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Proof of Proposition 8: Under (3), (4), (15) and (16), we re-derive all the Lemmas and Propositions 
in Section 4. First, the changed problems are stated. Then, the associated Lemmas and Propositions 
are provided.  

Under the new set-up, problem (5) becomes  

                
0

max 1
i

i i i i
p

p c r p f


             (5B) 

s.t. iq   

for ,i l h . Its solutions are listed below.   

Lemma 1. Given concession contract  , ,r f  , operator i’s optimal behaviors are as follows.  

(i) If [0, ]i   with (1 )
2
ic r

i
  , then we have (1 )

2 0ic rc
ip     with equilibrium cargo-handling 

amounts (1 )
2
ic rc

i iq     and equilibrium profits 2( )c c
i iq f    for ,i l h .  

(ii) If ( ,1)i  , then we have (1 ) 0c
ip     with equilibrium cargo-handling amounts c

iq   

and equilibrium profits (1 )c
i ic r f        for ,i l h . 

Proof of Lemma 1: Denote L  the terminal operator’s Lagrange function in problem (5B), 

    1 1 ,i i i iL p c r p f p          

where   is the Lagrange multiplier associated with the constraint in problem (5B). Then, the 
corresponding Kuhn-Tucker conditions are 

1 2 0, 0i i i
i i

L L
p c r p

p p
 

       
 

, and         (A1) 

1 0, 0i

L L
p  

 
 

     
 

.                  (A2) 

Based on the values of  , there are two cases below. 

Case 1: Suppose * 0  . We have 
 1

0
2
ic

i

c r
p

 
  . Substituting c

ip  into (15) yields 

 1

2
ic

i

c r
q

 
 . To guarantee c

iq  , condition 
 1

0
2
i c

i i

c r
q 

 
     should be met. 

Substituting c
ip  into (16) yields  2c c

i iq f    for ,i l h . These prove Lemma 1(i). 

Case 2: Suppose * 0   .We have (1 ) 0c
ip     and 

 * 1
2

2
ic r

 
  

  
 

 by (A1) and (A2). 

To guarantee * 0  , conditions 
 1

2
i

i

c r
 

 
   and 1i i ir r c    are needed. Substituting 
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c
ip  into (15) yields c

iq   if 1i  , and into (16) gives  1c
i ic r f        for ,i l h . 

These prove Lemma 1(ii).   

Under the new set-up, problem (7) becomes  

                     
, ,

max
i i i

c
i i i

r f
rq f


               (7B) 

s.t. 0 1i  , 0 i ir r  , 0if   and 0c
i   

for ,i l h . Its solutions are as follows.   

Lemma 2. Suppose the conditions in (6) hold. The optimal concession contract ( , , )c c c
i i ir f   offered 

to the operator with marginal service cost , ,ic i l h , can be the fixed-fee contract 
 2
1

4
ic

i

c
f


  

with minimum throughput requirement 
1

0,
2

c i
i

c     
, the unit-fee contract 

1

2
c i

i

c
r


  with 

minimum throughput requirement 
1

2
c i
i

c 
 , or the two-part tariff contract with 

1
0,

2
c i

i

c
r

  
 

,

  1 1 2

4

c
i i ic

i

c c r
f

  
 , and minimum throughput requirement 

1

2
c i
i

c 
 . However, the port 

authority’s equilibrium fee revenue always equals 
 2
1

4
ic

i

c
R


 , ,i l h .  

Proof of Lemma 2: As shown in (7B), the port authority’s maximization problem is  

                        
, ,

max
i i i

c
i i i

r f
rq f


           

s.t. 0 1i  , 0 i ir r  , 0if   and 0c
i  . 

Obviously, the operator’s optimal cargo-handling amounts and equilibrium profits  ,c c
i iq   used in 

the above objective function and constraints are equivalent to those in the quantity competition. This 
implies that the optimal concession contracts under price competition are the same as those in the 
quantity competition.    

Under the new set-up, problem (8) becomes  

  
0

max 1
i

i i i i
p

p c r p f


           (8B) 

s.t. , ,iq i l h  . 

Its solutions are listed below.   

Lemma 3. Given contract  , ,r f  , operator i’s optimal behaviors are as follows for ,i l h .  
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(i) For 1[0, ]p   with (1 )
1 2 0hc rp    , both-type operators’ equilibrium service prices are 

 1
0

2
lp

l

c r
p

 
   and 

 1
0

2
hp

h

c r
p

 
  , their equilibrium cargo-handling amounts are 

 
1

1

2
lp p

l

c r
q 

 
   and 

 
1

1

2
hp p

h

c r
q 

 
  , and their equilibrium profits are 2( )p p

i iq f    

for ,i l h .  

(ii) For  1 2,p p      with (1 )
2 12

lc rp p    , both-type operators’ equilibrium service prices are 

 1

2
lp

l

c r
p

 
  and 1p

hp   , their equilibrium cargo-handling amounts are 
 1

2
lp

l

c r
q

 
  

and p
hq  , and their equilibrium profits are  2p p

l lq f   and  1p
h hc r f       . 

(iii) For  2 ,1p  , both-type operators’ equilibrium service prices are 1 0p p
l hp p     , their 

equilibrium cargo-handling amounts are p
lq   and p

hq  , and their equilibrium profits are 

 1p
i ic r f        for ,i l h . 

Proof of Lemma 3: Denote 1L  and 2L  the respective Lagrange functions for the l-type and the 

h-type terminal operators in problem (8B), 

    
    

1 1

2 2

1 1 and

1 1 ,

l l l l

h h h h

L p c r p f p

L p c r p f p

 

 

       

       
 

where 1  and 2  are Lagrange multipliers for the l-type and the h-type operators, respectively. 

Then, the Kuhn-Tucker conditions for the l-type operator are 

1 1
11 2 0, 0l l l

l l

L L
p c r p

p p
 

       
 

 and        (A3) 

1 1
1

1 1

1 0, 0l

L L
p  

 
 

     
 

,               (A4) 

and for the h-type operator are  

2 2
21 2 0, 0 andh h h

h h

L L
p c r p

p p
 

       
 

       (A5) 

2 2
2

2 2

1 0, 0.h

L L
p  

 
 

     
 

                 (A6) 

Based on the values of 1  and 2 , there are four cases below. 
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Case 1: Suppose *
1 0   and *

2 0  .Then (A3) and (A5) become (1 2 ) 0l lp c r     and 

(1 2 ) 0h hp c r    , respectively. Solving the two equations yields 
 1

0
2
lp

l

c r
p

 
   and 

 1
0

2
hp

h

c r
p

 
  . Substituting p

lp  and p
hp  into (15) yields 

 1

2
lp

l

c r
q

 
 and

 1

2
hp

h

c r
q

 
 . To guarantee p

lq   and p
hq  , condition 

 
1

1
0

2
hp p

h

c r
q 

 
     should 

be imposed, because l hc c  suggests p p
l hq q  and p

hq   suggests p
lq  . Substituting p

lp  

and p
hp  into (16) yields  2p p

i iq f   for ,i l h . These prove Lemma 3(i). 

Case 2: Suppose *
1 0   and *

2 0  . Then (A3), (A5) and (A6) imply (1 2 ) 0l lp c r    ,

2(1 2 ) 0h hp c r       and (1 ) 0hp    . Solving these equations yields 
 1

2
lp

l

c r
p

 
 , 

1p
hp    and 

 *
2

1
2

2
hc r

 
  

  
 

. Substituting p
lp and p

hp  into (15) produces 

 1

2
lp

l

c r
q

 
  and p

hq  . To guarantee *
2 0  , conditions 

 
1

1

2
h pc r

 
 

   and hr r  are 

needed. On the other hand, to have p
lq  , condition 2

1

2
p lc r   

   should be imposed. 

Accordingly, the plausible range for   is  1 2,p p   , and 
 1

1 0
2
lp p

h l

c r
p p

 
      if 

2
p  . Substituting p

lp and p
hp  into (16) gives  2p p

l lq f    and  1p
h hc r f       . 

These prove Lemma 3(ii). 

Case 3: Suppose *
1 0   and *

2 0  . Then (A3)-(A5) suggest (1 ) 0lp    , 

1(1 2 ) 0l lp c r       and (1 2 ) 0h hp c r    . Solving these equations yields 1p
lp   , 

 1

2
hp

h

c r
p

 
  and 

 *
1

1
2

2
lc r

 
  

  
 

. Substituting p
lp and p

hp  into (15) produces p
lq   

and 
 1

2
hp

h

c r
q

 
 . To guarantee *

1 0  , condition 
 1

2
lc r


 

  is needed; and p
hq   is 

guaranteed if 
 1

2
hc r


 

 . However, the two conditions are incompatible with each other 

because 
     1 1

0
2 2 2
h l h lc r c r c c     

   . Thus, no solution exists in this case. 

Case 4: Suppose *
1 0   and *

2 0  . Then (A3)-(A6) suggest 1p p
l hp p    , 

 *
1 2 1 lc r      and  *

2 2 1 hc r     . To guarantee 0p p
l hp p  , condition 1   should 

be met. To have *
1 0   and *

2 0  , conditions 2

1

2
p lc r   

  and (1 )lr c   are needed. 
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Note that we have (1 )lr c   because of 1h hr r c    and l hc c . Substituting p
lp and p

hp  into 

(15) produces p p
l hq q   , and into (16) gives  1p

i ic r f       for ,i l h . These prove 

Lemma 3(iii).   

 Under the new set-up, problem (9) becomes 

    
, ,

max 1p p
l h

r f
R rq f rq f


            (9B) 

s.t. 0 1  , 0, 0,r f  0p
l   and 0p

h  .  

Its solutions are given below.  

Proposition 1. Suppose the conditions in (6) hold. Then we have the following.  

(i) If  ,h l hc c c   with 
1

2
l

h

c
c


 , then the two-part tariff contract is the port authority’s best 

choice. The optimal scheme and minimum throughput guarantee are  
 

2
h lp c c

r






, 

   
 

1 2 2 2

4 2
l h l hp

c c c c
f

 


      


, and 
 

 
2 2

2 2
l hp c c 




  



. At the equilibrium, the port 

authority’s fee revenue equals
   

 

2 22 2 2 2 2

4 2
h l h l hp c c c c c

R
   


     




. 

(ii) If  ˆ,h hh cc c   with 
 2

ˆ
2

l
h

c
c

  
 , then the unit-fee scheme is the port authority’s best 

choice. The optimal scheme and minimum throughput guarantee are 
   

 
2 2 1

2 2
l hp c c

r
  


   




 

and 
 

 
2 2

2 2
l hp c c 




  



. At the equilibrium, the port authority’s fee revenue equals

   
 

2
2 2 1

8 2
l hp

c c
R

  


     


. 

(iii) If  ˆ ,1hhc c , then the unit-fee scheme is the port authority’s best choice. The optimal scheme 

and minimum throughput guarantee are (1 )p
h hr r c    and 0p  . At the equilibrium, the port 

authority’s fee revenue equals
  1

2
h h lp c c c

R
  

 . 

Proof of Proposition 1: As shown in (9B), the port authority’s maximization problem is  

    
, ,

max 1p p
l h

r f
R rq f rq f


           

s.t. 0 1  , 0, 0,r f  0p
l   and 0p

h  .  
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Obviously, the operator’s optimal cargo-handling amounts and equilibrium profits ( , , , )p p p p
l h l hq q    

used in the above objective function and constraints are equivalent to those in the quantity 
competition. This implies that the optimal concession contracts under price competition are the same 
as those under quantity competition.    

 Under the new set-up, problem (10) becomes  

  
0

max 1
i

i i i l i l
p

p c r p f


            (10B) 

s.t. i lq   

for ,i l h . Its solutions are exhibited below.   

Lemma 4. Given contract  , ,l l lr f  , operator i’s optimal behaviors are as follows.  

(i) For [0, ]l l    with (1 )
2
h lc r

l
   , both-type operators’ equilibrium service prices are 

 1
0

2
l lsl

l

c r
p

 
   and 

 1
0

2
h lsl

h

c r
p

 
  , their equilibrium cargo-handling amounts are 

 1

2
l lsl

l

c r
q

 
  and 

 1

2
h lsl

h l

c r
q 

 
  , and their equilibrium profits are 2( )sl sl

i i lq f    for 

,i l h .  

(ii) For  ,l l l     with (1 )
2
l lc r

l l     , both-type operators’ equilibrium service prices are 

1
0

2
sl l l
l

c r
p

 
   and (1 ) 0sl

h lp    , their equilibrium cargo-handling amounts are 

1

2
sl l l
l l

c r
q  

   and sl
h lq  , and their equilibrium profits are  2sl sl

l l lq f    and 

 1sl
h l l h l lc r f       . 

(iii) For  ,1l l   , both-type operators’ equilibrium service prices are (1 ) 0sl sl
l h lp p     , 

their equilibrium cargo-handling amounts are sl
l lq   and sl

h lq  , and their equilibrium profits 

are  1sl
i l l i l lc r f        for ,i l h . 

Proof of Lemma 4: Denote 1L  and 2L  the respective Lagrange functions for the l-type and the 

h-type terminal operators in problem (10B), 

    1 11 1l l l l l l lL p c r p f p          and     2 21 1 ,h h l h l h lL p c r p f p          

where 1  and 2  are their associated Lagrange multipliers. Then, the corresponding Kuhn-Tucker 

conditions for the l-type operator are 

1 1
11 2 0, 0l l l l

l l

L L
p c r p

p p
 

       
 

 and        (A7) 
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1 1
1

1 1

1 0, 0l l

L L
p  

 
 

     
 

,                (A8) 

and for the h-type operator are  

2 2
21 2 0, 0h h l h

h h

L L
p c r p

p p
 

       
 

and           (A9) 

2 2
2

2 2

1 0, 0.h l

L L
p  

 
 

     
 

                 (A10) 

Based on the values of 1 and 2 , there are four cases below. 

Case 1: Suppose *
1 0   and *

2 0  .Then (A7) and (A9) become (1 2 ) 0l l lp c r     and 

(1 2 ) 0h h lp c r    , respectively. Solving the two equations yields  
 1

0
2
l lsl

l

c r
p

 
    and 

 1
0

2
h lsl

h

c r
p

 
  . Substituting sl

lp  and sl
hp  into (15) yields 

 1

2
l lsl

l

c r
q

 
 and

 1

2
h lsl

h

c r
q

 
 . To guarantee sl

lq   and sl
hq  , condition 

1
0

2
slh l

l l h

c r
q        should 

be imposed, because l hc c  suggests sl sl
l hq q  and sl

h lq   suggests sl
l lq  . Substituting sl

lp  

and sl
hp  into (16) yields  2sl sl

i i lq f   for ,i l h . These prove Lemma 4(i). 

Case 2: Suppose *
1 0   and *

2 0  . Then (A7), (A9) and (A10) imply (1 2 ) 0l l lp c r    ,

2(1 2 ) 0h h lp c r       and (1 ) 0h lp    . Solving these equations yields 
1

2
sl l l
l

c r
p

 
 , 

(1 )sl
h lp    and 

 *
2

1
2

2
h l

l

c r
 

  
  

 
. Substituting sl

lp and sl
hp  into (15) produces 

1

2
sl l l
l

c r
q

 
  and sl

h lq  . To guarantee *
2 0  , condition 

 1

2
h

l

c r
 

 
   is needed. On the 

other hand, to have sl
l lq  , condition 

1

2
l l

l l

c r      should be imposed. Accordingly, the 

plausible range for l  is ( , ]l l l    ,  
1

(1 ) 0
2

sl sl l l
h l l

c r
p p  

      if l l   . Substituting 

sl
lp and sl

hp  into (16) gives  2sl sl
l l lq f    and  1sl

h l l h l lc r f       . These prove Lemma 

4(ii). 

Case 3: Suppose *
1 0   and *

2 0   .Then (A7)-(A9) suggest (1 ) 0l lp    , 

1(1 2 ) 0l l lp c r       and (1 2 ) 0h h lp c r    . Solving these equations yields 1sl
l lp   , 

 1

2
h lsl

h

c r
p

 
  and 

 *
1

1
2

2
l l

l

c r
 

  
  

 
. Substituting sl

lp and sl
hp  into (15) produces 
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sl
l lq   and 

1

2
sl l h
h

r c
q

 
 . To guarantee *

1 0  , condition 
1

2
l l

l

c r  
  is needed. On the other 

hand, sl
h lq   holds if 

1

2
l h

l

r c  
 . However, these two cannot hold simultaneously because

 1 1
0

2 2 2
h ll h l l

c cr c c r     
   . Thus, no solution exists in this case. 

Case 4: Suppose *
1 0   and *

2 0  . Then (A7)-(A10) suggest 1sl sl
l h lp p    , 

 *
1 2 1l l lc r      and  *

2 2 1l h lc r     . To guarantee 0sl sl
l hp p  , condition 1l   

should be met. To have *
1 0   and *

2 0  , conditions l l   and (1 )lr c   are needed. 

Substituting sl
lp and sl

hp  into (15) produces sl sl
l h lq q   , and into (16) gives 

 1sl
i l l i l lc r f        for ,i l h . These prove Lemma 4(iii).   

 Under the new set-up, problem (11) becomes  

  
0

max 1
i

i i i h i h
p

p c r p f


             (11B) 

s.t. i hq   

for ,i l h . Its solutions are presented below.  

Lemma 5. Given contract  , ,h h hr f  , operator i’s optimal behaviors are as follows.  

(i) For [0, ]h h    with (1 )
2
h hc r

h
   , both-type operators’ equilibrium service prices are 

 1
0

2
l hsh

l

c r
p

 
   and 

 1
0

2
h hsh

h

c r
p

 
  , their equilibrium cargo-handling amounts are 

 1

2
l hsh

l h

c r
q 

 
   and 

 1

2
h hsh

h h

c r
q 

 
  , and their equilibrium profits are 

2( )sh sh
i i hq f    for ,i l h .  

(ii) For  ,h h h     with (1 )
2
l hc r

h h     , both-type operators’ equilibrium service prices are 

1
0

2
sh l h
l

c r
p

 
   and 1 0sh

h hp    , their equilibrium cargo-handling amounts are 

 1

2
l hsh

l h

c r
q 

 
   and sh

h hq  , and their equilibrium profits are  2sh sh
l l hq f    and 

 1sh
h h h h h hc r f       . 

(iii) For  ,1h h   , both-type operators’ equilibrium service prices are (1 ) 0sh sh
l h hp p     , 

their equilibrium cargo-handling amounts are sh
l hq   and sh

h hq  , and their equilibrium profits 

are  1sh
i h h i h hc r f        for ,i l h . 

Proof of Lemma 5: Since the proofs for Lemma 5 and Lemma 4 are similar, it is omitted.    
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 Finally, under the new set-up, problem (12) becomes  

   
    

, , , , ,
max 1

l l l h h h

sl sh
l l l h h h

r f r f
R r q f r q f

 
           (12B) 

s.t. 0 1l  , 0 1h  , 0lf  , 0hf  , 0sl
l  , 0sh

h  , sl sh
l l  and sh sl

h h  . 

Its solutions are listed below.   

Proposition 2. Suppose the conditions in (6) hold. Then we have the following. 

(i) If  ,h l hc c c   with 
   

 
1 2

3 2
l

h

c
c

 


  
 


, the port authority will offer the two-part tariff 

scheme and minimum throughput requirement  , ,
Ts s s

h h hr f  , or the unit-fee scheme and minimum 

throughput requirement  ,
Us s

h hr   to the h-type operator; and offer the two-part tariff scheme and 

minimum throughput requirement  , ,
Ts s s

l l lr f  ,the unit-fee scheme and minimum throughput 

requirement  ,
Us s

l lr  , or the fixed-fee scheme and minimum throughput requirement  ,
Fs s

l lf  to 

the l-type operator. Here 

 

 
   

 
       

 
 

 

2

1 1 2
, ,

1 2 1

1 1 1 2 2 1
, , ,

4 1

1

2 1

s l hh l
h

s
T l h l h hs s s s

h h h h

s l h
h

c cc c
r

c c c c r
r f f

c c

  
 

     




 




     
     

                  
 

    
  

,

     
 

 
 

1 1 2 1
, ,

2 1 2 1

U l h l hs s s s
h h h h

c c c c
r r

    
 

 
              

, 

 

       
   

           
 

2 2

2 2

1 2 1 2 1 1 2
0, ,

2 1 1

1 2 1 2 1 1 2 2 1 1
, , , ,

4 1

1

2

s h l h l h
l

l

s
Ts s s s h l h l h l l

l l l l

s l
l

c c c c c
r

c

c c c c c c r
r f f

c

   


    






         
     

               
 

 
  

         
  

2 21 2 1 2 1 1 2 1
, , ,

2 1 1 2

U h l h l hs s s s l
l l l l

l

c c c c c c
r r

c

   
 


                

 and

         
 

2 21 2 1 2 1 1 2 1
, , 0, .

4 1 2

F h l h l hs s s s l
l l l l

c c c c c c
f f

   
 


                   

 At the 
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equilibrium, the port authority’s fee revenue always equals 

   
 

2 21 2 1 2

4 1
h l h l hs c c c c c

R
   


     




. 

(ii) If  ,hh hc cc    with 
 2 1

2
l

h

c
c

 


 
 


, then the optimal contract for the h-type operator is the 

unit-fee scheme 
   

 
2 2 1

4 3
l hs

h

c c
r

  


   



 with minimum throughput guarantee 

   
 

2 1 2

4 3
l hs

h

c c  



   




. By contrast, the optimal contract for the l-type operator can be the 

two-part tariff scheme and minimum throughput requirement  , ,
Ts s s

l l lr f  , the unit-fee scheme and 

minimum throughput requirement  ,
Us s

l lr  , or the fixed-fee scheme and minimum throughput 

requirement  ,
Fs s

l lf  . Here       12 1
, , 0, , 1 ,

1 2 2

Ts s s s s s s l
l l l l l l l l

l

cB
r f r f B c r

c
 

               
,

   
12

, ,
1 2

Us s s s l
l l l l

l

cB
r r

c
 

       
,   1

, , 0,
2

Fs s s s l
l l l l

c
f f B          

, and

 
         

 2

6 5 8 7 2 1 2 2 1

4 4 3

l h l hc c c c
B

     



              


. At the equilibrium, the port 

authority’s fee revenue always equals
   

 

2
2 2 1

4 4 3
l hs

c c
R

  


     


. 

(iii) If  ,1h hc c , then the optimal contract for the h-type operator is the unit-fee scheme 

(1 )s
h h hr r c    with minimum throughput guarantee 0s

h  . By contrast, the optimal contract for 

the l-type operator can be the two-part tariff scheme and minimum throughput requirement 

 , ,
Ts s s

l l lr f  , the unit-fee scheme and minimum throughput requirement  ,
Us s

l lr  , or the fixed-fee 

scheme and minimum throughput requirement  ,
Fs s

l lf  . Here 

    
 

    1 1 2 1 1 2 2 1 1
, , 0, , , ,

2 1 4 2

s
T h l h h l h l ls s s s s s l

l l l l l l
l

c c c c c c c r c
r f r f

c
 

                    

    
 

1 1 2 1
, ,

2 1 2

U h l hs s s s l
l l l l

l

c c c c
r r

c
 

          
, and

    1 1 2 1
, , 0,

4 2

F h l hs s s s l
l l l l

c c c c
f f 

          
. At the equilibrium, the port authority’s fee 

revenue always equals
  1 1 2

4
h l hs c c c

R
   

 . 

Proof of Proposition 2: As shown in (12B), the port authority’s maximization problem is  
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   
    

, , , , ,
max 1

l l l h h h

sl sh
l l l h h h

r f r f
R r q f r q f

 
       

s.t. 0 1l  , 0 1h  , 0lf  , 0hf  , 0sl
l  , 0sh

h  , sl sh
l l   and sh sl

h h  . 

Obviously, the operator’s optimal cargo-handling amounts and equilibrium profits 

,{( , ), ( , )}sl sl sh sh
i i i i i l hq q    used in the above objective function and constraints are equivalent to those 

in the quantity competition. This implies that the optimal concession contracts under price 
competition are the same as those obtained in Proposition 2 for quantity competition.   

In summary, all the Lemmas and Propositions show that the port authority’s optimal concession 
contracts are exactly the same whether terminal operators compete in service prices or in 
cargo-handling amounts. Accordingly, the outcomes derived in Section 5 still hold even when the 
operator chooses service price to maximize its profit. This proves Proposition 8.   

 

 


