0, 8] with "= fs =0 and f° =( . As in Case 1a, we
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d(a-c,)(a-2c +c,)

RS, = S . (A64)

Case 1c: Suppose 4, >0 and 4, =0. Then (A60) suggests 5; =4, >0.If & >0, then A, =0

by (A59). This is a contradiction. Thus, no solution exists in this case. If &, =0, then .’ =T, and the
solution is same as that in Case 1b.

Case 1d: Suppose 4, >0 and 4, >0. The solution is the same as that in Case 1b for ¢, > ¢, .

Case 2: Suppose &, €[0, 5] with 5,"=%, and ¢, (&, 57] with 5;’:%. Then,

Lemmas 4(i)-(ii) and Lemma 5(ii) imply that the I-type operator’s equilibrium profit is

2b
my =35,[a-bs, -1, —c,]- f,. The binding (IC_)and (IR,) suggest

7 = b(mj — f,, and the h-type operator’s equilibrium profit is

2
f,szb(a_zc'b_r'J —(a_;'b_r“J +0,(a=bs, -1,—c,)>0 and f*=¢,(a-bs,-r,-c,). We

have f;° >0 iff 5, <35, _@B=6-G) 4ng [, <T.. Moreover, (&, - &) =215 _Zkah “hy (<)0 iff

r, <(>)F, =(a+c —2c,). Thus, there are several sub-cases.
Case 2a: Suppose I, <T, =a+c, —2c,. Then, problem (12A) becomes

max  R=0(ng’+ f)+(1-0)(r,a" + f,)

(7 f0.8 ) (o fr )
st. 06, <9, 0, <9,<0,,0<r <(a-¢) and O<r, <T . (A65)

Its Lagrange function is

2 2
L=g ﬁ‘(a—cu—ﬁ)+(a—cu—ﬁ) _(a_cl_rh) +5h(a_b5h_rh_ch):|
2b 4b 4b

+(1_0)|:rh'5h+§h(a_b5h_rh _Ch):|+;il(5lﬂ_5l)+22(5h_§f:)
+25(6y =8, )+ A, (a—c —1)+ A (F, —1,),

where 4, 4,, 4,, 4, and /A are the respective Lagrange multipliers associated the inequalities in
(AB5). The corresponding Kuhn-Tucker conditions are
a__ 9o
or, 2b

1 oL
h-—A4-4,<0,1-—=0, A66
R TR (AG6)
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oL 6 1 1 oL
—=—(a-¢, -1, -2b5, )+—A4, —A4 -4 <0, 1, -—=0, AG67
o, 2b( = 25) T o, (A87)
oL oL
——=-1<0,68-—=0, A68
o5 = h<0.4 55 (A68)
oL oL
—=a-c, -6 -2bo, + 4, -1, <0, 5, — =0, (A69)
h 0o,
izgl”_gl Zo,,ql.izq (A70)
04 04
A s 504 g (AT1)
04, 04,
A _sr_s 204 L o (AT2)
04, 04,
a—L:a—cl—rI >0, /14-i=0,and (AT73)
oA, 04,
i:rh_rhzo’ﬂs.i:o. (A74)
0 0
. oL 1 1 . « .
Since a—r:—z—ber, —z—bﬂl—/14 <0 by (A66), we have 1 =0 and 4, =0 by (A73).1f A4 >0, then
|

5’ =5/>0 by (A68), which implies 4 =0. This is a contradiction. Thus, we must have 4 =0.
Moreover, constraint &, > &, suggests 4, =0 by (A71).

Based on the values of A, and A, there are four sub-cases.

Case 2a-1: Suppose 4, =0 and A, =0. Then, (A67) and (A69) become

(1-6)a+(2—-0)c,—(3-20)c,

i-0)

>0 iff

>0, and (6, —4,) =0 through calculations.

2—1b€(a—c, -1, —2bs,)=0 and (a—c, -6, —2bs,) =0. Solving the two equations yields r° =0,
_ 1— -
S L EP P C) Ll W VRSV
(1-0) 2b(1-6)
(1-8)a+(2-6)c C,—C
C SC' = 1 55 _51 —__h 1
h h (3_20) ( h h)

s
— 0

_Cl

Moreover, we have & €[0, 5] with &/'= 2

2b

a-c¢
= by (A70),
0 y (A70)

(oo [(1-6)a+6c —c, |x[(1-0)a+(2-6)c, —(3-26)c, |

4b(1-6)’
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(s _ (1-0)a*-2(1-6)ac, —2(1+6)cc, +(1+6)c’ +2c;
=

. It remains to show 7" > 7' at
4b(1-6)
a-c,-r°) (a-c-r)
equilibrium. Note that f* =07 (a—bs: —rf—c, ), fi=b|| =— L | .| = h £2
a h h( h ' h) | [[ 2b J [ b j]+ h

S=o1, m =b[‘+b‘“j — 17 if 57 €[0.57], 7 =& [a-bs —c, i |- £ if 67 < (67,671,

and 5 [a-bs’ —¢, -1 | < b(c—j if 6° >0 . Thus, for & [0, 5], we have

(ﬂﬁhﬂ§')>bl(a G- j (a 9= J] [b(—a;“br'sj 56'(ab5r§'chrhs)}

_ (Ch _C|)[2(rhs _rl

C — —
I}>Oby(rhs—l’|s):ch CI>Ch |

. In summary, a solution exists
4b (1-0)" 2
1-0)a+(2-6)c
under c, s( 23 ge) ) L with the port authority’s equilibrium fee revenue

RS = (1-0)a*-2(1-6)ac, — 26c,c, + 6c] + ¢}
21

. AT5
4b(1-0) (AT5)
Case 2a-2: Suppose A, =0and 4, >0. Then, (A67), (A69) and (A74) become

b —(a-¢ —1,-2bs,)- 4 =0, (@a—c,—6r,—2bs,) =0 and (f, —r,) =0. Solving these equations

yields r*=0, rf = =(a+c —2¢,), & =2—1b[(1—¢9)a—00, ~(1-20)c, | and

i = [-(1-0)a-(2-0)c +

a+cI

(3-20)c, |. We obtain r; =f, =(a+c,—2¢,) >0 iff

Ch < Cth -

, (6 -0))= b(1 0)(a+c, —2c,)>0 iff ch<ch52_a+c'

. , (1-0)a+(2-0)c .
(5;’—55):2—1:)[—(1—9)a—(2—6’)cI +(3-20)c, |0 iff ¢, >c; E( 23—£9) )G ,and 4 >0
iff ¢, >c, with ¢, <c,, through calculations. Hence
(s [(1-0)a-6c +(20-1)c, |x[-(1-0)a—(2-0)c, +(3-26)c, |

4b

2 2
a-¢ ) —4(c,—c -1’ - -
f° :( ) 4b( »=4) + f; and &7 €[0, 5] with &)= 2 gb G _ aZbCI by (A70). It remains

to check whether 7" > 77 holds at equilibrium. Because f;® = &7 (a—b5S - —ch)

2 2 2
. a-c¢ —r’ a-c¢ -r’ s s a-c¢ —r’ s e os ,
f, :bl(—z'b ! J _(—Zlb “j}tfh , Ty =b[—2“b ' j —f2if 6 €[0,5/],
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s 2
7 =5 [a-boy —¢,~1° |- 17 if 67 e (6,67, and & [a—ba‘,s—ch—r,skb[%j if 5°> 6

for 57 €[0, 6], we have

s\2 A S 2 A~ _yS 2
(ﬂ_sh_ﬂ_sl)>b[[a_(2:|b_r| ] _(a Z'b T J ]—[b[—a ;hb d ] _é‘hs(a_bé‘hs_rhs_ch):l

_ (a+g —2ch)[—(1—,9)2 a—(3£—1b29+92)c| +(4—49+2¢92>cd o
(1-0) a+(3-20+6%)c it (1-6)" a+(3-20+6%)q _(1-9)a+(2-0)c,
(4-40+20%) (4-40+20°) (3-20)

suggests that 7" > 72 when ¢, > ¢ . In summary, a solution exists under ¢/ <¢, <C,, with the port

authority’s equilibrium fee revenue

c, >

=cC,. This

1| (1-0+06%)a® —20(2-0)ac, -2(1-30 +20° ) ac,
4b| +20(5-20)cc, - 0(3-0)c! +(1-80+46°)c;

(AT6)
Case 2a-3: Suppose 4, >0 and 4, =0. Then, (A67), (A69) and (A72) become
2ib(a—c, r —2b5h)—2—1bx3 _0, (a—c, —6r —2b5, —4)=0 and (5"~ 5,) =0. Solving these
equations yields A4, =0, which contradicts A; > 0. Thus, no solution exists in this case.
Case 2a-4: Suppose 4, >0 and A >0. Then, (A67), (A69), (A72) and (A74) become
% 1 " -
%(a—c, -1 —be“h)—%/i3 -4 =0, (a—c,—6r,—2bs, - 1,)=0, (5,—05,)=0 and (f,—r,)=0.
Solving these equations yields 23* =0. This is a contradiction. Thus, no solution exists in this case.

Case 2b: Suppose I, >, =a+c¢ —2c,.Since f’ =4, (a—bs, -1, —c,)>0 iff
5, <0, EW' Under condition T, >, , we have &, <d, . Thus, conditions &, < &, <5, and

5, < 5! can be combined into & < 8, <4, . Thus, problem (12A) becomes

max  R=0(rg" + f,)+(1-0)(r,a" + f,)

(2 11.3). (% fr )
st. 0<6, <6/, 8/ <6, <6,,0<r,<a-c and T, <r, <T,. (A7)

Its Lagrange function is

2 2
L=y rl‘(a_cl_rl)Jr(a_Cl_rl) _(a-¢-1) +5,(a=bs, -1, —c,)
2b 4b 4b

28



+(1_9)|:rh -6, +0, (a-bs, -, _Ch):|+2’l(5l”_5l)+ﬂ'2(5h ~3)

(00 =0y )+ A (3= 1)+ A (1, =, )+ A (T, —1,),

where 4,4,, 4;,4,, A and A; are the respective Lagrange multipliers associated with the inequalities
in (A77). The corresponding Kuhn-Tucker conditions are

oL 0 1 oL
— =1 —-——A-14,<0,1-—=0, AT8
o 2b" 2b/11 ’ 'or, (A76)
oL @ 1 1 oL
—=—(a-¢ -1, -2b5, )+—A, ——A+A4— A, <0, -— =0, AT9
o (3O TN A )t A A A S0 (AT9)
oL oL
—=-4<0,6-—=0, A80
& —ns0a-g (A80)
oL oL
—=a-c,—0r,—2b5, + 1, -2, <0, 5, — =0, A8l
8§h h h h 2’2 23 h85h ( )
A _sss04-L g, (A82)
04 04
A 55204 g (A83)
0, 04,
oL =« oL
= =5,-6,20,4,-—=0, A84
6% h h /”‘3 8/13 ( )
a—I‘:a—cl—rI >0, /14-6—L:0, (A85)
o4, o,
L -k 20,420, and (A86)
04 oz
Ao rison Lo (A8T)
04, 04
oL 1 1 . \ \
Since a—r:—%é’n —%/?1—24 <0 by (A78), we have 1" =0. Hence 4, =0 by (A85).If 4, >0,
|

then &° =5/>0 by (A82), which implies 4 =0 by (A80). This is a contradiction. Thus, we must

have 4 =0.If A, >0, then r, =T by (A87). This suggests &, = (a_;“b_ h) _ (a_;“b_ h) =0=9,

at r, =T =(a-c,), which contradicts &/ <&, <4, . Thus, we must have 4, =0. Moreover,
constraints &, >J, and T, <r, suggest 4, =4 =0 by (A83) and (A86).
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Based on the values of 4,, there are two sub-cases.

Case 2b-1: Suppose A, =0. Then, (A79) and (A81) become %(a —¢, —1,—2bs,)=0 and

=
-(1-0)a—(2-0)c, +(3-20)c,
(1-0)

and

(a—c, —6r,—2bg,) =0. Solving the two equations yields ° =0, r° =

1-0)a+0c,

2b(1-0)

(1-0)a+(2-0)c, (1-0)a+(2-6)c, —(3-26)c
(3-20) 2b(1-06)

have r’ > T, and &, > &° at the same time. Thus, no solution exists in this case.

—C
5;=( " Since (P —F) = >0 iff

C,>Cl = (6, -8 = " >0 iff ¢, <c,we cannot

Case 2b-2: Suppose 4, > 0. Then, (A79), (A81) and (A84) become

%(a—c, ~h _Zbah)_%ﬂe =0, (a—¢,—0r,—2bs, — 4,) =0 and (5, -5,) =0. Solving these
2-0)a—-6c —2(1-
equations yields r* =0, r’ :( 0)a—6c —2(1-0)c, ’

4-30
< —c —rf - —(2- 0| -(1-0)a—-(2-60)c, +(3-20)c
55 @GR _20-0)ar06-(2-0), . [-(1-0)a-(2-0)c +(3-20)c, |
b b(4-30) (4-36)

—2[(1- 2-0)c,—(3-2
Note that (S —F ) = I ‘9)‘“(4 ‘Z;C' ( 9>Ch]>0iffch>c;,
(6 -8 = 2(1-0)a+6c, —-(2-0)c, L0 iff ¢, <c = 2(1-0)a+6c, and

2b(4-30) 2-0
(N 2(1-0)a+e6-(2-0)c, >0 iff ¢, <c/. We have (c,g'—c;]):(1_9)(4_39)(a_c') >0

(4-30) (2-6)(3-206)

through calculations. It remains to show 7" > 7 at equilibrium. Because f° =0,

S 2 S 2 _ _ S 2
f°=b a6 -h | _jaza-h +fh5’”;':bm — 2 if 50 [0,5],
2b 2b 2b

s \2
7 =& @by —¢, — K" |- 17 if 57 < (6/,57] and §,S[a—b§f—ch—rf]<b(—a_ch_r' j if

2b

S 2 S 2 S 2

5 >80 for 8¢ [0, 57], we have (7" —z¢)>b| [ 220 | | 3=5 70 | _[37&% h
2b 2b 2b
—4(1-6) a®-2(8-80+6%)ac, +2(12-160+56°)ac
=HE;2 ( )2 ( ) ! ( ) " . On the other hand,
4b(4-30) | +16(1-0) cc, +0(8-76) ¢ —(20-320+136% )¢

2y —(20-320+136° 1-6%)(a—c ) _ ¢V
8I—2|: ( > )<0,H=( )( 2') >0atch=c;,andH:0(1 o) ZC') >0
ac, 2b(4-36) 4b(3-20) b(2-6)

at ¢, =c/. Thus, we get (7" -z )>H >0 for ¢/ <c, <c/, and a solution exists under ¢/ <c, <cCy .
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The optimal fee contract and minimum throughput are r° =0,
(o [(6-50)a—(8-70)c, +2(1-0)c, |[(2-0)a-6c, -2(1-6)c, |
S =

. 5° [0, 8] with

4b(4-30)°
51— a-n'-c _a-¢ o (2-0)a—6c, —2(1-0)c, £520 and
2b 2b 4-360
5 =6, = 2(1_0)?: 9;'9;52 ~0)G , and the port authority’s equilibrium fee revenue equals
2
2—-0)a—-0c —-2(1-0)c
R;:[( Ja—oc —2(1-0)c, | (A88)

4b(4-30)

Case 3: Suppose &, €[0, 5] with 5,”=$, and &, 6(5;’,%] with 5,;’=$. Lemmas

4(i)-(ii) and Lemma 5(iii) imply that the I-type operator’s equilibrium profit is

2b
the binding (IC, ) and (IR,) suggests

2
= b(mj — f, and the h-type operator’s profit is z;" = 5,[a~bs, —r, —¢c,]~ f,. Again,

2
£ :b(%{“j ~5,-(a=bs,—1,—¢)+5,(a=bs, -, —¢c,) >0 and £ = 5, (a—bs, —r, —c, ).

We have f® >0 iff 5 <5, _@=h=C) gpq r, <T,. Moreover, (&, —&") = 2+ 5 _2§Ch —h s 0 iff
I, <k =a+c —2c,. Thus, problem (12A) becomes
_ sl sh
o dBX R _6?(r,qI - f,)+(1—9)(rhqh + fh)
st. 0<6, <6, 87<6,<6,,0<r,<a-c and 0<r, <T. (A89)

We rewrite the port authority’s objective function as

2
R:'{rI .(a;: _n)+(a_jb_r') =6,-(a=bs, -1, -¢)+4, (a-bs, -1, —c,)

+(1-0)[r,-6,+5,(a=bs, -1, -c,)]

:9{” '(a;: _r')+(a_i'b_r') ~8,-(c,~¢) [+(1-0)5, (a-bs, —c, )

and its Lagrange function is
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h '(a_cl —ﬁ)+(a—Cu _rl)2
2b 4b

+/12(5h—5g’)+/13(5~h—5h)+/14(a—c, —1)+ 4 (F -r),

L=6

~5,-(c,-¢,) +(1—¢9)5h(a—b5h—ch)+21(5,"—§,)

where 4,4,, 4;,4, and A are the respective Lagrange multipliers associated with the inequalities in
(A89). The corresponding Kuhn-Tucker conditions are

oL 0 1 oL
— =1 -—2-2,<0,r1-—=0, A90
o 2b" 2bﬂi ! 'oor, (A30)
oL 1 1 oL
—=— A4 -—=1-4<0,r - —=0, A91
or. 2b22 b/% % "o (A1)
oL oL
== 1<0,6-—=0, A92
o5~ A0 (A92)
L (1-6)a+06—c,~2b(1-0)8, + 4~ 4 <0, 8, 2= =0, (A93)
a6, 99,
i:(g‘l”_é‘l ZO,ﬂl-izO, (A94)
o, FYA
i=5h—5h"zo,/12~i=o, (A95)
04, 04,
L 5 -6,204-L 0, (A%)
2z 04,
iza_cl _rl 201 jﬂ.i:O,and (A97)
o4, oA,
A _prson Lo (A98)
0 0
- | 1 . . .

Since a—r:—z—ber, —Z—bﬂl—l4 <0 by (A90), we have 1 =0 and 4, =0 by (A97). If 4, >0, then

|

5° =58>0 by (A94), which implies 4, =0 by (A92). This is a contradiction. Thus, we must have
A, =0. Moreover, constraints &, <dJ, and r. <T, suggest 4, = A, =0by (A95) and (A98). If A, >0,

then r° =0 by (A9L) and &° =, - (a‘“;O —C) _ (a;"h) by (A96). Hence (A93) suggests

A, =—(1-6)a+6c, +(1-20)c, <—(1-0)a+6c, +(1-20)c, =—(1-6)(a—c,)<0. Thisis a
(1-0)a+0c,

_Ch
by (A93). Note that
o) AP

contradiction. Thus, we must have A, =0. Therefore, &° =
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e o _(=0)n (6 -6) o ¢, —G

(6, -o,)= 2b(1-0) >0 ifr, >(1_9) :

G 5= (1-8)a—6c, —(1-26)c, —2(1-6)r, S0ifr < (1-8)a—6c, —(1-26)c, and
2b(1-6) 2(1-6)

I’ <(a+c,—2c,). By some calculations, we have

(1-0)a-6c,-(1-20)c, c,-c, (1-6)a+(2-0)c,—(3-20)c, _ .
_ = >0 iff

2(1-6) (1-0) 2(1-6)
(1-0)a+(2-0)c (1-6)a—6c, —(1-20) (1-8)a+(2-06)¢

C, .
C, < L, and (a+¢ —2c,)> " if ¢ <

(3-26) 2(1-0) (3-26)

It remains to check whether 7" > 7' at equilibrium. Because f° =3; (a—béhs -r —ch) :

S 2 _ _rS 2

S
a—c,

m =6 a=bs —c, - |- 17 if 57 (8,5, and & [a—ba‘ﬁ—ch—rf}<b[ o

2
j if 8 >9/;
for 57 €[0, 6], we have
S 2 _ _yS 2
-y >b[(a—;,b—r, j _(a ;hb h ] ]—[5ﬁ(a—b5§—rhs—c.)—éhs(a—béhs—rhs—ch)}

c, —C)|2a—¢ —c,—2r° —45; —c )
=( " ')[ S — h]=(1+6))(Ch &) > 0. The optimal fee contract and minimum

40 4b(1-6)
throughout exist for c, < (1—6?)a+(2—6?)c| with r; € G —G ’(1—9)a—¢9cl _(1_29)0“ ,
(3-26) (1-6) 2(1-0)
5 [0, 67 with gy=2"1 =5 _8=4
2b 2b
o [(1-0)a+06c —c, |x[(1-0)a-0c —(1-20)c, - 2(1-0)r; |
“ 4b(1-6)’ ’
— 2 _ _ _ 2 2
f*= (1-0)a’-2(1 e)ach4b(21(1;)9)c,ch +H1+0)a +26, , and the port authority’s equilibrium fee

revenue equals

ns _ (1-0)2° ~2(1-6)ac, - 20, +6¢] +c] (A99)
2 4b(1-0) |

Case 4: Suppose 6, e(@",%j with 5{'=$, and &, €[0, 5,] with & =%. Lemma

A(iii) and Lemma 5(i) then imply that 7;' =&, [a-bs, -1, —c,]- f,, 7 =b(q§h)2 —fo, 1 :b(qﬁh)z,
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and f, =5 [a-bs —r, —c,]—b(qf“)z+ f. by the binding (IC, ) and (IR,,). Problem (12A) thus
becomes

2 2 2
(% fn16h)

st. 8'<5 <%,035h <&, 0<r<a—c and 0<r, <T. (AL00)
Its Lagrange function is
L=6’[5|(a—b5,—c,)—b(qfh)z+b(q§“)2}+(1—9)[rhqffh+b(QEh)2}
(6 -0+ (0 -0) [ 20+ (),

where 4, 4,, 4,and 4, are the respective Lagrange multipliers associated with the inequalities in
(A100). The corresponding Kuhn-Tucker conditions are

%=9~(a—2b5,—c,)+21—13£0,5|-%=0, (A101)
1 |

oL 1 1 oL

—=—6(c,—¢)-(1-0)r. |-——A4, -4, <0,r,-— =0,

or, 2b (6,-a)-(1-0)r ] TR "o

A o5y

a5, 6,

%: 8 -6'20, 4 -S—Z =0, (A102)

i:ah'—@zo,x? Ay

04, o4,

%%_5, 20,/13~%=0,and (A103)

L LI,

o, oA,

Constraint &<, <a suggests 4 =4, =0 by (A102) and (A103), and hence &° = a-¢

by
(A101). Problem (12A) then becomes

2
e R=6 —(a;;') -b(qf“)z+b(qr?“)2}+(1—9)[rhqﬁ“ #b(a)'|.
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in which the port authority’s objective function is not affected by I, . Note that the port authority’s
maximization problem in (A54) given I, =0 is

2
max R=0 %—b(qf”)2 +b(qr?“)2}(1—6’)[thr?“ +b(a)’ |

because ¢ :% at , =0 by Lemmas 4(i)-(ii). This implies that the optimal concession

contract (17, f*, 55 ) here is the same as that in Case 1. By contrast, the optimal contract (°, °,57)
for the I-type operator in Case 1is r° =0, and f° and & satisfy the constraints of Case 1, while the
optimal contract (rls, fls,é‘,s) for the I-type operator here is &5 :az;bcl’ and r’and f° satisfy the

constraints of this case. Nevertheless, these differences do not affect the port authority’s equilibrium
profits. They are the same in Case 1 and here. The optimal contract (rhs, fhs,éﬁ) for the h-type

operator here is the same as that in Case 1, but the optimal contract (rf, f,s,é‘f) for the I-type
operator is different. Accordingly, we also have two sub-cases.

Case 4a: As in Case 1a, under ¢, <c,, with ¢, =(1-6)a+6c,, the optimal concession

contract (rhs, fhs,é,f) is 1, :M>O, o, €[0, 6,1 with &, = ah —G :(1—6?)a+¢9c, ~% and
(1-9) 2b 2b(1-6)
2
fy =Db (1-0)a+ o6 —c, > 0. The optimal concession contract (r,s, f|5,5|5) is &¢ = a-¢
2b(1-6) b
2 2 2
¢ elo, oA | A1=(a_c') | A=0)a-(1-20)c -6c, | |(1-0)a+6c —c, and
(a—c,) 4b 2b(1-06) 2b(1-06)
2 2 2 S
fls:(a_cl) b (1—9)61—(1—20)(:,—0ch +b (1—0)a+9C|—Ch _(a_CI)'rI 1t remains to
4 2b(1-06) 2b(1-06) 2b

2
T . a—-c, —r,
show 7z;" >z, at equilibrium. Since f.; :b(—zhb h j ,

s )2 \2
R - RN L B

) =57 [a-bs; —c, -1 |- f°, we have

sh sl s s s a_Cl_rh’S i s s s a_Ch_rhs 2
st - o252 [ty
(c,—c)[ 2 +(c,—6) ]

= 20 > 0. Thus, the port authority’s equilibrium fee revenue is R’ as in (A63).
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Case 4b: Asin Case 1b, under ¢, > ¢, with ¢, =(1-6)a+6c, , the optimal concession

contract (17, .87 ) is ¥ =T, =(a—-c,), & =0 and f; =0. The optimal concession contract

(k5 1,67 is P R O’(a—ch)[a—2c,+ch] and
2 2(a-q)

a-c,)[a-2¢ +c,]-2(a—c)r’
4b
Thus, the port authority’s equilibrium fee revenue equals R/, as in (A64).

f°= ( . In addition, 7z;" >z holds at equilibrium as in Case 4a.

f

Case 5: Suppose e(@",%j with 5{'=%, and &, (d;, ] with 5;:%. Lemma

4(iii) and Lemma 5(ii) then imply ;' =6,[a-bs, -1, —¢,]- f, and z;" =6, [a-bs, -1, —¢,]- f,

a—¢C —r,

with f° =6 (a-bs —r —c )-b
I |( [ | |) ( on

2
j +6,(a-bs, -1, —c,) and f’=0,(a-bs, -1, -c,).

Problem (12A) thus becomes

(a-¢ -r,)
4bh

(rl A ,(Sl),
(Mo f40n)

max R=9{I’|5,+5|(a—b§,—r|—cl)— +5h(a—b5h—rh—ch)]

+(1-0)[1,-6,+05,(a=bs, -1, -c,)]

a—c,—rh)2

:9{5' (a—bg, —c,)—( 10 +6, (a—bs, —r, —ch)}(l—e)éh(a—b&h -c,)

st 8<3, <%,5h' <8 <&, 0<r<a-c and 0<r, <F. (A104)

Similar to Case 4, we discover that & = aZ_bCI ,and r’°and f,° meet the constraints in (A104). Thus,

the optimal concession contract (rhs, fhs,5hs) in Case 5 is same as that in Case 2, and there are three
similar sub-cases.

(1-6)a+(2-0)

C
Case 5a: Asin Case 2a-1, when ¢, < L the optimal contract for the h-type

(3-20)
(s €5 o5\ unrisl w5 Cn—C . (1-0)a+06c —-c
operator is (rh,fh ,5h) with r’ = (1'1_(9'), 5 :( 233(1_03 " and
1-6 oc, — 1-60 2-0)c, —(3-20
fy = [(1-0)a+ o Ch]x[‘(lb g )Z;( )6~ )o] . The optimal contract for the I-type

operator is (rf, f,5,5,5) with r? e(o, 20A, }

(a—¢)
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A - (1-0)a*-2(1-0)ac, —2(1+0)c,c, +(1+0)c’ +2¢;

4b(1-0) ’
5o (1-0)a’-2(1-0)ac, —2(1+8)cc, +(1+0)c’ +2¢; (a-¢)-K’ and &° = 8=C |\ remains
4b(1-0) 2 2b

to show 7' >z, at equilibrium. Since =57 -(a—bs; -1 —c, ),

s 2
fo=o-(a-bos -1 —cl)—b(%] +12, mt =58 -(a-bss —rP—c, )~ £ and

) =57 [a-bs; —c, -1 |- f°, we have

s 2
(7 ) !5,5 (a-bss —r? —c,)—b(%} ][ds(abé‘ﬁ —¢,—1°)-5;-(a-bs; 13 —ch)]

(¢ —¢ )2

—Zb(l 9) > 0. Thus, the port authority’s equilibrium fee revenue equals R;, as in (A75).

1-6 2-0
Case 5b: As in Case 2a-2, when ¢, <, <C,, with c,, ~2*% and C, = (1-0)a+( )G :
(3-26)
the optimal contract for the h-type operator is (rhs, fhs,df) with r” =F, =(a+c,—2c,),
s [(1-0)a-6c +(20-1)c, |x[-(1-0)a—(2-0)c, +(3-20)c, |
" ab

and

5 = 2—1b[(1— 0)a—06c, —(1-20)c, |. The optimal contract for the I-type operator is (1, f,*,57 ) with

ool

A= (a-c) ~4(c,—c)  [(1-0)a-6 +(20-1)c, [x[-(1-0)a-(2-0) +(3-20)c, |
4b 4b |

a—¢)-r’ -
% and &; :TC" It remains to check whether 77" > 7' at equilibrium. Since

f|S:A3_
a-c —r’ ?
fS:5s'a—b55—rs—C , fszé‘s-a_bé‘s_rs_c _b Y 7 +fS,
h h ( h h h) | | ( | | I) [ 2b j h
i =5§’-(a—b5§—rhs —ch)— f*and 7o' =& [a—bé‘,“’—ch—rf]— f°, we have

s 2
- [s.wa—baf—rf—c.)—b[%j ]—[ar(a—baf—ch—r.s)—a:-(a—ba;—r:—ch)]

(a-6)f6-0) (2t

2
2 2h ) +§§~(a—b§§—rhs—ch)

>b[(a2—bc. )2 _[a—czz.b—rhs ﬂ{b(a;bch )2 -8 (a=bs; -x; —ch)}
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a+c —2c ) —(1-6Y a—(3-20+6%)c +(4-40+26%)c
( | h)[ 1-9) ( m ) ' ( ) hJ>O if ¢, >c,. Thus, the port

authority’s equilibrium fee revenue equals R,, as in (A76).

(1-8)a+(2-6)c

Case 5¢: As in Case 2b-2, when ¢; <c, <C, with ¢, = (3-20) and
2(1-0)a+06c
Cp = ( 2}; L, the optimal contract for the h-type operator is (rhs, fhs,éj) with

. :(Z—H)a—é’c, -2(1-6)c, £520 and &0 =4, = 2(1-0)a+6c, —(2-0)
4-30 (4-30)b

contract for the I-type operator is (r°, f,*, &7 ) with

v e 0’[(6—59)a—(8—79)c,+2(1—¢9)20h][(2—9)a—9c,—2(1—9)ch] |
2(4-30) (a-¢)

flsz[(e—se)a—(s—m)cl+2(1—9)ch][2(2—0)a—0c,—2(1—9)ch]_(a_cl).rls and 572G
ab(4-30) 2b 2b

It remains to check whether z;" > ;' . Since f; = &5 -(a—bs; -1 —¢, ) =0,

“ The optimal

s 2
fusZé]s'(a—bfﬂs—ﬁs—‘?.)—b[%j 7 =65 -(a—bdy -1 —c, ) - f* and

m =6 [a-bs —c, -1 |- f°, we have

2
s s S s s a—cC _rs s s s
(' —7) =57 -(a—=bs7 - —c.)—b(#j -5 (a-bs—c, - 1)

(e o e
1 [—4(1—9)2612—2(8—89+02)ac,+2(12—160+502)ach

~ 4b(4-30)"| +16(1-0) ¢, +0(8-70)c? —(20-320+130° )

the port authority’s equilibrium fee revenue equals R;, as in (A88).

N

}>O forc, <c, <c, . Thus,

v a H w_a—1h—C w a : v a—1 —C
Case 6: Suppose &, e(&,,gj with 6, =#, and ¢, e(éh,gj with & =#.
Lemma 4(iii) and Lemma 5(iii) then imply 7" = 5, [a—bs, -1, —¢,]- f, and

" =35,[a-bs, -1, —c,]- f, with
f*=¢(a-bs -1 -c)-6,-(a-bs,-r,—¢ )+, (a-bs, —r,—c,)>0 and

fe =6, (a-bs, —r,—c,). Constraint 5, <4, <% will guarantee f;° >0. Thus, constraints
a ~ . ~
O <O, <E and o, <4, can be combined into &, <5, <9, . Problem (12A) thus becomes
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(max R=0[rd+ (a-bs -1 -¢)-3,-(a-bs, -1, —¢)+3, (a-bs, — 1, —¢,)]
(% f16h)

+(1-0)[r,-5,+05,(a=bs, -1, -c,)]

=66 (a-bs —¢)-6,-(c, —¢ ) |+(1-6)5, (a-bs, —c,)
st &< <%, 5r<5 <8,,0<r <a—c and 0<r, <F.. (AL05)

Similar to Case 3, we discover &; =%, and r° and f° satisfy the constraints in (A105). The

optimal contract (rhs, fhs,éhs) is the same as that in Case 3. It remains to show 7" >z at

equilibrium. Since f’ =67 -(a—bsy -1 —¢,), =" =d; -(a=bs; -1y —c, ) - £,

fP =57 -(a=bs’ —1°—¢ )= o -(a-bs; -1y —¢,)+ 65 -(a—bs; — 1 —c, ) and

) =57 [a-bs; —c, -1 |- £°, we have

(7 -m)=6°-(a=bs —1° —¢ )=, -(a=bs; -1 —¢, )+ 65 -(a—bsy — 1 —¢, ) -5 (a—bs —¢, - 1)

(G = )2

2(1-0)

:(Ch_c|)(5|s_5hs):

as in (A99).

> 0. Thus, the port authority’s equilibrium fee revenue equals R;,

Therefore, there exist five solutions. By comparing them, we can find the port authority’s

2_ —
optimal contracts. Since (c; —C,,) :( 23(92)5‘2) ¢) >(<)0 iff 9<(>)§,
y 0(1-0)(a-c 20-1)(a-c . 1
(Ch_chsl): ( (21(0) I)>O’(Ch52_chsl):( )2( |)>(<)O Iﬁ: 0>(<)E’
2
(Cy—Cr)= 2(1_(?:93 2(;)‘ G) >0 and (C,—Cr)= % >0, we have three sub-cases according

to the values of @ as follows.

1 1 , " , 1
Case A: Suppose 6 < > If 6< > then ¢, <c,, <C.,, <C,. However, if 0= > then
C, <C., =C.y <Cr . In either case, we have four sub-cases.

Case A-1: For ¢, <c, there are two solutions:
(1-0)a*-2(1-0)ac, —20%cc, + 0°c} +(1-0+6°)c;

R, = 4b(1-6) as ¢, <C,,, and
- 2 _ _ _ 2 2 0 Y
RS = (1-0)a*-2(1 4i)gc_h 9)200,ch +0c] +¢ as G, <c! . Since (RS —R%) = (ch4 c) .0,

revenue R;, is optimal.
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Case A-2: For ¢/, <C, <C,,, there are three solutions:
R = (1-0)a’ —2(1-0)ac, —26°cc, + 6°¢; +(1-0+6°)c; s <c
4b(1-6) i
1| (1-0+06%)a® —20(2-0)ac, -2(1-30 +20° ) ac,

b +20(5-20)cc, - 0(3-0)c! +(1-80+46°)c;

S =

!
5, = as ¢, <C, <C,,,and

. [(2-6)a-6c,-2(1-6)c, ]

as C, <C, <C . Since

“ 4b(4-30)
o(Rs,—Ry) 9[(3—59+292)a+(2—92)cl—(5—59+92)ch]
ac, 2b(1-6)(4-30) !
(Ru-Ry) —0(5-50+¢")  O(Ru=Ri) 6(1-6)(a-c)
o’ 2d(1-0)(4-30) o 2b(3-20)
. .. 6(1-0)(a-c) , 0(R;-Ry) -6(1-6)(2-6)(a-c
(R —Ri) = (4b(3? (ZH)ZI) >0 at ¢, =¢,, ( 283C l): ( 28((4_39))( I)<0 and
- h
2 . 2 _ 2
(R —R:) = 0 (bez_(;)c') >0 at ¢, =C,,, we have R}, >R}, for ¢ <c, <cC,, . Moreover, by
2
30[(1-6)a+(2-6)c, —(3-20
(R —R3) = L )a+z§b(4—);;)( )] >0, we obtain R, >R’ and R, > RS, for

C <C, <Cp -

f(a-c,)(a-2c +c,)

Case A-3: For ¢, <C, <Cp, there are two solutions: R}, = m as ¢, >C,
[(2-6)a-0c,-2(1-0)c,] o
and R;; = as ¢, <C, <C, . Since
4b(4-30)
. .. [2(1-0)at+ec —(2-0)c,T C ,
(Ry; —Ry) = 4(4-30) >0, we have R,; >R;, for ¢, <C, <Cj.
: . . fla—-c,)(a—2c +c
Case A-4: For ¢, > ¢/, there is a unique solution: R}, = (a-c.)( G) as ¢, >Coy.-

4b
Thus, revenue R, is optimal for ¢, >c; .

Case A-1 to Case A-4 imply that R, is the largest when ¢, <c;, that R;, is the largest when

! 14 H " l
¢ <C, <Cy,and that R}, is the largest when ¢, >c; for @ <E'

Case B: Suppose 1 0< 2l 0< 2 , then ¢; <, <Cy, <Cr . However, if 6= E, then
2 3 3 3
C, <C.y <Cn, =Cp . In either case, we have three sub-cases.
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Case B-1: For ¢, <c/, there are two solutions: R, and R;,. As in Case A-1, revenue R,, is
larger.

Case B-2: For ¢; <c, <y , there are four solutions: R, for ¢, <c.,, R}, forc, >¢,,,R,, for
C, <C, <C.,,and R}, for ¢ <c, <c . Asin Case A-2, we have R}, >R}, for ¢ <c, <c,, and
R;, >R, for ¢; <C, <C,,. Asin Case A-3, we have R}, > R}, for ¢, <C, <c/. Thus, revenue R,,
is optimal for ¢, <c, <c/ .

Case B-3: For ¢, >c/, there is a unique solution: R}, for ¢, >, . Thus, revenue R}, is optimal
for ¢, >cy .

2
Case C: Suppose§ <@<1.Then ¢ <C <C; <C.,. There are four sub-cases as follow.

Case C-1: For ¢, <c/, there are two solutions: R}, and R;,. As in Case A-1, revenue R;, is
larger.

. ! n H . S S S
Case C-2: For ¢, <c, <c,, there are four solutions: R, for ¢, <c,, R, forc, >¢.,, R,, for
Cr <C, <Cy,,and R;, for ¢ <c, <cp.Asin Case A-2, we have R;, > R, when ¢; <c, <¢,,, and
R;; > R), when ¢/ <c, <c/ . As in Case A-3, we have Ry, > R}, when ¢, <¢, <C;. Thus, revenue
R,; is optimal when ¢/ <c, <C .

Case C-3: For ¢y <C, <C,,, there are two solutions: R}, and R;,. Since

o(Ry-Ry) 1
(;fhzz):2—b[(1—36’+292)a—20(2—0)c|+(_1+79_492)Ch]

30(1-0)(3-20)(a-¢)
- 2b(2-0)

>2—1b[(1—39+ 20°)a-20(2-6)c +(-1+70-40)c; | >0 due to

a(Rlsz - R252)
ac,

4-39)(1-0)’ (a-¢)’
30(4-30)(1-9) Z(a %) o a ¢, =c/, and hence R}, > R;,
4b(2-0)

(—1+76?—46?2)>0 when §<9<1,we have >0 for ¢/ <c, <c,, and §<0<1.

Moreover, we have (R}, —-R,,) =

2
when ¢y <¢c, <C,, and =< <1.
3

Case C-4: Forc, >C,,, the unique solution is R}, .

Based on Case C-1 to Case C-4, we find that R, is the largest when ¢, </, that R}, is the

largest when ¢, <c, <cy , and that R}, is the largest when ¢, >¢; and §< <1,
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In summary, the results of Cases A-C suggest that R, is the largest when ¢, <c;, that R;, is
the largest when ¢, <c, <cy, and that R}, is the largest when ¢, >c; for all values of &. Note that
R,, occurs in Case 2a-1, Case 3, Case 5a, and Case 6; that R,, appears in Case 2b-2 and Case 5c;
(1-0)a+(2-0)c,

(3-20)
port authority’s best choice (rls, f,s,ds) for the I-type operator is the fixed-fee scheme with
(1-0)a*-2(1-0)ac, —2(1+0)cc, +(1+0)c +2c]

4b(1-0)
Case 3; or the two-part tariff scheme with
e (01 (1-6)a? —2(1-8)ac, —2(1+8)cc, +(1+8)c? + 205} |

and that R}, exists in Case 1b and Case 4b. Thus, for ¢, e(c,,c; | with ¢; = , the

fo =

and &/ [O Z—b} as in Case 2a-1 and

2(1-0)(a-c)
fs:(1—6’)a2—2(1—9)ach—2(1+6’)clch+(1+6’)c|2+20§—2(1—6’)(a—c.)r,5 and ¢ = 270 46
! 4b(1-9) 2
(1-0)a*-2(1-0)ac, —2(1+0)c.c, +(1+0)c +2c;

in Case 5a and Case 6. In particular, at 1’ =

2(1-0)(a-c,) ’

we will have f°=0 and & = %, which is an optimal unit-fee contract. On the other hand, the

optimal two-part tariff contract and minimum throughput guarantee ( A ,55) for the h-type
¢ fs_[(l—ﬁ)aJr&c,—ch]x[l—H )a+(2-0)c —(3-20)c, |

operator are r; = <y h = > and
(1-0) 4b(1-0)
5 = (1-0)a+d6 -, as in Case 2a-1 and Case 5a; or I €| 21U ,(1_0)61_90' ~(1-20)c, ,
2b(1-06) (1-6) 2(1-6)
o [(1-0)a+6c —ch]x[(l—e)a—ecz, -(1-20)c,-2(1-0)r; | and & = (1-0)a+6g —c,
4b(1-06) 2b(1-6)
in Case 3 and Case 6. In particular, at 1’ = (1—9)a—2?1c| _9()1_29)(:“ , we will have f’ =0 and

5 = (1-6)a+0oc —c,
2b(1-0)
to the operators, the port authority’s equilibrium fee revenue is always
(1-0)a*-2(1-6)ac, —26c,c, +6c’ +c;
4b(1-6)

, Which is an optimal unit-fee contract. No matter which contracts are offered

R® = . This is what Proposition 2(i) shows.

2(1-0)a+6c . : . :
( ) % , the port authority’s optimal contract is the fixed-

When ¢, (c;,c) with ¢/ =

fee scheme for the I-type operator with
s _[(6-50)a—(8-70)c +2(1-0)c, |[(2-0)a-0c —2(1-0)c, ]
| 4b(4-30)’

and & € {0 —} as in
2b
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Case 2b-2; or the two-part tariff scheme with
e 01[(6—50)&—(8—76’)c|+2(1—49)::h][(2—9)a—6’c,—2(1—49)ch]
2(4-30) (a-¢))
[(6-50)a-(8-70)c, +2(1-0)c, |[(2-0)a—6c —2(1-0)c, |-2(4-30) (a-c)r’
4b(4-30)"

f’= and

a-¢ _ . :
5 =T as in Case 5c¢. In particular, at

rs:[(6—59)a—(8—79)c,+2(1—9)Ch][(2—9)a—9cl—2(1—9)ch] we will have £°—0 and
! 2(4-30) (a-¢,) ’ |

o = % , Which is a unit-fee scheme. On the other hand, the optimal unit-fee contract and

(2-0)a—6c,-2(1-0)c,

minimum throughput requirement for the h-type operator are r;’ = (4 3,9)

and

5 2(1-0)a+6c,—(2-6)c,
" b(4-30)
to the operators, the port authority’s equilibrium fee revenue is always
o _L(2-0)a-6 ~2(1-0)c, |
4b(4-30)

as in Case 2b-2 and Case 5c¢. No matter which contracts are offered

. This is the content of Proposition 2(ii).

Finally, when c, [c,;’, a), the best offer to the I-type operator is the fixed-fee contract with
a—c,)[a-2c +c,]

f*= ( and &/ e{o, az;bq} as in Case 1b, or the two-part tariff contract with

4b
(e 01(a_ch)[a_zcl+ch] ’ fls:(a_ch)[a_zcl+Ch]_2(a_cl)rls and @s:m as in Case
2(a—¢) 4b 2b

(a—c,)[a-2c +c,]
2(a-q)
optimal unit-fee contract. On the other hand, the optimal unit-fee contract and minimum throughput
requirement for the h-type operator are 1’ =T, =(a—c,) and &; =0 as in Case 1b and Case 4b. No

matter which contracts are offered to the operators, the port authority’s equilibrium fee revenue
f(a-c,)[a-2c +c,]
4b

4b. In particular, at 1° = , we will have f°=0 and &; =%, which is an

always equals R® =

. This is what Proposition 2(iii) states. o

To sum up, we discover that the change from equation (1) to equation (13) only alter some
constant terms of the optimal concession contracts derived in Section 4. This implies that the port
authority’s optimal concession contracts stay the same qualitatively when the demand function
becomes more general as in (13). Thus, it is obvious that the results derived in Section 5 remain true
qualitatively as well under the general demand function (13). This proves Proposition 7.

43



