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Abstract: A fault-tolerant classification system in Wireless Sensor Networks (WSNs) has
recently been proposed. An adaptive redetection algorithm and an adaptive retransmission
scheme were later developed to reduce the misclassification probability of the system when
observations of sensors is highly noisy, and the transmission channel between the sensor
and the fusion centre of the network is deeply faded, respectively. The observation and the
received data are discarded if they are unreliable. However, they still have useful information.
This work applies Equal-Gain Combination (EGC) techniques to utilise the unreliable data.
Simulation results show that the new adaptive method with EGC outperforms the original one.
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1 Introduction

Wireless Sensor Networks (WSNs) comprise many tiny,
low-cost, battery-powered sensors in a small area (Akyildiz
et al., 2002). The sensors observe environmental variations
and then transmit the observation results to other sensors
or a base station (Aldosari and Moura, 2004; D’Costa
et al., 2004). The base stationor a sensor, serving as a fusion
centre, collects all observation results, and determines
what phenomenon has occurred. The collection is realised
using wireless communication technology, and a wireless
network is built for multiple accesses. To lower the
transmission burden, the observation result is typically

denoted by a local decision which is made by the
sensor, and which requires fewer bits than the observation
result. The local decision is transmitted rather than the
observation result. Hence, each sensor must be able to
collect, process and communicate data.

The WSN sometimes must be able to function under
severe conditions, such as in a battlefield, fireplace
or polluted area. The transmission channel, as well
as the environmental phenomenon observed by the
sensor, is noisy. Furthermore, the Observation Signal to
Noise Ratio (OSNR) and the Channel Signal to Noise
Ratio (CSNR) may change quickly. The OSNRs and
the CSNRs are thus impossible to estimate accurately.
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Some sensors may even have unrecognised faults. The
traditional distributed classification method thus fails
due to inaccurate estimates or faulty sensors. Therefore,
a fault-tolerant system must be developed to make
the received local decisions error-resistant (Meyer and
Weinert, 1986; Reibman and Nolte, 1990).

Wang et al. (2005) proposed Distributed
Classification Fusion using Error-Correcting Codes
(DCFECC) to solve this problem by combining the
distributed detection theory (Varshney, 1997) with the
concept of error-correcting codes in communication
systems (MacWilliams and Sloane, 1977). One sample is
detected in each of N sensors for a given phenomenon.
A codeword consisting of N symbols is designed for
each phenomenon. In other words, a one-dimensional
code (1 × N ) corresponds to a phenomenon. Thus, M
phenomena form an M × N code matrix. Each symbol
with one bit is assigned to each sensor and each sensor has
its local decision rules. A local decision based on the rule
is made from the observation result and is represented
with the assigned symbol. DCFECC has a much lower
probability of misclassification when some sensors are
faulty than the traditional distributed classification
method. DCFECC outperforms the method even when
CSNR is not correctly estimated.

Distributed Classification Fusion using Soft-decision
Decoding (DCSD) (Wang et al., 2006) was later
developed by improving DCFECC. DCSD adopts a
symbol with L bits, instead of one bit, to represent the
observation result at each sensor. The soft-decision
decoding, instead of hard-decision decoding, is utilised to
increase decoding accuracy.However, themisclassification
probability remains high in the extreme case, i.e., very
low SNRs (including OSNRs and CSNRs) because of
large observation deviation and unreliable transmission
channels. Pai et al. (2006, 2007) have developed an
adaptive retransmission mechanism to resolve the low
CSNRproblemand thenproposed an adaptive redetection
algorithm to combat the low OSNR problem.

In the adaptive retransmission mechanism, the
fusion centre calculates the channel reliability of each
received detection result while making the final decision.
When the final decision is not reliable, the received result
with the lowest channel reliability is discarded and the
sensor which has sent it will be asked to retransmit its
detection result by the fusion centre. Similarly, if the
observation result of the sensor is located in a unreliable
range, it is discarded and the sensor makes another
observation in the adaptive redetection mechanism.
However, the unreliable observation result at the sensor
and the unreliable received detection result at the fusion
centre still contain information about the environment and
the local decision, respectively. They should be utilised
to increase the performance of the adaptive distributed
classification system.

In this work, we apply Equal-Gain Combination
(EGC) techniques (Brennan, 2003) for the utilisation of
the unreliable data. A new observation result at a sensor
is equally combined with the combined result of the
previous observations. The combined observation result

is then employed to decide whether another observation
is necessary or not. If another observation is unnecessary,
a local decision based on the combination result is
made. The adaptive redetection scheme using the EGC
technique needs a smaller number of observations and has
a lower misclassification probability than the original one.
Similarly, the channel reliability of the latest received local
decision from the same sensor at the fusion centre is equally
combined with the combined channel reliability of the
previous received local decisions. The fusion centre then
use the combined channel reliability to decidewhich sensor
is selected for retransmission. Moreover, two methods
are proposed to decide if the final decision can be
made. The new adaptive retransmission algorithms needs
less retransmission times and reach a misclassification
probability close to the previous one under the same
retransmission criteria.

The remainder of this work is organised as follows.
Section 2 briefly addresses the distributed detection
problem in WSNs and the previous work on the
problem. Section 3 introduces the newadaptive redetection
mechanism and the new adaptive retransmission scheme.
Section 4 gives a performance evaluation of the proposed
mechanism. Concluding remarks and suggestions for
future work are given in Section 5.

2 The previous works

Figure 1 depicts a WSN for distributed detection with
N sensors deployed for collecting environment variation
data and a fusion centre for making a final decision of
detections. This network architecture is similar to the
so-called SEnsor with Mobile Access (SENMA) (Yang
and Tong, 2005; Tong et al., 2003), Message Ferry (Zhao
and Ammar, 2003) and Data Mule (Shah et al., 2003).
At the jth sensor, one observation yj is undertaken for one
of phenomena Hi, where i = 1, 2, . . . , M . The observation
is normally a real number represented by many bits.
Transmitting the real number to the fusion centre would
consume too much power, so a local decision, uj , is made
instead.

2.1 Old adaptive redetection algorithm

The DCFECC approach (Wang et al., 2005) designs an
M × N code matrix T not only to correct transmission
errors, but also to resist faulty sensors. The application
of the code matrix is derived from error-correcting codes.
Table 1 lists an example of T, which is the optimal
code matrix found in Pai et al. (2008). Row i of the
matrix represents a codeword ci = (ci,1, ci,2, . . . , ci,N )
corresponding to hypothesis Hi, and ci,j denotes a 1-bit
symbol corresponding to the decision of sensor j.

The decision region at sensor j can be represented by
a set of thresholds. Thus, a local decision rule associated
with this threshold set can be performed to determine uj

when yj is observed. Since the observation result around
the threshold is not reliable, an unreliable range is defined
around the threshold. For example, four hypotheses
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H1, H2, H3, and H4, are detected and classified with N =
10 sensors and a fusion centre. These hypotheses are
assumed to have Gaussian-distributed probability density
functions (pdfs) with the same standard deviation σ2 and
means 0, 1, 2, and 3, respectively. Table 1 is used as the code
matrix.At each sensor,OSNRis definedas−10 × log10 σ2.
When σ2 = 0.6 and channel noise is zero, the threshold,
T1, and the unreliable range, U1 = [T1 − τ1 T1 + τ1] of
sensor 1 is illustrated in Figure 2. If the observation result
falls in the unreliable range, it is discarded and another
observation is taken. The whole process does not stop
until the latest observation is not located in the unreliable
range. The adaptive redetection scheme outperforms the
non-adaptive algorithm by 2dB.

Figure 1 Structure of a Wireless Sensor Network for
distributed detection using N sensors

Table 1 The 4 × 10 optimal code matrix

H1 1 1 1 1 1 0 0 0 0 0

H2 1 1 1 1 1 1 1 1 1 1

H3 0 0 0 0 0 1 1 1 1 1

H4 0 0 0 0 0 0 0 0 0 0

Source: Pai et al. (2008)

2.2 Old adaptive retransmission algorithm

Distributed Classification Fusion using Soft-decision
Decoding (DCSD) approach utilises soft decoding to
improve the reliability of the final decisions (Wang et al.,
2006). Set u= (u1, u2, . . . , uN ). The local decision u is
transmitted for the final decision to the fusion centre.
When binary antipodal modulation is deployed, the
received data at the fusion centre are ṽ = (ṽ1, ṽ2, . . . , ṽN ),
where

ṽj = αj(−1)uj

√
Es

L
+ nj . (1)

Notice that αj is the attenuation factor, Es is the total
transmission energy per sensor, and nj is the Additive
White GaussianNoise (AWGN)with the two-sided power
spectral density N0/2. The received data are decoded as
hypothesis i if

p(ṽ | ci) ≥ p(ṽ | ck) for all ck, where k = 1, . . . , M. (2)

Because ci,j and ck,j are binary, the bit log-likelihood ratio
of the received data at the fusion centre can be defined as

λj = ln

∑1
bu=0 p(ṽj | uj = bu)p(uj = bu | ci,j = 0)∑1
bu=0 p(ṽj | uj = bu)p(uj = bu | ck,j = 1)

.

Figure 2 The threshold and the unreliable range at σ = 0.6
for sensor 1

Equation (2) is then equivalent to
N∑

j=1

[
λj − (−1)ci,j

]2 ≤
N∑

j=1

[
λj − (−1)ck,j

]2
.

Denote

δi =
N∑

j=1

[
λj − (−1)ci,j

]2
.

The fusion centre decodes the received data as hypothesis
imin if imin = arg mini δi. Define

isec = arg min
i,i �=imin

δi.

A smaller difference δ = δisec − δimin indicates that the
received data are around the decision boundary, meaning
that the decoding result has a higher error probability
(MacWilliams and Sloane, 1977). Thus, retransmission of
the local decision is necessary.

Define the channel reliability of the received local
decision j as

γj =
∣∣∣∣ ln

p(ṽj | uj = 0)
p(ṽj | uj = 1)

∣∣∣∣.
Because the retransmission should help the fusion centre
to differentiate cimin from cisec , only the sensor, j′, with
different symbols corresponding to these two codewords
should be chosen, i.e., cimin,j′ �= cisec,j′ . Therefore, the
fusion centre discards the received local decision from
sensor jmin, where

jmin = arg min
j′

γj′ ,

and ask it to retransmit its local decision. The
retransmission process does not stop until δ is greater
than a predefined threshold.
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3 New adaptive schemes using EGC

3.1 New adaptive redetection

Assume that all observations of a sensor are identically
independent distributed (i.i.d.) given Hi and have the
same OSNR. According to Brennan (2003), EGC is the
optimal method to combing two observations. Denote
yd

j , d = 1, 2, . . . , as the dth observation of sensor j and

ȳd
j =




y1
j if d = 1

1
2
(
yd

j + ȳd−1
j

)
else

as the combined observation result of sensor j in
d observations. We propose an adaptive redetection
algorithm for each sensor using the concept of EGC as
follows:

Step 1: Define the allowed maximum number of
observations as D and set the number of observations,
d, to 0.

Step 2: The sensor makes an observation of the
environment and sets d = d + 1.

Step 3: If the combined observation result in d
observations, i.e., ȳd

j falls in the unreliable range and
d ≤ D, go to Step 2. Otherwise, the sensor makes a local
decision according to ȳd

j .

Step 4: The sensor transmits the local decision to the fusion
centre.

Notably, all observations at each sensor may not be
combine with equal weights. On the other hand, the new
observation is equally combined with the combined result
of previous observations. This adaptive mechanism is
different from the original application of EGC, where
all observations are equally combined, no adaptive
mechanism is employed, and the number of observations is
fixed. Furthermore, only the combined observation result
must be saved at the sensor and an average operation for
two values is conducted. Therefore, little extra cost over
the old adaptive redetection in Section 2.1 is needed.

We further assume that all hypotheses, Hi, are equally
likely to occur. Let Uj be the unreliable range for
senor j. The probability that the (d + 1)th observation,
d = 1, 2, . . . , D − 1, is necessary for sensor j after d
observations can be represented by

P r
j (d) = Pr

{
ȳ1

j ∈ Uj , ȳ
2
j ∈ Uj , . . . , ȳ

d
j ∈ Uj

}
.

Therefore, the expected number of observations for sensor
j can be calculated by

Oj = 1 × (1 − P r
j (1)) + 2 × P r

j (1)
(
1 − P r

j (2)
)

+ · · · + D ×
D−1∏
d=1

P r
j (d).

Define Cij and Wij as the range which sensor j will make
a correct and wrong local decision given Hi, respectively,

if ȳd
j is located in. Notably, both Cij and Wij are reliable

ranges. The probabilities that the local decision of sensor
j is correct and wrong after d < D observations can be
computed by

P c
j (d) =

1
M

M∑
i=1

Pr
{
ȳ1

j ∈ Uj , . . . , ȳ
d
j ∈ Cij | Hi

}

and

P e
j (d) =

1
M

M∑
i=1

Pr
{
ȳ1

j ∈ Uj , . . . , ȳ
d
j ∈ Wij | Hi

}
,

respectively. When d = D, no unreliable ranges are
effective since the sensor must make a decision. Let C ′

ij

and W ′
ij be the range which sensor j will make a correct

and wrong local decision given Hi, respectively, when
no reliable ranges are defined. The probabilities that the
local decision of sensor j is correct and wrong after D
observations can be computed by

P c
j (D) =

1
M

M∑
i=1

Pr
{
ȳ1

j ∈ Uj , . . . , ȳ
d
j ∈ C ′

ij | Hi

}

and

P e
j (D) =

1
M

M∑
i=1

Pr
{
ȳ1

j ∈ Uj , . . . , ȳ
d
j ∈ W ′

ij | Hi

}
,

Consequently, the probabilities that the the local decision
of sensor j is correct and wrong can be found by

P c
j = P c

j (1) + P r
j (1)P c

j (2) + · · ·

+
D−1∏
d=1

P r
j (d)P c

j (D)

and

P e
j = P e

j (1) + P r
j (1)P e

j (2) + · · ·

+
D−1∏
d=1

P r
j (d)P e

j (D).

In the example of Section 2.1, the ranges, C11 and C ′
11,

that sensor 1 will make a correct local decision given
H1 are [−∞ T1 − τ1) and [−∞ T1), respectively. On the
other hand, the ranges, W11 and W ′

11, that sensor 1 will
make a wrong local decision given H1 are [T1 + τ1 ∞] and
[T1 ∞], respectively. Similarly, Cij , C ′

ij , Wij and W ′
ij for

all i and j can be defined/found. Therefore, Oj , P c
j , and

P e
j can be calculated numerically according the pdfs ofHi,

i = 1, 2, 3, 4.

3.2 New adaptive retransmission

Denote ṽ
rj

j , rj = 1, 2, . . . , as the rjth received local
decision from sensor j at the fusion centre and

λ̄
rj

j = ln

∑1
bu=0 p(ṽ1

j , . . . , ṽ
rj

j | uj = bu)p(uj = bu | ci,j = 0)∑1
bu=0 p(ṽ1

j , . . . , ṽ
rj

j | uj = bu)p(uj = bu | ck,j = 1)
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as the combined bit log-likelihood ratio of the received
local decision j at the fusion centre. Assume that all
received local decisions from sensor j at the fusion centre
are i.i.d. given its local decision, uj . That is,

p
(
ṽ1

j , . . . , ṽ
rj

j | uj

)
= p

(
ṽ1

j | uj

) · · · p(
ṽ

rj

j | uj

)
. (3)

The combined bit log-likelihood ratio can be rewritten as

λ̄
rj

j = ln

∑1
bu=0

∏rj

k=1 p
(
ṽk

j | uj = bu

)
p(uj = bu | ci,j = 0)∑1

bu=0
∏rj

k=1 p
(
ṽk

j | uj = bu

)
p(uj = bu | ck,j = 1)

.

Moreover, let

δ̄i =
N∑

j=1

[
λ̄

rj

j − (−1)ci,j
]2

.

Thus, the fusion centre decodes the received data as
hypothesis īmin if īmin = arg mini δ̄i. Define

īsec = arg min
i,i �=īmin

δ̄i

and

δ̄ = δ̄īsec − δ̄īmin
.

Finally, let

γ̄
rj

j =
∣∣∣∣ ln

p
(
ṽ1

j , . . . , ṽ
rj

j | uj = 0
)

p
(
ṽ1

j , . . . , ṽ
rj

j | uj = 1
)
∣∣∣∣

as the combined channel reliability of the received local
decision j at the fusion centre. According equation (3),

γ̄
rj

j =
∣∣∣∣ ln

∏rj

k=1 p
(
ṽk

j | uj = 0
)

∏rj

k=1 p
(
ṽk

j | uj = 1
)
∣∣∣∣

=
∣∣∣∣

rj∑
k=1

ln
p
(
ṽk

j | uj = 0
)

p
(
ṽk

j | uj = 1
)
∣∣∣∣.

From the above equation, we can find that γ̄rj

j is calculated
based on the summation of all logarithmic terms with the
same weight, which is the concept of the EGC.

According the above derivation, an adaptive
retransmission algorithm for the fusion centre is developed
as follows:

Step 1: Define the allowed maximum number of
transmission for sensor j as R and the acceptable channel
reliability as Γ. Set rj = 1, for j = 1, 2, . . . , N . Ask all
sensors transmit their local decisions. Compute λ̄

rj

j , for
j = 1, 2, . . . , N .

Step 2: Compute δ̄i, i = 1, 2, . . . , M .

Step 3: Calculate īmin, īsec and δ̄.

Step 4: If δ̄ is lower than a threshold ∆ and some γ̄
rj

j is
less than Γ, the fusion centre asks sensor j̄min to retransmit
its local decision and set rj̄min

= rj̄min
+ 1, where

j̄min = arg min
j′,rj′ ≤R

γ̄
rj′
j′ .

Calculate λ̄
rj̄min
j̄min

. Go to Step 2. Otherwise, the fusion centre
decodes the received local decisions as Hīmin

.

Notably, in Step 1, the allowed maximum number of
transmissions is set because the sensor has limited power
and the power for a local decision cannot be infinite
in practice. The acceptable channel reliability is defined
for avoiding useless retransmissions due to low OSNRs.
Furthermore, the fusion centre must have enough storage
to saveR received local decisions for each sensor such that
λ̄

rj

j can be calculated accordingly. However, if the fusion
centre is a sensorwith limited complexity, such storagemay
be too huge.

We may assume that the OSNR is high when we
compute λ̄

rj

j to solve this problem. When the OSNR is
large, the local decisions of all sensor are correct with very
high probabilites, i.e.,

p(uj = 0 | ci,j = 0) ≈ p(uj = 1 | ci,j = 1) ≈ 1 and

p(uj = 1 | ci,j = 0) ≈ p(uj = 0 | ci,j = 1) ≈ 0.

Thus, λ̄rj

j can be approximated by

λ̄
rj

j ≈ ln

∏rj

k=1 p
(
ṽk

j | uj = bu

)
∏rj

k=1 p
(
ṽk

j | uj = bu

)

=
rj∑

k=1

p
(
ṽk

j | uj = bu

)
p
(
ṽk

j | uj = bu

)

≈
rj∑

k=1

λk
j

= λ̄
rj−1
j + λ

rj

j , (4)

where

λk
j = ln

∑1
bu=0 p

(
ṽk

j | uj = bu

)
p(uj = bu | ci,j = 0)∑1

bu=0 p
(
ṽk

j | uj = bu

)
p(uj = bu | ck,j = 1)

.

That is, the combined bit log-likelihood ratio of the
received local decision j is approximated using the EGC
at the fusion centre. Consequently, the fusion only needs
to save λ̄

rj

j instead of all received local decisions from
sensor j.

4 Performance evaluation

The proposed scheme was evaluated using several
simulations, each comprising 106 Monte Carlo tests.
Similar to the distributed classification example in
Section 2.1, a fusion centre and N = 10 sensors
were deployed to detect and classify four hypotheses
H1, H2, H3, and H4. We also assumed that these
hypotheses have Gaussian-distributed probability density
functions with the same standard deviation σ2 and
means 0, 1, 2, and 3, respectively. The attenuation factors
αj in (1) had identical and independent Rayleigh
distributions with E[α2

j ] = 1. Furthermore, CSNR is
10 × log10(Es/N0). The code matrix in Table 1 was used.
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In the first set of simulations, Figure 3 shows
performance comparison between the old and new
adaptive redetection algorithms when τ = 0.4, D = ∞,
and CSNR = 10dB. The OSNR is normalised by the
average number of observations per sensor for fair
comparison in Figure 3(a). That is,

OSNR = −10 × log10 σ2 + 10 × log10 O, (5)

where

O =
1
N

N∑
j=1

Oj .

The new adaptive redetection mechanism outperforms
the old mechanism, especially in low OSNRs.
The average number of detection for the new algorithm
is slightly higher than the old one. Less than 1.8
detections per sensor is required.

Figure 4 illustrates performance comparison among
the old (denoted by Old ART) and new adaptive

Figure 3 In the case of τ = 0.4, D = ∞, and CSNR = 10dB,
performance comparison between the old and new
adaptive redetection algorithms (denoted by Old
ARD and ARD-EGC) in: (a) the misclassification
probability and (b) the number of detections

retransmission algorithms when ∆ = 4, R = ∞, Γ = 5,
and OSNR = 0dB. The CSNR is also normalised
as the OSNR in equation (5). Two new adaptive
retransmission algorithms are included: one calculates
λ̄

rj

j without any approximation and the other use
the approximation in equation (4) (denoted by
ART-EGC and ART-EGC2, respectively). The new
adaptive retransmission algorithms outperform the old
mechanism. The average numbers of transmissions are
less than three transmissions per sensor.

5 Conclusions

This work presents a new adaptive redetection and two
new adaptive retransmission algorithms to combat noisy
observation environment and imperfect channels inWSN.

Figure 4 In the case of ∆ = 4, R = ∞, Γ = 5, and
OSNR = 0dB, performance comparison between
the old and two new adaptive retransmission
algorithms (denoted by Old ART, ART-EGC,
and ART-EGC2, respectively) in: (a) the
misclassification probability and (b) the number
of detections
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These new algorithms are developed according to the
EGC technique. All observations at a sensor are linearly
combined for making a local decision or deciding another
observation in the redetection algorithm. All received
local decisions from a sensor at the fusion centre are
also combined according the concept of the EGC in both
the retransmission algorithms but the two algorithms use
different combination techniques for deciding another
transmission. Simulation results show the new adaptive
redetection and retransmission algorithms outperform the
old ones.
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