

地理資訊系統

空間資料模型與位相關係: 網格式資料模型 向量式資料模型 數位地表資料

地理資料模式化程序

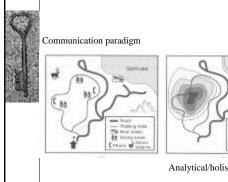
- Physical reality→Real World Model →Data Model→Database→Maps/Reports
- 資料 (data) →資料模型 (data models) →資 料結構 (data structure) →檔案結構 (file structure)
 - <u>資料實體層次(physical data)</u>
 - 資料模型層次 (data model)
 - 資料結構層次(data structure)
- A Paradigm Shift in Map Reasoning
 - Communication paradigm
 - Analytical/holistic paradigm

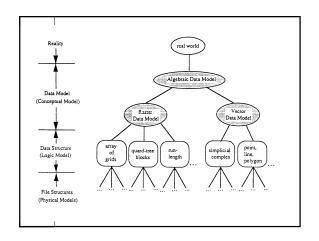
資料實體層次

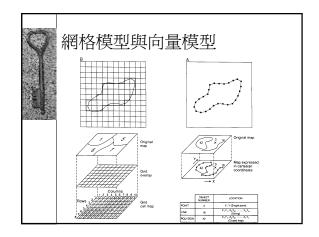
- ◆ 真實存在的各種現象,一般稱之爲「原 始資料」(Raw Data)
- 資料是否有意義,其意義與重要性爲何, 完全依使用它的人而定
- す這些資料經過有規範的整理與處理之後, 方能發揮其應有的效益,稱之爲有意義 的「資訊」

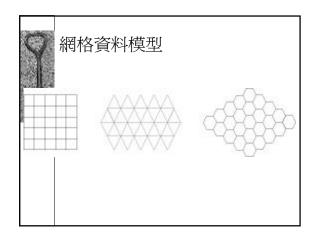
資料模型層次

- ◆ 模型化→簡化、一般化
- ◆ 對於真實世界資料的萃取,由各種大小細節的 資料中,留下所要處理應用的資訊
- 資料模型是一組如何表示資料庫內資料的邏輯 架構之指引。它是一個樣態,資料以及資料彼 此間的關係可以根據此一樣態而加以邏輯化的
- ◆ 資料模型所討論的,包括資料的架構,以及在 這些架構下可能對它們所採取的各種處理與運




資料結構層次

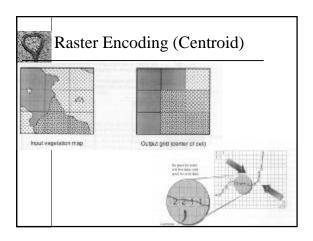

- 資料模型在電腦內部的表示法,稱之爲資料結 構 (data structure)
- 用陣列(Array)、串列(Linked List)、樹 (Tree)、圖形(Graph)、.....等各種資料結 構,在電腦程式中來表示這些資訊
- ◆ 同樣的資訊,由於電腦軟體將來預計對它所進 行的處理方式以及處理方式之不同,而可能適 合用不同的資料結構來加以表示
- ◆ 資料結構所討論的即是系統實作的層次

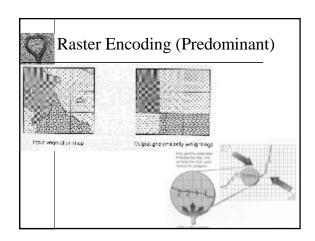


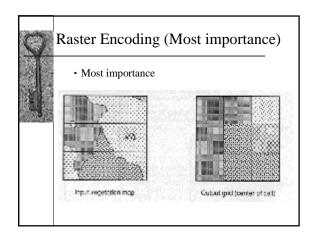
1

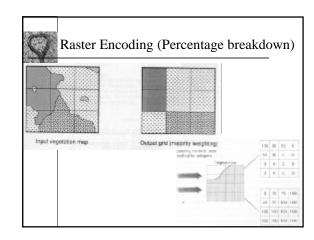
資料結構評選準則

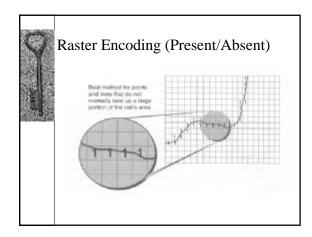
- ◆ 完整性 (completeness)
 - 實體世界中的所有項目及項目彼此間的關連性,有 多少比例能完整的用這個資料結構來加以表示?
- ◆ 彈性 (robustness)
 - 當例外情形出現時,這個資料結構是否能有效的加以表示?
- ◆ 效率 (efficiency)
 - 儲存空間是否夠緊密?資料取用是否夠快速?
- ◆ 易於應用(feasibility)
 - 當我們拿到其它格式的資料時,是否能很容易的轉 成我們的格式?

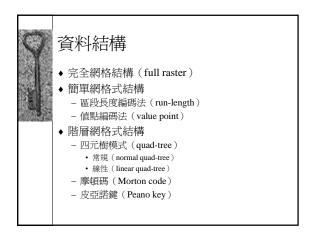

網格資料類型

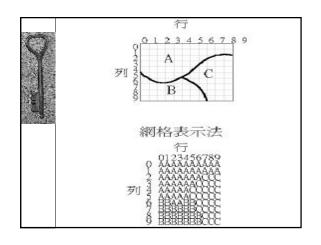

- picture
 - 具備絕對座標或相對座標,通常做為背景資訊或輔助資訊,以視覺分析為主,例如掃瞄之航空照片,實景照片等
- · image
- -主要指衛星影像,利用波譜資訊進行處理與分析
- grid
 - --每一網格可以儲存多種屬性,與向量資料類似,惟 地物整體特性被切割,不適合部分資料的表達,但是 有其運算上的效率性
- DEM (digital elevation model)
 - -數值地形

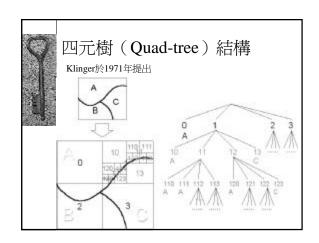


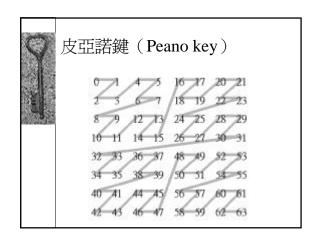

網格資料的獲取

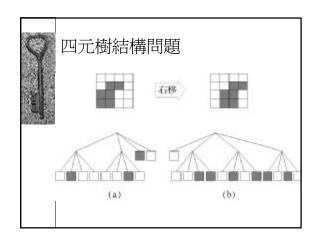

- scan
 - -picture, aerial photo
- rasterization
- -grid, DEM
- · digital equipments
- -picture, remote sensing imagery, DEM

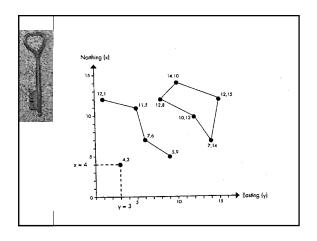


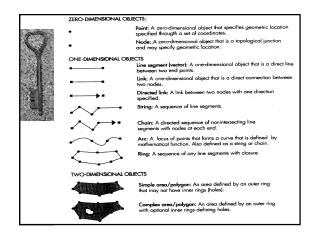


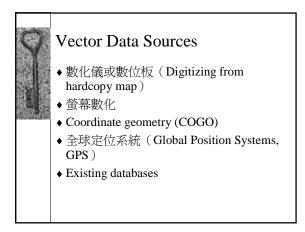


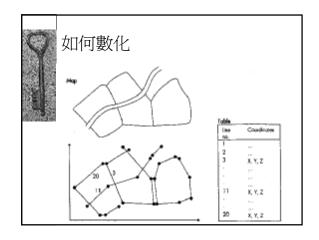


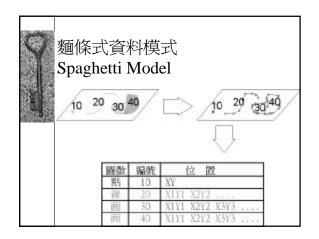


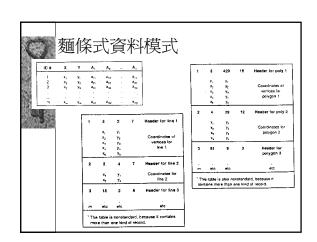


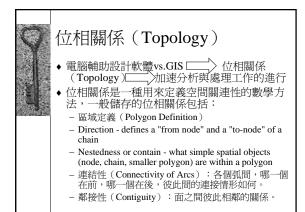

網格資料特性

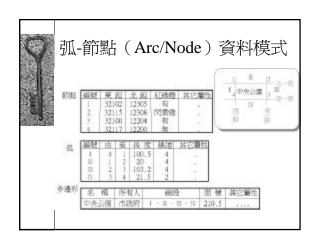

◆優點:結構簡單,疊圖操作容易 ◆ 缺點:精度不足,資料量大

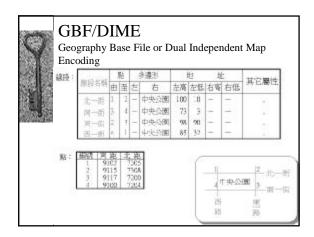

向量式資料模型

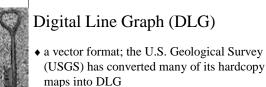

- ◆ 以一系列的點座標來加以表示地理資料(點、線、以及多邊形的面)
- ◆ 點圖徵紀錄座標值
- ◆ 線圖徵記載各個轉折點的座標值
- ◆ 面(多邊形)圖徵則是記錄其邊上各轉角的座
- ◆ 節點 (node) 與轉折點 (vertices)
- ♦ Arc \ Link \ Chain
- ◆ 向量式資料結構中,點、線、面各自代表一個 均質的地理現象
- ◆ 精密度高,沒有資料概略化的問題

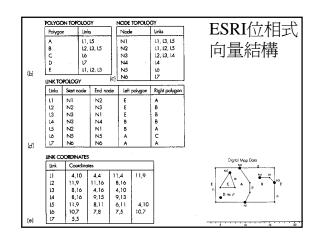


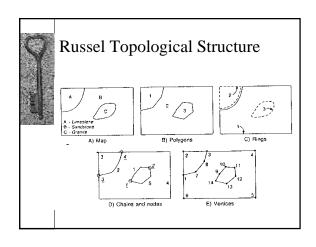


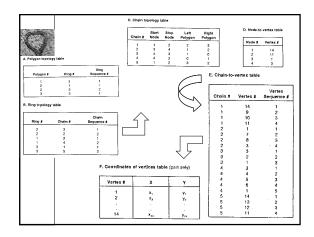









TIGER


- ◆ Topologically Integrated Geographic Encoding and Referencing, developed by the Census Bureau to geo-code census information
- the entire country of the U.S. is covered
- lines features such as roads, railroads, hydrography, and political boundaries such as county, census tracts and block groups
- related products are produced by companies such as ETAK, Geographic Data Technologies (GDT), Road Net Technologies, Navigation Technologies, Claritas, and BLR

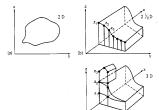
- harge scale DLG created from the USGS
 1:24,000 topographic maps
- ♦ data are available in 7.5' x 7.5' quadrangles corresponding to topographic maps

1

向量模型之比較

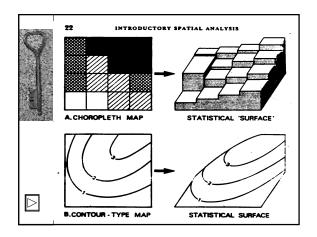
- ◆ 非位相資料結構
 - 優點:記錄方式簡單,只要記錄簡單的幾何位置即 可。
 - 缺點:由於無法記錄空間物件間的位相關係,故無法了解各組成物件間的關係。
- ◆ 位相資料結構
 - 優點:有相對關係,空間物件組成間,其記錄的資料彼此有層級關係,各種物件間記錄的方式相對簡化許多,也較易於了解。
 - 缺點:資料的記錄相對複雜,資料間互動關係較強 一旦位相資料有誤,即容易影響地理資料中,空間 物件的變化。

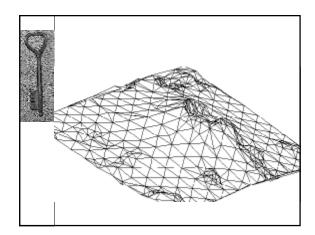
網格模型與向量模型比較

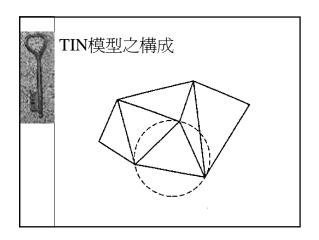

	Roster	Vector
Data collection	Rapid	Slow
Data volume	large	Small
Graphic treatment	Average	Good
Data structure	Simple	Complex
Geometrical accuracy	Low	High
Analysis in network	Poor	Good
Area analysis	Good	Average
Generalization	Simple	Complex

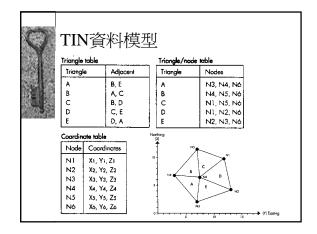
地表模型 (Surface Model)

- ◆ 數值地形模型(Digital Terrain Model, DTM)、數值 高程模型(Digital Elevation Model, DEM)
- ◆ 以數值化的方式,來表現地表三度空間的起伏變化情形。


♦ 2.5D vs. 3D






DTM資料模型

- ◆ 規則的網格點(Regular Grid)
 - 在一組正交的網格上,每一個網格點均量取其高度值,這些高度值便組成一個規則矩陣的結構,即數值高程模型(Digital Elevation Model, DEM)
- 數值等高線(Digital Contour)
- 連結地形資料中高度相同的點
- ◆ <u>不規則三角網</u>(Triangulated Irregular Network, TIN)
 - 以連續不規則的三角形,來代表連續的三度空間資料的結構。其解析度可隨空間資料複雜度之不同而改變,因此,地形上的劇烈變化亦可以有效的加以表示。

