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Abstract

Images may be degraded for many reasons. For example, out-of-focus optics produce blurred images,

and variations in electronic imaging components introduce noise. Reducing blur and noise in images is

known as image restoration. In this paper, we �rst highlight methods for image restoration and then

discuss methods for image restoration given multiple degraded copies (multiple channels) of the same

original image. We focus on the blind case in which the blurring functions are unknown. We review

several recently proposed algorithms for multichannel blind image restoration and present a new technique

based on subspace decomposition.

1. Introduction

In many applications such as medical imaging, radio astronomy, and remote sensing, observed images

are often degraded by distortion. Distortion may arise from, for example, atmospheric turbulence, relative

motion between an object and the camera, and an out-of-focus camera. Restoration of the degraded images

is generally required for further processing or interpretation of the images. Because constraints on the

degradation and on the original image vary with the application, many di�erent algorithms exist to solve

this problem.

In some cases, the original image, which is modeled as either a deterministic or stochastic signal, is

blurred by a known function. Many di�erent conventional approaches have been developed to compensate

for blur functions when they are known [1, 2]. More commonly, however, the blur function is not known.

In this case, a model of the blur is often assumed, for example, a linear space-invariant �lter. This kind of

problem is called blind image restoration. A review article [3] and an updated version [4] for completeness

on this topic are available. Sometimes the blur function is only partially determined, as in [5].

In some applications, several blurred versions of the same original image come from di�erent blurring

channels, or several blurred images are available from di�erent but highly-correlated original images and

channels, as in short-exposure image sequences, multispectral images, and microwave radiometric images.
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Restoring the original image in this situation is called multichannel (or multiframe) blind image restoration.

Those approaches that are extensions of single-channel blind image restoration algorithms [6{8] converge

to local minima, have stability problems, and require the same computational complexity, as their single-

channel counterparts do [3,4]. Generally, the quality of the restored image in the multichannel case is better

than in the single-channel case.

Another general class of algorithms [9,10] is an extension of blind one-dimensional (1-D) multichannel

signal estimation algorithms [11,12]. Either the unknown original image or the set of blur functions is treated

as deterministic so that there are no convergence or stability problems. Also, the constraints on the original

image and the blur functions are very loose, but the computational complexity is relatively high.

The rest of paper focuses on multichannel blind image restoration for digital images. Section 2.

describes the multichannel imaging model used throughout the paper. Section 3. reviews several approaches

for multichannel blind image restoration. Section 4. corrects, discusses and analyzes a new algorithm we

proposed in [9]. Finally, Section 5. concludes with a description of future work on this topic.

2. Problem Statement

Because most of the work in the image processing area is performed using computers, we will focus on

digital image restoration. In general, a blurred image x(n1; n2) can be modeled as [1]

x(n1; n2) = T

 X
l1

X
l2

h(n1; n2; l1; l2)s(n1; n2)

!
� v(n1; n2) (1)

where � is a pointwise operation, s(n1; n2) is the original image, h(n1; n2; l1; l2) is the 2-D impulse response

of the blurred system at (l1; l2), v(n1; n2) is the noise, and T (�) generally denotes a pointwise (memoryless)

operation. In remote sensing, astronomical imaging, and other image acquisition systems, the function T (�)

models the response of an image sensor and may be nonlinear [13].

In [14] and [15], the nonlinearity of T (�) is considered in the restoration process. Algorithms that

handle non-additive, signal-dependent noise can be found in [16] and [17]. In [18], an algorithm was developed

for removing the e�ect of space-varying blur functions. Nevertheless, in many practical situations, and

perhaps in most of the work in the image restoration area, a blurred image is modeled as the convolution of

the original image and the linear space-invariant blur function plus additive and signal-independent noise.

We will now make the assumption that all blur functions are linear and space-invariant with �nite

support and that the noise is additive. In nearly every case in the literature, with [8] being a notable

exception, the multichannel blind image restoration problem is posed as the recovery of an original image

from several di�erent blurred views of the same scene, as shown in Figure 1. The mth observed image is

given by

xm = hm � s+ vm (2)

where � denotes the two-dimensional (2-D) linear convolution operator, vm is a noise process, and xm is the

output from the mth linear space-invariant blur function hm . The extent of the original image s is N1�N2

and s is indexed from (0; 0) to (N1 � 1; N2 � 1): The extent of the mth blur function hm is L1 � L2 and

hm is indexed from (0; 0) to (L1 � 1; L2 � 1). There are M observed images. Therefore, m = 1; 2; : : : ;M .

Moreover, without any assumption about the value of the original image outside its extent, the extent of

each blurred image is (N1 �L1 + 1)� (N2 �L2 + 1), i.e., from xm(L1 � 1; L2 � 1) to xm(N1 � 1; N2 � 1).

In [8], an algorithm was designed to restore multiple original images from an equal number of observed

blurred images, where the blur functions and the original images are di�erent but are highly correlated. Each
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blurred image can be modeled as an original image convolved with a blur function with added noise. Of

course, this algorithm can be applied to the situation modeled in Figure 1 by setting all of the original

images to be the same, which would make the correlation among them is equal to 1, while at the same time

allowing the blur functions to be di�erent.

3. Review of Existing Algorithms

In this section, we will review four algorithms for restoring multichannel blurred images. The �rst three

algorithms are based on single-channel blind image restoration algorithms. The fourth algorithm and our

algorithm described in Section 4. are extensions of multichannel blind 1-D signal estimation algorithms.

In the area of single-channel blind image restoration, two classes of techniques are very popular and

well-developed. One class utilizes stochastic models for the original image, the blur function, or the noise.

The unknown model parameters are estimated from the blurred image using di�erent approaches such as the

Expectation-Maximization algorithm [19] and Generalized Cross-Validation [20]. The restored image can be

obtained from these parameters. Section 3.1. discusses two recent algorithms for multichannel blind image

restoration that are extensions of this kind of technique.

Instead of assuming stochastic models, the other class places deterministic constraints such as non-

negativity and �nite support on the original image and/or the blur function. The original image and the blur

function are estimated iteratively and simultaneously. In Section 3.2., we will review a 
exible framework

based on this technique for the multichannel case that adds a new constraint to improve the quality of the

restored image.

Recent algebraic approaches for 1-D multichannel blind signal estimation in digital communications

deliver excellent performance [11, 12, 21]. They have subsequently provided another research direction in

multichannel blind image restoration. Preliminary results for the 2-D case [9, 10] are based on these

approaches. Section 3.3. discusses the algorithm by Giannakis and Heath [10]. In Section 4., we discuss

and correct our recent result given in [9].

3.1. Maximum Likelihood (ML) Restoration Using Expectation-Maximization

We describe algorithms by Schulz [6] and Tom, Lay, and Katsaggelos [8] in this section. Their algorithms

utilize stochastic models with a set of unknown parameters � for the images, the blur functions, or the noise.

Based on the stochastic model, the probability distribution function (PDF) fXM ([x1; x2; : : : ; xM ]j�) of the M

blurred images set XM can be found. The primary idea in maximum likelihood (ML) restoration is that � has

to be determined such that the probability of obtaining the observed blurred images [x1; x2; : : : ; xM ] 2 XM

is maximized. That is, � has to maximize a likelihood function

lXM ([x1; x2; : : : ; xM ]; �) = fXM ([x1; x2; : : : ; xM ]j�)

From � , the restored image can be obtained. In many applications, because the likelihood function includes

an exponential term, it is more convenient for calculation to use a log likelihood function

LXM (�) = log lXM ([x1; x2; : : : ; xM ]; �)

instead of

lXM ([x1; x2; : : : ; xM ]; �)
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Since the logarithm is monotonically increasing, maximizing the log likelihood function is equivalent to

maximizing the likelihood function.

In most situations, because the log likelihood function is very complicated, it is almost impossible

to estimate the unknown parameters directly. A very powerful and popular technique, the Expectation-

Maximization (EM) algorithm [19], was developed to solve this kind of problem. A tutorial article about

the EM algorithm is available in [22].

In applying the EM algorithm to estimate the unknown model parameters, we de�ne a complete data

set Z such that

[x1; x2; : : : ; xM ] = g(z); for some z 2Z

where g(�) denotes a noninvertible many-to-one function. Note that XM is called a incomplete data set

in the terminology of the EM algorithm. A new log likelihood function LZ(�) can be obtained from the

de�nition of Z .

The EM algorithm is an iterative algorithm. It includes two steps: the expectation step (E step)

and the maximization step (M step). In the E step, by computing conditional probabilities for the obtained

blurred images and the current estimated parameters, the expectation of LZ(�) is computed. In the M

step, new parameters that maximize the expectation are estimated, which become the current estimated

parameters in the next iteration. Note that by choosing an adequate g(�) and Z , the maximization

problem will be much easier than direct maximization of LXM ([x1; x2; : : : ; xM ]; �). The EM algorithm

can be summarized as follows:

initial guess of �0 ! E step! M step! �1 ! � � �

The iteration continues until either a prede�ned number of iterations is reached or some convergence criterion

is met.

Schulz [6] assumes that the blur functions and the blurred images are deterministic. Using a Poisson

model for the additive noise, the log likelihood function is

LZ(�) =

MX
m=1

X
n1;n2

X
l1;l2

[�hm(l1 � n1; l2 � n2)s(n1; n2) + ~xm(n1; n2; l1; l2) ln (hm(l1 � n1; l2 � n2)s(n1; n2))]

where � = [s; h1; h2; : : : ; hM ] and xm(n1; n2) =
P

l1;l2
~xm(n1; n2; l1; l2). The xm(n1; n2) and ~xm(n1; n2; l1; l2)

terms are also Poisson-distributed random variables and E[~xm(n1; n2; l1; l2)] = hm(l1�n1; l2�n2)s(n1; n2).

Furthermore, fxm(n1; n2)g is the complete data set and f~xm(n1; n2; l1; l2)g is the incomplete data set.

In some cases, a physically meaningless trivial solution, such as s(n1; n2) = �(n1; n2), is obtained

when the EM algorithm is applied to the log likelihood function. To ameliorate this problem, a penalized

log likelihood function is proposed to avoid the trivial solution:

L
'

Z
(�) = LZ(�)� �'(s)

where the nonnegative scale factor � determines how strongly the penalty is enforced and '(s) is a penalty

term that is large when the recovered image takes on the trivial solution that we want to avoid and small

when it does not. One choice of the penalty term is

'(s) = �
X
n1;n2

ln [1� s(n1; n2)]

Tom, Lay, and Katsaggelos [8] model the degradation process as

x = Ds+ v
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where s is a vector composed of M blurred images with the following arrangement:

s = [s1(0; 0); s2(0; 0); : : : ; sM (0; 0); s1(0; 1); : : : ; sM (0; N2 � 1); s1(1; 0); : : : ; sM (N1 � 1; N2 � 1)]T

Note that sm(n1; n2) is the mth original image, m = 1; 2; : : : ;M . Here, x and v are de�ned with a similar

arrangement as s. D is an MN1N2 �MN1N2 block circulant matrix of the form

D =

2
66664

D(0) D(1) � � � D(N1N2 � 1)

D(N1N2 � 1) D(0) � � � D(N1N2 � 2)
...

...
. . .

...

D(1) D(2) � � � D(0)

3
77775

where the M �M submatrices D(n) for 1 � n � N1N2 are de�ned according to

D(n) =

2
66664

D11(n) D12(n) � � � D1M (n)

D21(n) D22(n) � � � D2M (n)
...

...
. . .

...

DM1(n) DM2(n) � � � DMM (n)

3
77775

Note that Dii(n) denotes the intrachannel blur, and Dij(n); i 6= j; denotes the interchannel blur.

Moreover, we assume that s and v are uncorrelated Gaussian random processes, and that x is also

Gaussian with zero mean. We de�ne x = g(z) where z = [s;x] and fzg is the complete data set and fxg

is the incomplete data set to obtain a log likelihood function with � = [�X ;�V ;D] , where �X is the image

covariance matrix and �V is the noise covariance matrix. By transforming the expectation of the likelihood

function to the frequency domain and using Wiener �ltering, � can be computed and s can be estimated.

The advantages of the previous algorithms are that they guarantee convergence and low computational

complexity (O(ML1L2N1N2)). The disadvantage is that the EM algorithm could converge to a local

optimum. Thus, the initial guess of � is very important and several applications of the algorithm on

the same blurred images may be required.

3.2. Iterative Blind Image Restoration Based on Deterministic Constraints

Miura and Baba [7] extended the iterative blind image restoration algorithm developed for the single-

channel case by Ayers and Dainty [23], as shown in Figure 2(a), to multiple channels, as shown in Figure

2(b). In the single-channel situation, Ayers and Dainty [23] placed nonnegativity constraints on the image

and the blur function, and Wiener �ltering is adopted in the Fourier domain to obtain Ŝk and Ĥk . Miura

and Baba proposed an extra constraint that the blurred images are from the same original image. The

evaluation function Q(i) in the ith iteration is de�ned as follows:

Q(i) = min
0�m�M�1

fC[smi (n1; n2); s
m+1
i (n1; n2)]g

Here, C[�; �] is the maximum value of the normalized cross-correlation from 0 to 1 between two functions.

After I iterations, the output image, i.e., the restored image, of this algorithm is �si0(n1; n2) where

i0 = arg max
1�i�I

Q(i)

since the di�erence among the output images from the single-channel blind deconvolution blocks in each

iteration should be as small as possible. The reason is that the blurred images are from the same original

5



ELEKTR_IK, VOL.3, NO.1,

image. When Q(i0) is larger than a threshold tQ , �si0 is accepted as a restored image. Note that I and tQ

are chosen heuristically; e.g., Miura and Baba [7] choose I = 100 and tQ = 0:97.

The primary advantage of this algorithm is 
exibility. Di�erent single-channel blind image restoration

algorithms of this class [23{25] can be substituted for the single-channel blind deconvolution blocks in

Figure 2(b). But this algorithm will have the same advantages, such as low computational complexity, and

disadvantages, such as high sensitivity to the initial image estimate and poor convergence properties.

3.3. Two Algebraic Approaches for Image Restoration

Giannakis and Heath [10] proposed two algebraic approaches for the multichannel blind image restoration

problem. These approaches extend blind 1-D channel identi�cation algorithms developed in [12, 21, 26] for

application in communication systems. The �rst approach is to identify the blur functions, and then, use a

conventional image restoration algorithm such as the Wiener �lter technique to recover the original image.

The second approach is to �nd the M � 1 vector restoration �lter

gi1;i2(k1; k2) = [g
i1;i2
1 (k1; k2); g

i1;i2
2 (k1; k2); : : : ; g

i1;i2
M

(k1; k2)]
T (3)

so that, when no noise is present,

K1X
k1=1

K2X
k2=1

x(n1 � k1 + 1; n2 � k2 + 1)Tgi1;i2(k1; k2) = s(n1 � i1; n2 � i2) (4)

where (K1;K2) is chosen such that (4) has a solution, 0 � ij � Lj +Kj � 1 for j = 1; 2, and

x(n1; n2) = [x1(n1; n2); x2(n1; n2); : : : ; xM (n1; n2)]
T (5)

In the �rst approach, by neglecting the noise term, we rewrite (2) as

xm1
= hm1

� s

xm2
= hm2

� s

where 1 � m1;m2 �M and m1 6= m2 . Then,

hm2
� xm1

= hm2
� hm1

� s

= hm1
� hm2

� s

= hm1
� xm2

Therefore,

xm2
� hm1

� xm1
� hm2

= 0 (6)

Based on the relation in (6), we can construct a 1
2
M(M � 1)(N1 � L1 + 2)(N2 � L2 + 2) �ML1L2

matrix XL1;L2
from the blurred images xm for m = 1; 2; : : : ;M , such that

XL1;L2
h = 0 (7)

where

h = [h1(0; 0); h1(0; 1); : : : ; h1(L1 � 1; L2 � 1); h2(0; 0); : : : ; hM (L1 � 1; L2 � 1)]T

When the rank of XL1;L2
equals ML1L2 � 1, a unique solution for h in (7) exists because the nullspace

of XL1;L2
has dimension 1. If additive noise is present, h can be obtained from the eigenvector of XL1;L2

corresponding to the smallest eigenvalue.
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The second approach follows similar steps as (3) to (5) but with

K1X
k1=1

K2X
k2=1

�
x(n1 � i1 � k1; n2 � i2 � k2)

T � x(n1 � i01 � k1; n2 � i02 � k2)
T
� " gi

0

1
;i

0

2(k1; k2)

gi1;i2(k1; k2)

#
= 0 (8)

for Kj + ij � nj � Nj and 0 � i0j < ij � Lj +Kj � 1, where j = 1; 2. We can write (8) as a 1� 2MK1K2

row vector times a 2MK1K2 � 1 column vector. Based on (8), we can form the matrix equation

Xĝ = 0 (9)

where

ĝ = [g0;0(1; 1)T ;g0;0(1; 2)T ; : : : ;g0;0(K1;K2)
T ;g0;1(1; 1)T ; : : : ;gL1+K1�1;L2+K2�1(K1;K2)

T ]T

and X is obtained by the proper rearrangement of (8). X is a sparse matrix with exactly 2K1K2 non-zero

elements in each row. X contains
P

i1;i2
(N1 � K1 + 1)(N2 � K2 + 1) � i1(N2 � K2 + 1) � i2 rows and

MK1K2(L1+K1)(L2+K2) columns. If the rank of X equals MK1K2(L1+K1)(L2+K2)�1, then (9) has

a unique solution for ĝ and the original image can be recovered exactly by (4). Giannakis and Heath [10]

do not report a noisy case for the second approach.

These two algebraic approaches o�er three key advantages: no initial image is required, the constraints

on the original image and the blur functions are very loose, and no convergence or stability problems exist.

Nevertheless,the �rst approach requires a conventional image restoration technique to recover the original

image and the second approach ampli�es noise. The computational complexity in these two approaches is

relatively high because of the de�nition of large matrices and operations performed on them.

4. A New Algebraic Approach

Recently, we extended a blind one-dimensional multi-channel symbol estimation algorithm [11] to two

dimensions [9]. We have proved su�cient conditions to achieve exact restoration of blurred images in the

noise-free case;i.e., the restored image is the same as the original image up to a scalar multiplier. In this

section, we make a correction to the su�cient conditions. Moreover, we provide a more advanced discussion

and analysis of this algorithm.

4.1. Derivation and Correction

In the noiseless case, we construct a block Hankel matrix

X(K1;K2) =2
6666666666664

x(L1 � 1; L2 � 1) � � � x(L1 � 1; N2 �K2) � � � x(N1 �K1; N2 �K2)

x(L1 � 1; L2) � � � x(L1 � 1; N2 �K2 + 1) � � � x(N1 �K1; N2 �K2 + 1)
...

...
...

...
...

x(L1 � 1; L2 +K2 � 2) � � � x(L1 � 1; N2 � 1) � � � x(N1 �K1; N2 � 1)

x(L1; L2 � 1) � � � x(L1; N2 �K2) � � � x(N1 �K1 + 1; N2 �K2)
...

...
...

...
...

x(R1; R2) � � � x(R1; N2 � 1) � � � x(N1 � 1; N2 � 1)

3
7777777777775

(10)
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where R1 = L1+K1�2; R2 = L2+K2�2; K1 and K2 are chosen to satisfy the exact restoration conditions,

and x = [x1; x2; � � � ; xM ]T is a vector of matrices containing the blurred images. De�ne

C (z ) is the set of all rational functions in z over the complex number set C

V is the k-dimensional vector space of n-tuples over C (z )

h = [h1; h2; : : : ; hM ]T

Hl =

2
666664
h(l; L2 � 1) � � � h(l; 1) h(l; 0) 0 � � � 0

0 h(l; L2 � 1) � � � h(l; 1) h(l; 0)
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

0 � � � 0 h(l; L2 � 1) � � � h(l; 1) h(l; 0)

3
777775

| {z }
R2 + 1 blocks

H =

2
666664
HL1�1 � � � H1 H0 0 � � � 0

0 HL1�1 � � � H1 H0

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .

0 � � � 0 HL1�1 � � � H1 H0

3
777775

| {z }
R1 + 1 blocks

and

S(R1; R2) =2
6666666666664

s(0; 0) � � � s(0; N2 �R2 � 1) s(1; 0) � � � s(N1 �R1 � 1; N2 �R2 � 1)

s(0; 1) � � � s(0; N2 �R2) s(1; 1) � � � s(N1 �R1 � 1; N2 �R2)
...

...
...

...
...

...

s(0; R2) � � � s(0; N2 � 1) s(1; R2) � � � s(N1 �R1 � 1; N2 � 1)

s(1; 0) � � � s(1; N2 �R2 � 1) s(2; 0) � � � s(N1 �R1; N2 �R2 � 1)
...

...
...

...
...

...

s(R1; R2) � � � s(R1; N2 � 1) s(R1 + 1; R2) � � � s(N1 � 1; N2 � 1)

3
7777777777775

Then

X(K1;K2) = HS(R1; R2)

The following de�nitions are similar to those de�nitions in [27].

� De�nition 1 : The degree deg f of an n-tuple f = [f1; f2; : : : ; fn]
T of polynomials is the greatest degree

of its components fj ; 1 � j � n:

� De�nition 2 : If F is a n � k polynomial matrix with columns fi; the ith index of F is de�ned as

vi = deg fi; 1 � i � k; and the order of F is de�ned as v =
Pk

i=1 vi:

� De�nition 3 : A minimal basis of V is a n� k polynomial matrix F such that F is a basis for V and

F has least order among all polynomial bases for V:

� De�nition 4 : The invariant dynamic indices vi of V are the indices of any minimal basis for V . Its

invariant dynamical order v is the sum of the vi .
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� De�nition 5 : If F is a full-rank n� k matrix over C (z ); then the set of all row n-tuples x such that

xF = 0 is a vector space over C (z ) , called the dual space.

� De�nition 6 : The high-order coe�cient matrix [F ]h of F is the n�k matrix whose ith column consists

of the coe�cients of xvi in the ith column fi of F:

� Lemma 1 : The invariant dynamical orders of V and its dual space U are the same. [27]

� Lemma 2 : F is a minimal basis for a k -dimensional vector space V of n-tuples over C (z ) if and only

if [27]

1. The greatest common divisor of all minors of F is 1.

2. The greatest degree of all minors of F is v ;i.e., the high-order coe�cient matrix [F ]h is of full

column rank.

� Lemma 3 : Given an r � r matrix polynomial C(z) =
Pd

i=0 Ciz
i and a q � r matrix polynomial

D(z) =
Pd

i=0Diz
i , we have [28]

rank(S) = (r + q)k �
X
i:ui<k

(k � ui)

where

S =

2
66666666666664

D0 D1 � � � Dd 0 � � � 0

C0 C1 � � � Cd 0 � � � 0

0 D0 � � � Dd�1 Cd
. . .

...

0 C0 � � � Cd�1 Cd
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . .

0 � � � 0 D0 � � � Dd�1 Dd

0 � � � 0 C0 � � � Cd�1 Cd

3
77777777777775

| {z }
2k blocks

is called the generalized Sylvester resultant of C and D , and the ui terms for i = 1; 2; : : : ; q are the

invariant dynamic indices of Ur�(q+r) , a.k.a. the dual dynamic indices [27] of the transfer function

D(z)C(z)�1 . Let [D(z)T C(z)T ]T be a basis of a r -dimensional vector space V(q+r)�r of (q + r)-

tuples over C (z ) . Note that Ur�(q+r) is the dual space of V(q+r)�r . For convenience, we call ui for

i = 1; 2; : : : ; q the dual dynamic indices from [D(z)T C(z)T ]T :

� Lemma 4 : H0 can be cycloextended to be full column rank;i.e., rank(H0) = R2 + 1 by choosing

K2 > L2 � 1 if

1. hm(0; 0) terms for m = 1; 2; : : : ;M are not all zeros, and

2. the polynomials hm(0; z) =
PL2�1

l2=0
hm(0; L2 � l2 � 1)zl2 , for m = 1; 2; : : : ;M do not share a

common zero.

Proof: The proof is similar to the one in [29]. De�ne a matrix polynomial

h0(z) = [h1(0; z); h2(0; z); : : : ; hm(0; z)]
T

9
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Since conditions 1 and 2 imply the conditions 2 and 1 in Lemma 2, respectively, h0(z) is a minimal

basis for a 1-dimensional vector space of M-tuples over C (z ) . Let uzi for i = 1; 2; : : : ;M � 1 be the

dual dynamic indices for h0(z): From Lemma 1,
PM�1

i=1 uzi = L2 � 1. From Lemma 3, by choosing

K2 > L2 � 1,

rank(H0) = MK2 �

M�1X
i=1

(K2 � uzi )

= K2 + L2 � 1

= R2 + 1

2

� Lemma 5 : H can be cycloextended to be of full column rank;i.e., rank(H) = (R1 + 1)(R2 + 1), by

choosing K1 > (L1 � 1)(R2 + 1) and K2 > L2 � 1 if

1. the polynomials
L1�1X
l1=0

L2�1X
l2=0

hm(L1 � l1 � 1; L2 � l2 � 1)zl11 z
l2
2

for m = 1; 2; : : : ;M do not share any common zeros,

2. hm(0; 0) terms for m = 1; 2; : : : ;M are not all zeros,

3. the polynomials
L1�1X
l1=0

hm(L1 � l1 � 1; 0)zl11

for m = 1; 2; : : : ;M , do not share any common zeros, and

4. the polynomials
L2�1X
l2=0

hm(0; L2 � l2 � 1)zl22

for m = 1; 2; : : : ;M do not share any common zeros.

Proof: See Appendix A. 2

In our simulations, the above conditions are satis�ed very easily when M > 2. Moreover, choosing

K1 � 2(L1 � 1) and K2 � L2 � 1 is enough to make H be of full column rank. From Lemma 5 and [9], we

�nd if

1. the polynomials
L1�1X
l1=0

L2�1X
l2=0

hm(L1 � l1 � 1; L2 � l2 � 1)zl11 z
l2
2

for m = 1; 2; : : : ;M do not share any common zeros,

2. hm(0; 0) terms for m = 1; 2; : : : ;M are not all zeros,

3. the polynomials
PL1�1

l1=0
hm(L1 � l1 � 1; 0)zl11 for m = 1; 2; : : : ;M do not share any common zeros,

4. the polynomials
PL2�1

l2=0
hm(0; L2� l2�1)zl22 for m = 1; 2; : : : ;M do not share any common zeros, and

5. S(R1 + 1; R2) and S(R1; R2 + 1) have full row rank,

10
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then the null space of X(K1;K2) is identical to the null space of S(R1; R2). Let N be the null space of

X(K1;K2) and de�ne

wi;j = [N((N2 �R2)i+ j; 0);N((N2 �R2)i+ j; 1); : : :

N((N2 �R2)i+ j; (N1 �R1)(N2 �R2)� (R1 + 1)(R2 + 1)� 1)]T

Wi =

2
666664
wi;0 wi;1 � � � wi;N2�R2�1 0 � � � 0

0 wi;0 wi;1 � � � wi;N2�R2�1

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .

0 � � � 0 wi;0 wi;1 � � � wi;N2�R2�1

3
777775

| {z }
N2 blocks

We can construct a matrix W from the the null space of X(K1;K2) such that

W~s = 0; (11)

where

~s = [s(0; 0); s(0; 1); : : : ; s(0; N2 � 1); s(1; 0); : : : ; s(N1 � 1; N2 � 1)]T ; and

W =

2
666664
W0 W1 � � � WN1�R1�1 0 � � � 0

0 W0 W1 � � � WN1�R1�1

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .

0 � � � 0 W0 W1 � � � WN1�R1�1

3
777775

| {z }
N1 blocks

We can exactly restore the image up to a scalar multiple of the unique solution of (11). Based on this

derivation, we propose the following algorithm for exact multi-channel blind image restoration:

1. Construct X(K1;K2) from the blurred images according (10).

2. Find the null space N of X:

3. Construct W from N:

4. Solve W~s = 0:

In the noisy case, it is possible to restore the image from the eigenvector of W corresponding to the smallest

eigenvalue.

4.2. Examples

We present several simulations under di�erent conditions using L1�L2 FIR blur functions, M blurred

versions of the original image, and di�erent SNR values:

1. L1 = L2 = 3; M = 3, and SNR = 60 dB:

2. L1 = L2 = 3; M = 6, and SNR = 60 dB:

11
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3. L1 = L2 = 5; M = 6, and SNR = 60 dB:

4. L1 = L2 = 3; M = 3, and SNR = 50 dB:

5. L1 = L2 = 3; M = 6, and SNR = 50 dB:

6. L1 = L2 = 5; M = 6, and SNR = 50 dB:

We generate blur functions by generating random �lter coe�cients for the L1�L2 FIR �lters. We estimate

the original image directly with knowledge of L1 and L2 but without having to estimate the blur functions.

We coded the algorithm in C using the LAPACK library. The original image is shown in Figure 3 and the

deblurred results are shown in Figures 4, 5, 6, 7, 8, and 9.

4.3. Evaluation

From the examples, we conclude that

1. For the same SNR and number of blurred images, the higher the order of the blur functions, the lower

the quality of the restored images, as shown in Figures 5, 6, 8, and 9.

2. For the same SNR and order of the blur functions, the greater the number of blurred images, the better

the quality of the restored images, as in Figure 4, 5, 7, and 8.

3. The lower the SNR, the lower the quality of the restored images.

In item 1, we assume that we chose the �lter order that is the best match to the blur functions. For higher

�lter orders, every pixel in the restored image is a�ected by more neighboring pixels. Thus, it is more di�cult

to recover the original image exactly. Items 2 and 3 are intuitive.

Compared with the algorithm in Section 3.3., our algorithm o�ers the same three advantages but

restores an image from a set of blurred versions directly without relying on a conventional image restoration

algorithm and without amplifying noise. Neither a restoration �lter nor the identi�cation of blur functions is

required. Therefore, our algorithm will not su�er from the disadvantages of conventional image restoration

algorithms or from noise ampli�cation. Nevertheless, the computational complexity is also high.

5. Conclusions and Future Work

In this paper, we reviewed several existing techniques for multichannel blind image restoration. Some of

them were based on single-channel blind image restoration algorithms. The others extended blind 1-D multi-

channel signal estimation algorithms. Additionally, we corrected the su�cient conditions of a new technique,

analyzed its performance, and demonstrated its advantages of having no convergence or stability problems,

placing no requirement on providing an initial guess of the image, and requiring only loose constraints on

the original image and the blur functions. In the future, we will work on how to reduce the computation

cost of this algorithm and apply it to images of satellites.
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Appendix: Proof of Lemma 5

This proof is separated into three steps. First, we want to show

L1�1X
l1=0

HL1�l1�1z
l1
1

has full column rank by contradiction. Assume that there exists a1 such that

S =

L1�1X
l1=0

HL1�l1�1a
l1
1

is not of full column rank. That is, rank(S) < R2 + 1. From Lemma 3,

MK2 �
X

i:u
z2

i
<K2

(K2 � uz2
i ) < R2 + 1 (12)

where uz2i ; i = 1; 2; : : : ;M � 1 are the dual dynamic indices from

L1�1X
l1=0

L2�1X
l2=0

h(L1 � l1 � 1; L2 � l2 � 1)al11 z
l2
2

We obtain K2 > uz2i by choosing K2 > L2 � 1 because, from De�nition 3, 4 and Lemma 1,
PM�1

i=1 uz2i is

less than or equal to L2 � 1, i.e., the maximum order of polynomials

L1�1X
l1=0

L2�1X
l2=0

hm(L1 � l1 � 1; L2 � l2 � 1)al1zl22

Therefore,
PM�1

i=1 uz2i < L2 � 1 from (12). Condition 3 implies
PL1�1

l1=0
hm(L1 � l1 � 1; 0)al1 for m =

1; 2; : : : ;M are not all zeros. From Lemma 3,

L1�1X
l1=0

L2�1X
l2=0

hm(L1 � l1 � 1; L2 � l2 � 1)al1zl22

for m = 1; 2; : : : ;M; share a common zero at least, say a2 . The term (a1; a2) is a common zero of

L1�1X
l1=0

L2�1X
l2=0

hm(L1 � l1 � 1; L2 � l2 � 1)zl11 z
l2
2

for m = 1; 2; : : : ;M . This contradicts condition 1.

Second, we want to prove that all minors of
PL1�1

l1=0
HL1�l1�1z

l1
1 have no common divisor p(z1),

where p(z1) is non-trivial, by contradiction also. Let one of roots of p(z1) be a1 . Therefore, all minors ofPL1�1

l1=0
HL1�l1�1a

l1 should be zero and
PL1�1

l1=0
HL1�l1�1a

l1 does not have full column rank. This contradicts

the result of the �rst step.

Finally, from Lemma 4, when conditions 2 and 4 hold, H0 has full column rank. We can concludePL1�1

l1=0
HL1�l1�1z

l1
1 is a minimal basis for an (R2 + 1)-dimensional vector space of MK2 -tuples over C (z)

from Lemma 2. Then,
PMK2�R2�1

i=1 uz1i = (L1 � 1)(R2 + 1); where uz1i ; i = 1; 2; : : : ;MK2 �R2 � 1; are the

13
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dual dynamic indices from
PL1�1

l1=0
HL1�l1�1z

l1
1 . We obtain K1 > uz1

i
by choosing K1 > (L1 � 1)(R2 + 1).

Therefore,

rank(H) = MK1K2 �
X

i:K1>u
z1

i

(K1 � uz1
i
)

= MK1K2 � (MK2 �R2 � 1)K1 +

MK2�R2�1X
i=1

uz1
i

= (R2 + 1)K1 + (L1 � 1)(R2 + 1)

= (R1 + 1)(R2 + 1)

2
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Figure 1: Single-input multiple-output image-blur model.
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Figure 2: Flow charts of (a) the iterative single-channel blind image restoration algorithm and (b) the
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Figure 3: Original tank image.
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Figure 4: 3� 3 blur functions, 3 channels, and SNR = 60 dB : (a) one of the blurred images, and (b) the

restored image.
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Figure 5: 3� 3 blur functions, 6 channels, and SNR = 60 dB : (a) one of the blurred images, and (b) the

restored image.
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Figure 6: 5� 5 blur functions, 6 channels, and SNR = 60 dB : (a) one of the blurred images, and (b) the

restored image.
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Figure 7: 3� 3 blur functions, 3 channels, and SNR = 50 dB : (a) one of the blurred images, and (b) the

restored image.
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Figure 8: 3� 3 blur functions, 6 channels, and SNR = 50 dB : (a) one of the blurred images, and (b) the

restored image.
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Figure 9: 5� 5 blur functions, 6 channels, and SNR = 50 dB : (a) one of the blurred images, and (b) the

restored image.
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