CHAPTER 1 O

t-TESTS—COMPARING
TWO MEANS

The r-test is probably the most widely used statistical test for
the comparison of two means because it can be used with very small sample
sizes. You may see it referred to as Students’ t-test. That doesn’t mean that only
students use it; rather, it was worked out by a mathematician who used Student
as his pen name.

If you use the ¢-test with large-size samples, the values of ¢ critical and z
critical will be almost identical. As the sample size increases, the values of # and
z become very close (the value of ¢ will always be somewhat larger than the z
value). Since the values are so close, many researchers use the -test regardless
of sample size. ‘

You will soon see that, aside from using a different distribution, the procedure
for obtaining the ¢ value is the same as that for the z score. We will go through the
procedure first for Case I and then for Case II studies.

CASE I STUDIES

You will remember that a Case I study compares a. sample mean with an
established population mean. The null hypothesis for a Case I t-test would be
that there is no difference between our sample mean and the mean already
established for the population. Suppose that you have an experiment that
requires that your 16 Ss have normal language-learning aptitude. So, you give
them all the MLAT (Modern Language Aptitude Test) with the hope that they
will place in the central area of the normal distribution of means. The formula for
the computation is - ‘

) _X-n .
observed 37 ,
You can see from the top half of the formula that we want to find the difference
between the sample mean and the population mean (your S’ mean on the
MLAT and the normed population mean for the MLAT). Then the bottom half
says that we must divide that difference by the standard error of means. The
standard error of means, again, is computed as
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- \ JN
So the ¢, ., formula could also be written as
e ey .
. X -

opeerved Sx/ \/—_
This should be familiar to you, for it is exactly the same as the Case I z score
formula (see preceding chapter).

Let’s say that your 16 Ss have a X of 75 on the MLAT and an s of 6. Let’s

pretend that the published mean for the test is 80 (we’re sure it isn’t; this is just
hypothetical). Plugging the data into the formula, we get

At this point, you must think of yourself as one of a number of Es each of
whom is trying to find out if their S's have normal language aptitude abilities.”
Each of these E's has a sample of 16 S's just like you. You visualize your ¢ value
asjusta member of all the ¢ values found by these other E's. It is sort of a ““family”
of ¢ values. The family forms the ¢-distribution for the number of Ss in the
sample. All of you have gathered samples from 16 S's; so your family of ¢ values
is based on the number of S's in the sample. The task, now, is to decide whether
or not the obtained value of ¢ really fits in that distribution.

Before we can make that decision, we need to add one more concept: the
concept of degrees of freedom. You have undoubtedly noticed that we often use
N — 1 rather than N when we want to find some average. The formula for
standard deviation, for example, requires us to divide the total for deviation from
the mean not by Nbut by N — 1. The reason we so often use NV — 1 rather than N
is that we are using our statistics to estimate the population parameter. Our
sample size is small while the population size is large. It also stands to reason
that the dispersion of scores in our sample will be larger than the dispersion of
scores in the population. If we divide our sample values by N, we will get the
average for our sample, but we will not get a value which is the best estimate of
the population parameter. Mathematicians have decided that the best way to
use sample averages as estimates of population parameters is to use N — 1,
which is related to degrees of freedom.

The concept of degrees of freedom is very important in all hypothesis testing.
It refers to the number of quantities that can vary if others are given. For
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example, if you know that 4 + B = C, you know that 4 and B are free to vary.
You can put any number in the A and B slots and call the sum C. But if you
change C to a number so that4 + B = 200, then only one of the numbers for 4
and B can vary. As soon as you fill in one of the slots, the other one is fixed
(A+50=2000r50+ B= 200). So we say there is one degree of freedom.
Only one of the two quantities is free to vary; the other is fixed. If our formula
were A + B + C = D, and we say that D is 100, then any two of the values for
A, B, and C can vary but the third is fixed. So then there are two degrees of
freedom. To find the degrees of freedom for the sample, you can subtractN — 1.
If you have 20 S's in a sample and wish to divide their scores and use that average
as an estimate of the population, you must divide not by N but by the degrees of
freedom, N — 1. '

The number of degrees of freedom is important in the t-test, for it determines
the shape of the frequency distribution for 7 values. For any given number of
degrees of freedom there is a particular ¢-distribution with its own set of critical
values for significance. In the example of students who have been tested on the
MLAT, there were 16 Ss in the sample group. The data for the 16 Ss belong to
the t-distribution with 15 degrees of freedom(16 — 1 = 15 d.f.). Youmust place
your sample X in the t-distribution formed from the family of an infinite number
of samples all with 15 d.f. If you had 5 Ss, you would have to place it in
comparison with the t-distribution for four degrees of freedom. If you had 25 Ss,
you would compare it with the t-distribution with 24 d.f. The critical value, the
¢ value you must obtain in order to claim Statistical significance, will vary

“according to the number of degrees of freedom, and thus the size of the samples
that make up the distribution.

The ¢-distribution table in the Appendix allows us to compare our observed
value of ¢ with the appropriate family in the ¢-distribution table. The rows down
the side of the table relate to the separate -distributions, each with a unique
number of degrees of freedom. In the example, we had 16 S'; so our d.f. row is
marked 15. The columns of numbers across the page give us the probability
levels. If our hypothesis is directional, we will use the top row () to locate our
already selected .05 or .01 level of significance. If the hypothesis is non-
directional (two-tailed), we would use the row Tabeled 2-tailed as the guide to
our .05 or .01 level. ' :

~ Let’s say that we had already selected the .05 level of significance for
rejecting the null hypothesis. Our obtained value for t was —3.33. We find row
15 for the degrees of freedom and then check across to where 15 intersects with
the column labeled two-tailed .05. The value at the intersectionis 2.13. Wecan
reject the null hypothesis because our ¢ value is greater than 2.13. (It makes no
difference whether the obtained value is positive or negative in reading the table.
Since the distribution is symmetrical, the minus quantities would be the same.
To reproduce both sides of the distribution would take up unnecessary space.)
You can be quite sure that the group is unusual in their language-learning ability;
they are much worse than most learners. The score places them at the far left tail
of the distribution. ' '
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. Ifthe difference between your mean and that of the population had resulted in
at value of +3.33 instead, it would be at the far right tail of the distribution. With -
a positive f value of +3.33, your group would not be typical but better than most
in language-learning aptitude.

The ¢ value obtained in the example data allows you to reject the null
hypothesis. You are not safe in assuming that your Ss are typical in thexr
language-learning aptitude.

CASE II STUDIES

Case II studies require a comparison of two means for two groups drawn from
the population. The process of making this comparison is similar to that used in
Case Il studies for the z-distribution. But, once again, we will use a¢-distribution
instead of a z-distribution because we have so few S's in our sample groups.

Let’s assume that we believe role-play and group problem-solving promote
oral proficiency. We have constructed an oral interview measure (or, better yet,
found an established measure) to test oral proficiency. We then select arandom
sample of 72 ESL students from our schools and randomly assign them to two
groups of 36 Ss each. One group becomes the experimental group and receives
role-play and problem-solving activities; the other group is the control group
which receives some placebo treatment. At the end of the semester, we
administer the oral interview and obtain the following data (e identifies the
experimental group; ¢ the control group):

We believe that the special instruction does result in higher scores for the
experimental group and we wish we could make an alternative hypothesis that
would be one-tailed and directional. However, we want to be extra hard on our
predictions, so we decide to make no prediction as to the direction of the
difference. Our null hypothesis is:
H, = the two samples are from the same population; the difference
between the two sample means which represent population
means is zero (i, — u, = 0)
This prediction says we expect that any difference between our two groups falls
well within the normal differences found for any two means in the population. If
we can reject this hypothesis, we must have a high enough ¢ value to be sure that
such a large difference is not due to chance.
Now that we have the null hypothesis, we can set our acceptance level at.05,
and try to reject the hypothesis. The formula is exactly the same as the one we
‘used for z scores in Case II studies:

xe—xc

Sx,-X, - standard error of differences
between means

tobe =
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predictions, so we decide to make no prediction as to the direction of the
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Xe— X,

S, -X,) — standard error of differences
between means

tobe ™
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The subscripts e and ¢ refer, again, to expeﬁmental and control. The top part of
the formula is always the easy part. We already know there is a difference of 7
between the X of 62 on the oral interview for our experimental group and the X

of 55 for the control group. Now we need to work out the standard error of
differences between the means.

The formula for the standard error of differences between the means gives us
a ruler for the difference in means if we repeated this experiment over and over
with different 36-member classes. That ruler is corrected for the size of our
classes to estimate the difference for the population:

sa,-ff\K{js_%,— )2+ <‘\s/cr:)2
BTG
NOrO
="\[4+625

="\ ’1 0.25

=3.2

Now that we have the standard error of differences between the means, we can
find the ¢ value: ‘

_Xe— ic
tons™
s(xe_xc)
_ 62-55
3.2
T

I

3.2
=2.19

At this point, all we need is the critical value for ¢ when the sample size is 36
and we have two groups. Each group had 36 Ss; one of the scores is predictable
given the other 35. So each group has 35 d.f. Since there are two groups, the total
d.f. (n; —1+n,—1)is70. Again, we can turn to the t-distribution table to find
out whether we are justified in rejecting the null hypothesis. We find that our
number of d.£, 70, is not listed but falls between 60 and 120. We choose 60 as
being the more conservative estimate, and check across to the .05 column. The!? -

value needed for our selected significance level of .05 is 2.000. Fortunately, our
¢ value is enough above ¢ critical that we are quite safe in rejecting the null
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hypothesis. Our two groups have scored differently on the final test of oral
proficiency. The difference is statistically significant. This is support for our -
claim that our method of using role-play and problem-solving promotes oral
proficiency. ' o
Let’s work through one more example to be sure that the procedure is clear..
Let’s say that we have the same two classes as before (where S's have been
randomly selected and randomly assigned to control or experimental groups).
Each of the groups has been given a unit of instruction on how to use the library.
However, we have also given the experimental group some special instruction
on how best to ask native speakers of English for information and help. Both
- groups are given an assignment to find answers to 15 questions by locating the
information in the library. The data for the two groups follow: '

X, = 88 minutes s, = 28 minutes
X. = 102 minutes s, = 20 minutes
N, = 36 N.=30

Notice that on the day we gave the problem, six people were absent from the
control group.
Our formula for the ¢ value is

)?e _Yc
s(ie"ic)
88 — 102

'\/(28/ \136)2+(20/ \}30)2

88 — 102

\ }(4.67)2 +(3.65)2

-14

\}21.81 +13.32

-14

\/35.13
-14

~ 5.93

=236

tobs =

To check to see whether this observed value of ¢ is statistically significant or not,
we again check the ¢-distribution table. This time we had 36 S's in one group and
30 in the other. This gives us a total of 64 d.f. (36 —1=135;30—1=29; 35 +
29 = 64). Again, our ¢ value is high enough that we can safely reject the null
hypothesis. The ¢-test supports our claim that the instruction actually helped our
Ss.
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ASSUMPTIONS UNDERLYING T-TESTS

Every statistical test has certain assumptions which have to be met if we plan to
use them in our research. In Case I studies, we assume that there is random
selection of subjects. In Case II studies, we assume that: (1) the subject is
assigned to one (and only one) group in the experiment; (2) the scores on the
independent variable are continuous and that there are only two levels to the
variable (i.e., only two means); (3) the variances of the scores in the populations
are equal, and the scores are normally distributed.

The t-test is a fairly robust test; so we don’t have to be terribly concerned
about normal distribution of the means. However, the literature in Applied
Linguistics abounds with violations of the basic assumption on the number of
comparisons that can be made between means using the t-test. If means are tobe
cross-compared, you cannot use a I-test. That is, you cannot compare Group 1
and 2, 1 and 3, and then 2 and 3, etc. If you try touse the ¢-test for such multiple
comparisons, you make the likelihood of being able to reject the null hypothesis
very easy. [ You can check this out as follows: When you set the probability level
at .05 and do multiple z-tests, the value of probability increases according to the
following formula: a =1— (1 — ). ¢ refers to the number of comparisons. If -
you make four comparisons, your actuallevelis:a=1—(1—.05)*=1—(.95 )¢
=1 — .82 = .18. So your significance level is .18, not .05.]

The i-test is one of the most frequently used statistical procedures in our field.
It is most often used to compare two groups. You might wonder why we go to all
this trouble. Why can’t we just look atthe X of the experimental group and the
X of the control group and see whether they look different or not? Why do we
need all the rest? :

Consider the last example problem. The mean time for the experimental
group to find the information was 88 minutes and the mean for the control group
was 102 minutes. Obviously, the experimental group was faster. Let’s consider
what would happen, though, if there were 10 Ss in each group rather than 36 and
~ 30. If you do the comparisons, you will find that the ¢ value is 1.59. If we played
by the rules and made a nondirectional, two-tailed hypothesis, we could not
reject the null hypothesis. That is, the difference between the two means would
no longer be considered great enough to allow us to cite the evidence as support
for our claim about the special instruction. We cannot simply look at the mean
scores of two groups and conclude that they are the same or different.

MATCHED T-TEST

In our examples so far we have compared two means obtained from two
independent groups of Ss. However, it is.often the case that the two means we
want to compare come from the same Ss. For example, we may give our
students a pretest and a posttest and hope to be able to compare the two means.
Or we may give our Ss two different tasks and hope to compare their
performance on the tasks. This gives us paired data where each person has two
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scores and we want to determine whether the difference between the two mean
scores is significant. : :

Another instance of paired data is when Ss have been matched on the basis of
some particular variable. For example, suppose you thought it important that
your two sample subject groups be matched for language proficiency. Youdon’t
trust random selection as a means of matching the groups to start with. So you
select one hundred subjects and give them a language proficiency test. Outofthe
100 Ss, you then select 30 who have the same scores. Finally, you randomly
assign one member of each pair to the experimental group and the other to the
control group. In this case, the Ss in your experiment are matched for one
variable, language proficiency.

When you have paired data (either the same S and two sgores or matched Ss
on one measure), you will need to use a t-test which is appropriate for sets of
paired data.

The procedure for matched z-test is similar to the ¢-test for independent
samples. The difference is more conceptual than computational. In the matched
t-test, our N is the number of pairs rather than the number of observations. Also
the standard error of the difference between means will be calculated by dividing
not by the number of observations but rather by the number of pairs minus one
(the degrees of freedom for pairs).

Suppose that you wanted to show that foreign studénts assign subject status
to whatever noun most immediately precedes the verb in English sentences.
This would lead them to misinterpret sentences such as Roger promised Russ to
help the teacher, so that Russ is expected to do the helping. They will interpret
sentences of the Roger asked Russ to help the teacher accurately. So you work
out a variety of such sentences and present them to your second language
learners. Then you categorize the data sothateach S has a total score for Type 1
sentences and for Type 2 sentences. You expect that the Ss will do better on
Type 2 than Type 1 sentences. The data are shown in Table 10.1. The first step

Table 10.1. Total scores on sentence comprehepsion

Subject
number Type 1 Type 2 D D?
1 47 45 -2 4
2 50 53 3 9
3 40 44 4 16
4 38 49 11 121
5 . 48 48 0 0
6 41 50 9 81
7 32 45 13 169
8 31 35 4 16
9 33 30 -3 9
10 40 54 14 196

IX=400 X=453 XD 53 =D?=621
X
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is to find the difference between each pair of scores. These appear to the right
under the column labeled D (for difference). These difference scores are then
squared in the next column. Each column is added, and the total appears below.
These values are then plugged into the matched ¢-test formula:

Sp

The top half of the ¢ formula will, as always, give us the difference between our
two obtained means. The denominator, the standard error of differences
between two means, will be adjusted to account for the fact that the means are
from paired data. Since the formula is adjusted for pairs, we will use the symbol
s so that we will remember we are working with pairs of means.

The formula for s5, the standard error of differences between two means, is

Sp

A
s is the standard deviation of the differences. We can easily find it by plugging
in the values from our table for differences between means. :

_ [zD2—(1/n)(=Dy?
s"‘\/l n—1

The 7 in the formula now refers to number of pairs (not number of individual
observations). The standard deviation of the differences is then adjusted for the
number of pairs. Our data fit into the formula as follows:

= \/621 -(1/10)(2,809)

S
b 10-1

340.1

9

="\ ’37.79

=6.15
We can now calculate s, the standard error of differences between two means:

" Now we have the denominator. All we need to do is divide the difference we
found between our two sentence types by the denominator to obtain the ¢ value.
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Sp
_40-453
1.85

_ -53

1.95
=-=272

To check the significance of this ¢ value, we use the same ¢-distribution table as
for the regular -test. A value of —2.72 with 9 d.f. is significant at the .05 level.
Therefore, you have evidence to support the claim that your Ss are simply
assigning subject status to the noun that immediately precedes the verb.

The second type of matched-pairs ¢-test involves, as we said, working with
two groups of S's who have been previously matched. For example, suppose that -
you wanted to compare two different approaches to teaching spelling, one based
on contrasts between the sound-symbol correspondences in the first language

Table 10.2. Gain scores on spelling test

Matched pair Gain scores

Experimental Control D D?
A 5 3 2 4
B 7 7 0 0
C 2 4 -2 4
D 6 5 1 1
E 7 5 2 4
F 4 3 1 1
G 8 4 4 16
H 9 6 3 9
1 2 6 —4 16
J 6 5 1 1

X 56 IX 48 XD 8 31D? 56
n 10 n 10
X 5.6 X 48

and English and the other based on regular rules of English spelling, Since you
are concerned that random selection of S's may not guarantee that you will have
Ss with equal spelling abilities in your two groups, you first give a test of general
spelling ability. On the basis of this test you manage to find 10 pairs of matched
scores. Each pair of S's attained the same score on the test. Then you randomly
asim%m the experimental group and the other to the
control group. THhis gives you 10 pairs to compare after the treatment. After the
period of instruction, you again give the spelling test and calculate the gains
made by each subject. The gain scores for each matched pair then form the raw
data for the study; see Table 10.2. Again, our first task is to find the
denominator. The formula for s is the first step:
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_ [zD*=(1/n)=zDy
o [E LT

(Remember, once again, that n means number of pairs.)

- 56— (1/10)8)?
se—( /10
- 56—6.4
9

_ [

9
= \’5.51
= 2.35

We then divide this by the square root 6f the number of pairs:

g

Sp
» n
- 235
\J10
=74 -

Now we can calculate the ¢ value for the difference between the pairs of means:

= 1.08

When we check the observed ¢ value of 1.08 in the {-distribution table, we find
that we need at least a value of 1.83 before we can safely reject the null
hypothesis at the .05 level of significance. Therefore, we cannot reject the null
hypothesis. We have to assume that the two spelling programs did not produce
different results. . DR,
When you read the results section of many studies, you will find that two
mean scores look quite different but turn out to have ¢ values which are not large
enough to reject the null hypothesis. Sometimes the value comes very close to
the previously decided upon probability level. For example, you might decide

. on a.01 level as the level at which you will reject the null hypothesis for some
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research you wish to do. After you have carried out the research and obtained
your value, you check the table of #-distributions. Suppose you found that your¢
~ value missed the critical value for .01 by 0.02. It still is significant at the .05
level. You are not allowed to change your significance level at this point. You
made the decision on some reasoned basis before you did the calculations. You
cannot change that decision after the fact. Many researchers try to get around
this by reporting a trend. They usually say that their ¢ value does not allow them
to reject the null hypothesis but that there was a trend in the expected direction.
Reports of trends are legitimate. They also tell us that the differences found
might be important, worth our consideration, even though researchers may not
want to take the chance of being wrong in rejecting the null hypothesis.

The t-test is an excellent statistical procedure to use in comparing two means.
However, before using the t-test (and when reading research reports where the £- -
test has been used), you should first check to make certain that it is the
appropriate procedure for the research. You should keep the following cautions
in mind: (1) Each S must be assigned to one (and only one) group in the
experiment if you wish to use the regular ¢-test formula. If the experiment is one -
which compares each S’s performance on two different tests, then you must use
the matched ¢-test formula. (2) The scores on the independent variable should -
be measured on an interval scale. (3) You must not do multiple r-tests,
comparing mean 1 with mean 2 and mean 1 with mean 3 and mean 2 with mean
3, etc. If you wish to make cross-comparisons, you must use the ANOVA
(analysis of variance) procedure which will be discussed in the next chapter.
Finally, (4) the variances of scores in the population are assumed to be equal
and scores are assumed to be normally distributed.

Even though we observe these warnings, there may be problems in the use
and interpretation of the ¢-test procedure. If we draw a random sample of foreign -
students and randomly assign them to two groups, we can assume that the two
groups are from the same population. When we are doing an experiment to
evaluate the effectiveness of some teaching treatment, there is no problem
because we randomly select and randomly assign Ss to the two groups. We
believe that the two groups are truly the same (except for the treatment).
However, if the groups are not randomly selected, we need to be certain that they
are truly equivalent groups before we begin the teaching treatment. If they are
neither randomly selected nor equivalent, then we cannot use a -test tocompare
the groups following the treatment. Any differences between the groups could be
due to preexisting differences. We might try to work with gain scores (pretest
~ and posttest gains) rather than final scores to get around this problem. This,

however, is risky. We know that lower-level groups will almost always make
larger gains than high groups; they have more room for improvement. (In fact,
many companies that guarantee results concentrate on low groups because they
know that more dramatic results can be obtained there.) In any case, a /-test is
not appropriate for such experiments unless the groups are equivalent to begin
with. (A covariance procedure could be used instead.)
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A final problem is not a problem with the requirements of the -test itself but
rather a problem in interpretation. When we want to know that two groups are
(or are not) different, it is legitimate to use the t-test to discover the statistical
probability of the difference. We often compare foreign students and native
speakers using ¢-tests because we truly do not know whether the two groups will
perform differently. We are not absolutely sure that foreign students will judge
short stories in the same way that native speakers do; we are not sure whether
they will judge the politeness of apologies in the same way, etc. However, we can
be sure that they will perform differently on language tests (unless the foreign
students are near-native in English proficiency). Therefore, when we run an

- experiment comparing native speaker and foreign student performance on some
small segment of language—say verb complementation—we are bound to
discover significant differences. These differences may have little to do with
verb complementation but rather reflect the learn’s general language problems.
In other words, large differences are to be expected in such research but the
differences may be as much due to intervening variables related to general
language learning as to the variable tested. Strong claims must therefore be
tempered by common sense in interpreting f-test findings. ‘

We don’t want to be overly cautious in restricting the use of z-test procedures.
The t-test is one of the most useful statistical procedures (and one of the most
frequently used procedures) for research in Applied Linguistics. However, itis
also a procedure open to problems in interpretation. For this reason, apply
caution before using it yourself and interpret the findings with care.

ACTIVITIES N

)

Since -tests are somewhat more difficult than what we’ve had to do sofar, we'lldoastepata
time. First just for ¢ values for Case I studies: - -
1.Hypothesis: A sample of 25 reading scores having a X of 73 and an s of 7 come from a
population having a p of 78. ’

X -

tobs = E.=
s\

df.=———— tcritical =

Can you reject the null hypothesis?
Now, let’s add the requirement that you compute the standard error of the differences
between the means in a Case II study:
2.You are teaching a secondary ESL class in Manila. You believe your students are a typical and
random sample of high school ESL students in the Philippines. Some Ss seem to make greater
progress during the year than others, and you wonder if it has to do with type of motivation.
Hypothesis: There is no difference between Ss with instrumental motivation for language
" learning and Ss with integrative motivation for language learning on language proficiency. The
measure is gain scores from pre- to posttest on cloze passages. The integrative group X is 75,7
= 12, s = 6. The instrumental motivation group X is 87, the group size is 10, and the s is 7. The
top half of the formula is easy to do so do that first: 75 — 87 = . Now work out the-
standard error of differences between the means using the following formula:
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s _ ( Sinst )2 + (slnteg 2
Kinst~ Xinteg) —\/— —\[‘"
n n2

3. The elementary school at which you teach has a Spanish instruction program for Anglo children.
The children are an ordinary, random sample of schoolchildren in the community. Some of them
appear to be acquiring much more Spanish than others. You have read that a good short-term
memory (STM) is very important in initial language leamning. You test the children using some
recognized measure of STM and then look at the students’ language proficiency scores. The
children who have poor language proficiency scores have a X of 11 on the STM test, then =9
andthe s = 4. The children with high language proficiency scores have aX of13.5,n =15, ands
= 5. Hypothesis: There is no difference in STM for the two groups. :

First, write the formula for the standard error of differences between the means, insert the
data, and do the calculations. Next, write the ¢-test formula for comparison of two means, insert
the data, and compute the ¢ value. Note the number of degrees of freedom. Then check the
observed ¢ value with the critical value for a significance level of .05. Can you reject the null
hypothesis? :

Now, let’s try to work all the way from raw data to the final step. Remember that hereafter
you will probably do all this on the computer. We’re asking you to do it once before you let the
machine do it for you. . .

4. You have decided to test the use of a special set of science readings instead of your regular ESL
reading materials in your English class offered in the science stream of secondary school in Hong
Kong. You have pretest reading scores on your students. Your control group will receive regular
ESL reading materials, and you have pretest scores for them too. At the end of the year you
measure their gain in reading comprehension scores. Are you justified in using a one-tailed
rather than a two-tailed test? '

If you chose the .05 level of significance, what could you conclude about the effectiveness of
the science readings?

Data:
Experimental Group . Control Group
X x-X x-X)y X x-X x-X)
49 41
32 88
49 54
54 50
60 45
41 62
32 12
20 63
54 r’ ’¢ 39
A 29 se
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XE_l%’_-g X-X)P S 4 qx-x7 V7
dfy=—9 . de=9 ‘
Formula for s:

g S = S

Give the formula for standard error of differences between the means and do the computations.
Then plug ail the above information into the formula for the t-test.

<
bpg = ——— 1 € Y

obs
What is the critical value for rejecting the null hypothesis at .05? At.01? Can you reject the null
hypothesis at the .05 level?






