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Lecture 1: Fundamentals of 
Spatial Statistics

Description versus Inference

n Description and descriptive statistics
q Concerned with obtaining summary measures to 

describe a set of data
n Inference and inferential statistics

q Concerned with making inferences from samples about 
populations

q Concerned with making legitimate inferences about 
underlying processes from observed patterns

We will be looking at both!
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Classic Descriptive Statistics: Univariate
Measures of Central Tendency and Dispersion

n Central Tendency: single 
summary measure for one 
variable:
q mean (average) 
q median (middle value) 
q mode (most frequently occurring)
q geometric mean (more robust, 

less sensitive) 
n Dispersion: measure of spread 

or variability 
q Variance
q Standard deviation 

(square root of variance) 

Formulae for variance
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Formulae for mean

These may be obtained in ArcGIS by:
--opening a table, right clicking on column heading,  and selecting Statistics
--going to ArcToolbox>Analysis>Statistics>Summary Statistics

A counting of the frequency with which values occur on a variable
n Most easily understood for a categorical variable (e.g. ethnicity)
n For a continuous variable, frequency can be:

q calculated by dividing the variable into categories or “bins”
(e.g income groups)

q represented by the proportion of the area
under a frequency curve

Classic Descriptive Statistics: Univariate
Frequency distributions

0-1.96
2.5%

1.96

2.5%

In ArcGIS,  you may obtain frequency counts on a categorical variable via:
--ArcToolbox>Analysis>Statistics>Frequency
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Classic Descriptive Statistics: Bivariate
Pearson Product Moment Correlation Coefficient  (r)
n Measures the degree of association or strength of the 

relationship between two continuous variables
n Varies on a scale from –1  thru 0  to +1

-1 implies perfect negative association
n As values on one variable rise, those on the other fall (price 

and quantity purchased)
0 implies no association
+1 implies perfect positive association
n As values rise on one they also rise on the other (house 

price and income of occupants)

X

Where Sx and Sy are the standard 
deviations of X and Y,  and X  and Y 
are the means.yx
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Correlation Coefficient 
example using “calculation 
formulae”

Classic Descriptive Statistics: Bivariate
Calculation Formulae for Pearson Product Moment Correlation Coefficient  (r)

As we explore spatial 
statistics, we will see 
many analogies to the 
mean, the variance, 
and the correlation 
coefficient, and their 
various formulae
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Inferential Statistics: Are differences real?
n Frequently, we lack data for an entire population (all possible 

occurrences) so most measures (statistics) are estimated based on 
sample data 
q Statistics are measures calculated from samples which are estimates

of population parameters
n the question must always be asked if an observed difference (say

between two statistics) could have arisen due to chance associated 
with the sampling process, or reflects a real difference in the 
underlying population(s)

n Answers to this question involve the concepts of statistical inference 
and statistical hypothesis testing

n Although we do not have time to go into this in detail, it is always 
important to explore before any firm conclusions are drawn.

n However, never forget:  statistical significance does not always 
equate to scientific (or substantive) significance 
q With a big enough sample size (and data sets are often large in GIS), 

statistical significance is often easily achievable

Statistical Hypothesis Testing: Classic Approach
Statistical hypothesis testing usually involves 2 values; don ’t confuse them!
n A measure(s) or index(s) derived from samples (e.g. the mean center or 

the Nearest Neighbor Index)
q We may have two sample measures (e.g. one for males and another for 

females), or a single sample measure which we compare to “spatial 
randomness”

n A test statistic, derived from the measure or index, whose probability 
distribution is known when  repeated samples are made, 
q this is used to test the statistical significance of the measure/index

We proceed from the null hypothesis (Ho ) that, in the population, there is 
“no difference” between the two sample statistics, or from spatial 
randomness* 
q If the test statistic we obtain is very unlikely to have occurred (less than 5% 

chance) if the null hypothesis was true, the null hypothesis is rejected

0-1.96

2.5%

1.96

2.5%

If the test statistic is beyond +/- 1.96 
(assuming a Normal distribution), we 
reject the null hypothesis (of no 
difference) and assume a statistically 
significant difference at at least the 
0.05 significance level.
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Statistical Hypothesis Testing: Simulation Approach

n Because of the complexity inherent in spatial processes, it is sometime 
difficult to derive a legitimate test statistic whose probability distribution 
is known

n An alternative approach is to use the computer to simulate multiple 
random spatial patterns (or samples)--say 100, the spatial statistic (e.g. 
NNI or LISA) is calculated for each, and then displayed as a frequency 
distribution.
q This simulated sampling distribution 

can then be used to assess the 
probability of obtaining our observed 
value for the Index if the pattern had 
been random.

Our observed value:
--highly unlikely to have 
occurred if the process 
was random
--conclude that process is 
not random

This approach is used in Anselin’s GeoDA software

Empirical frequency distribution 
from 499 random patterns 
(“samples”)

Is it Spatially Random? Tougher than it looks to decide!

n Fact: It is observed that about twice as 
many people sit catty/corner rather 
than opposite at tables in a restaurant
q Conclusion: psychological preference 

for nearness

n In actuality: an outcome to be 
expected from a random 
process: two ways to sit 
opposite, but four ways to sit 
catty/corner
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Why Processes differ from Random
Processes differ from random in two fundamental 

ways 
n Variation in the receptiveness of the study area to 

receive a point
q Diseases cluster because people cluster (e.g. cancer)
q Cancer cases cluster ‘cos chemical plants cluster
q First order effect

n Interdependence of the points themselves
q Diseases cluster ‘cos people catch them from others who 

have the disease (colds)
q Second order effects

In practice, it is very difficult to disentangle these two 
effects merely by the analysis of spatial data 

RANDOM UNIFORM/
DISPERSED

CLUSTERED
n Types of Distributions

q Random: any point is equally likely to occur at any location, and the position of any 
point is not affected by the position of any other point. 

q Uniform: every point is as far from all of its neighbors as possible: “unlikely to be 
close”

q Clustered: many points are concentrated close together, and there are large areas 
that contain very few, if any, points: “unlikely to be distant”

What do we mean by spatially random?
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Centrographic Statistics
n Basic  descriptors for spatial point distributions 

Measures of Centrality Measures of Dispersion
q Mean Center -- Standard Distance
q Centroid -- Standard Deviational Ellipse

q Weighted mean center
q Center of Minimum Distance

n Two dimensional (spatial) equivalents of standard 
descriptive statistics for a single-variable distribution

n May be applied to polygons by first obtaining the 
centroid of each polygon

n Best used in a comparative context to compare one 
distribution (say in 1990, or for males) with another 
(say in 2000, or for females)

Mean Center
n Simply the mean of the X and the Y coordinates 

for a set of points
n Also called center of gravity or centroid
n Sum of differences between the mean X and all 

other X is zero (same for Y)
n Minimizes sum of squared distances 

between itself and all points

Distant points have large effect.

2min ∑ iCd

Provides a single point summary  measure 
for the location of distribution. 
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n The equivalent for polygons of the mean center for a 
point distribution

n The center of gravity or balancing point of a polygon
n if polygon is composed of straight line segments 

between nodes, centroid again given “average X, 
average Y” of nodes

n Calculation sometimes approximated as center of 
bounding box
q Not good

n By calculating the centroids for a set of polygons can 
apply Centrographic Statistics to polygons

Centroid

Weighted Mean Center

n Produced by weighting each X and Y 
coordinate by another variable (Wi)

n Centroids derived from polygons can be 
weighted by any characteristic of the polygon
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1 2 3
2 4 7
3 7 7
4 7 3
5 6 2

sum 26 22
Centroid/MC 5.2 4.4
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Calculating the centroid of a 
polygon or the mean center of 
a set of points.

(same example data as 
for area of polygon)

i X Y weight wX wY

1 2 3 3,000 6,000 9,000
2 4 7 500 2,000 3,500
3 7 7 400 2,800 2,800
4 7 3 100 700 300
5 6 2 300 1,800 600

sum 26 22 4,300 13,300 16,200
w MC 3.09 3.77

Calculating the weighted mean 
center.  Note  how it is pulled 
toward the high weight point. 
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Center of Minimum Distance or  Median Center
n Also called point of minimum aggregate travel
n That point (MD) which minimizes

sum of distances between itself 
and all other points (i)

n No direct solution.  Can only be derived  by 
approximation

n Not a determinate solution.  Multiple  points may meet 
this criteria—see next bullet.

n Same as Median center: 
q Intersection of two orthogonal lines 

(at right angles to each other), 
such that each line has half of the points 
to its left and half to its right

q Because the orientation of the axis for these 
lines is arbitrary, multiple  points may 
meet this criteria.

∑ iMDdmin

Source: Neft, 1966
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Median Center:
Intersection of a north/south and an 
east/west line drawn so half of 
population lives above and half 
below the e/w line, and half lives to 
the left and half to the right of the n/s 
line 

Mean Center:
Balancing point of a weightless map, 
if equal weights placed on it at the 
residence of every person on census 
day.

Median and Mean 
Centers for US Population

Standard Distance Deviation
n Represents the standard deviation of the 

distance of each point from the mean center
n Is the two dimensional equivalent of 

standard deviation for a single variable
n Given  by:

which by Pythagoras
reduces to: 

---essentially the average distance of points from the center 
Provides a single unit measure of the spread or dispersion of a 

distribution.
We can also calculate a weighted standard distance analogous to the 

weighted mean center. 

N
YYXXn

i

n

i
cici∑ ∑= =

−− +
1 1

22 )()(

N
dn

i
iC∑ =1

2

N
XXn

i
i∑ =

−
1

2)(

Formulae for standard
deviation of single variable

∑
∑ ∑

=

= =
−− +

n

i
i

n

i

n

i
ciicii

w

YYwXXw

1

1 1
22 )()(

Or, with weights



11

Standard Distance Deviation Example

i X Y (X - Xc)2 (Y - Yc)2

1 2 3 10.2 2.0
2 4 7 1.4 6.8
3 7 7 3.2 6.8
4 7 3 3.2 2.0
5 6 2 0.6 5.8

sum 26 22 18.8 23.2
Centroid 5.2 4.4

sum 42.00
divide N 8.40
sq rt 2.90
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i X Y (X - Xc)2 (Y - Yc)2

1 2 3 10.2 2.0
2 4 7 1.4 6.8
3 7 7 3.2 6.8
4 7 3 3.2 2.0
5 6 2 0.6 5.8

sum 26 22 18.8 23.2
Centroid 5.2 4.4

sum of sums 42
divide N 8.4
sq rt 2.90

Circle with radii=SDD=2.9

Standard Deviational Ellipse: concept
n Standard distance deviation is a good single measure 

of the dispersion of the incidents around the mean 
center, but it does not capture any directional bias
q doesn’t capture the shape of the distribution.

n The standard deviation ellipse gives dispersion in two 
dimensions

n Defined by 3 parameters
q Angle of rotation
q Dispersion along major axis
q Dispersion along minor axis
The major axis defines the 

direction of maximum spread
of the distribution

The minor axis is perpendicular to it
and defines the minimum spread
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Standard Deviational Ellipse: calculation

n Formulae for calculation may be found in references 
cited at end. For example
q Lee and Wong pp. 203-208

n Basic concept is to:
q Calculate the mean center
q Transfer the coordinates of points to the MC
q Find the axis going through maximum dispersion (thus 

derive angle of rotation: formula 5.13)
q Calculate standard deviation of the points along this axis 

(thus derive the length (radii) of major axis: formula 5.14)
q Calculate standard deviation of points along the axis 

perpendicular to major axis (thus derive the length (radii) of 
minor axis: formula 5.15)

There appears to be no 
major difference 
between the location of 
the software and the 
telecommunications 
industry in North 
Texas. 

Mean Center & Standard Deviational Ellipse:    

example：



Lecture 2: Point Pattern



Point Pattern Analysis
Analysis of spatial properties of the entire 

body of points rather than the derivation 
of single summary measures

Two primary approaches:
n Point Density approach using Quadrat Analysis based 

on observing the frequency distribution or density of points 
within a set of grid squares. 
q Variance/mean ratio approach
q Frequency distribution comparison approach

n Point interaction approach using Nearest Neighbor 
Analysis based on distances of points one from another

Although the above would suggest that the first approach 
examines first order effects and the second approach 
examines second order effects, in practice the two cannot 
be separated.



Quadrats don’t have to be square
--and their size has a big influence

Exhaustive census
--used for secondary 
(e.g census) data

Multiple ways to create quadrats
--and results can differ accordingly!

Random sampling
--useful in field work

Frequency counts by 
Quadrat would be:

Number 
of points 

in 
Quadrat Count Proportion Count Proportion

0 51 0.797 29 0.763
1 11 0.172 8 0.211
2 2 0.031 1 0.026
3 0 0.000 0 0.000

Q = # of quadarts
P = # of points = 15

Census Q = 64 Sampling Q = 38 



Quadrat Analysis: Frequency Distribution Comparison

n We can compare observed frequencies in the quadrats
(Q= number of quadrats) with expected frequencies 
that would be generated by
q a random process   (modeled by the Poisson frequency 

distribution)  
q a clustered process  (e.g. one cell with P points, Q-1 

cells with 0 points)
q a uniform process (e.g. each cell has  P/Q  points)

n The standard Kolmogorov-Smirnov test for comparing 
two frequency distributions can then be applied – see 
next slide

n See  Lee and Wong pp. 226-229 for example and 
further discussion. Where:

A = area of region
P =  # of points

2 *  A
P



Kolmogorov-Smirnov (K-S) Test
n The test statistic “D” is simply given by:

D  =  max [ Cum Obser. Freq – Cum Expect. Freq]
The largest difference (irrespective of sign) between observed cumulative 

frequency and expected cumulative frequency
n The critical value at the 5% level is given by:

D (at 5%) =   1.36 where Q is the number of quadrats
Q

n Expected frequencies for a random spatial distribution are derived from the 
Poisson frequency distribution and can be calculated with:

p(0) = e-λ =   1 / (2.71828P/Q)       and       p(x) = p(x - 1) * λ /x
Where x = number of points in a  quadrat and  p(x) = the probability of x 

points
P = total number of points      Q = number of quadrats
λ =  P/Q   (the average number of points per quadrat)

See next slide for worked example for cluster case



Calculation of Poisson Frequencies for Kolmogorov-Smirnov test
CLUSTERED pattern as used in lecture

A B C D E F G H

=ColA * ColB=Col B / q !Col E - Col G

Number of Observed Cumulative Cumulative Absolute 
Points in Quadrat Total Observed Observed Poisson Poisson Difference
quadrat Count Point Probability Probability Probability Probability

0 8 0 0.8000 0.8000 0.1353 0.1353 0.6647
1 0 0 0.0000 0.8000 0.2707 0.4060 0.3940
2 0 0 0.0000 0.8000 0.2707 0.6767 0.1233
3 0 0 0.0000 0.8000 0.1804 0.8571 0.0571
4 0 0 0.0000 0.8000 0.0902 0.9473 0.1473
5 0 0 0.0000 0.8000 0.0361 0.9834 0.1834
6 0 0 0.0000 0.8000 0.0120 0.9955 0.1955
7 0 0 0.0000 0.8000 0.0034 0.9989 0.1989
8 0 0 0.0000 0.8000 0.0009 0.9998 0.1998
9 0 0 0.0000 0.8000 0.0002 1.0000 0.2000

10 2 20 0.2000 1.0000 0.0000 1.0000 0.0000

The Kolmogorov-Smirnov D test statistic is the largest Absolute Difference 
= largest value in Column h 0.6647

Critical Value at 5% for one sample given by:1.36/sqrt(Q) 0.4301 Significant
Critical Value at 5% for two sample given by: 1.36*sqrt((Q1+Q2)/Q1*Q2))

number of quadrats Q 10 (sum of column B)
number of points P 20 (sum of Col C)
number of points in a quadrat x

poisson probability p(x)  = p(x-1)*(P/Q)/x (Col E, Row 11 onwards)
if x=0 then p(x) = p(0)=2.71828^P/Q (Col E, Row 10)

Euler's constant 2.7183

Row 10

The spreadsheet 
spatstat.xls contains 
worked examples for the 
Uniform/ Clustered/ 
Random data previously 
used, as well as for Lee 
and Wong’s data



Quadrat Analysis: Variance/Mean Ratio (VMR)

n Apply uniform or random grid over 
area (A) with width of square given by: 

n Treat each cell as an observation and count the number of points
within it, to create the variable X

n Calculate variance and mean of X, and create the variance to mean 
ratio:  variance / mean

n For an uniform distribution, the variance is zero.
q Therefore, we expect a variance-mean ratio close to 0 

n For a random distribution, the variance and mean are the same. 
q Therefore, we expect a variance-mean ratio around 1

n For a clustered distribution, the variance is relatively large
q Therefore, we expect a variance-mean ratio above 1 

Where:
A = area of region
P =  # of points

2 *  A
P



Note:
N = number of Quadrats = 10
Ratio =  Variance/mean

RANDOM

UNIFORM/
DISPERSED

CLUSTERED

Formulae for variance
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Quadrat 
#

Number of 
Points Per 
Quadrat x^2

1 3 9
2 1 1
3 5 25
4 0 0
5 2 4
6 1 1
7 1 1
8 3 9
9 3 9

10 1 1
20 60

Variance 2.222
Mean 2.000

Var/Mean 1.111

random

x

0 0
0 0

10 10
0 0
0 0

Quadrat 
#

Number of 
Points Per 
Quadrat x^2

1 0 0
2 0 0
3 0 0
4 0 0
5 10 100
6 10 100
7 0 0
8 0 0
9 0 0

10 0 0
20 200

Variance 17.778
Mean 2.000

Var/Mean 8.889

Clustered

x

2 2
2 2
2 2
2 2
2 2

Quadrat 
#

Number 
of Points 

Per 
Quadrat x^2

1 2 4
2 2 4
3 2 4
4 2 4
5 2 4
6 2 4
7 2 4
8 2 4
9 2 4

10 2 4
20 40

Variance 0.000
Mean 2.000

Var/Mean 0.000

uniform

x



Significance Test for  VMR
n A significance test can be conducted based upon the chi-square frequency 
n The test statistic is given by:   (sum of squared differences)/Mean

n The test will ascertain if a pattern is significantly more clustered than would be 
expected by chance  (but does not test for a uniformity)

n The values of the test statistics in our cases would be:

n For degrees of freedom:   N - 1 = 10 - 1 =  9, the value of chi-square at the 1% level 
is 21.666. 

n Thus,  there is only a 1% chance of obtaining a value of 21.666 or greater if the 
points had been allocated randomly.  Since our test statistic for the clustered 
pattern is 80, we conclude that there is (considerably) less than a 1% chance that 
the clustered pattern could have resulted from a random process

n T-test in p.p.234

=

random
60-(202)/10 = 10

2

uniform
40-(202)/10 = 0

2

clustered
200-(202)/10 = 80

2



Weakness of Quadrat Analysis
n Results may depend on quadrat size and orientation (Modifiable 

areal unit problem) 
q test different sizes (or orientations) to determine the effects of 

each test on the results
n Is a measure of dispersion, and not really pattern, because it is 

based primarily on the density of points, and not their 
arrangement in relation to one another

n Results in a single measure for the entire distribution, so 
variations within the region are not recognized (could have 
clustering locally in some areas, but not overall)

For example, quadrat analysis cannot distinguish 
between these two, obviously different, patterns

For example, overall pattern here is dispersed, but 
there are some local clusters



Nearest-Neighbor Index (NNI) 
n uses distances between points as its basis.  
n Compares the mean of the distance observed between each point and 

its nearest neighbor  with the expected mean distance that would 
occur if the distribution were random:

NNI=Observed Aver. Dist / Expected Aver. Dist
For random pattern,      NNI = 1
For clustered pattern,    NNI = 0
For dispersed pattern,   NNI = 2.149

n We can calculate a Z statistic to test if observed pattern is significantly 
different from random:

n Z   =    Av. Dist Obs - Av. Dist. Exp.      
Standard Error

if Z is below –1.96 or above +1.96, we are 95% confident that the distribution 
is not randomly distributed. (If the observed pattern was random, there are 
less than 5 chances in 100 we would have observed a z value this large.)

(in the example that follows, the fact that the NNI for uniform is 1.96 is coincidence!)





Nearest Neighbor Formulae
Index

An /
26136.0

2
=

(Standard error)

Where:

Significance test



Point
Nearest 

Neighbor Distance
1 2 1
2 3 0.1
3 2 0.1
4 5 1
5 4 1
6 5 2
7 6 2.7
8 10 1
9 10 1
10 9 1

10.9

r 1.09
Area of 
Region 50
Density 0.2
Expected 
Mean 1.118034
R 0.974926NNI

Mean distance

Point
Nearest 

Neighbor Distance
1 2 0.1
2 3 0.1
3 2 0.1
4 5 0.1
5 4 0.1
6 5 0.1
7 6 0.1
8 9 0.1
9 10 0.1
10 9 0.1

1

r 0.1
Area of 
Region 50
Density 0.2
Expected 
Mean 1.118034
R 0.089443NNI

Mean distance

Point
Nearest 

Neighbor Distance
1 3 2.2
2 4 2.2
3 4 2.2
4 5 2.2
5 7 2.2
6 7 2.2
7 8 2.2
8 9 2.2
9 10 2.2
10 9 2.2

22

r 2.2
Area of 
Region 50
Density 0.2
Expected 
Mean 1.118034
R 1.96774NNI

Mean distance

Source: Lembro

RANDOM UNIFORMCLUSTERED

Z     =  5.508Z     =  -0.1515 Z     =  5.855



Higher-ordered NNI
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Evaluating the Nearest Neighbor Index
n Advantages

q NNI takes into account distance 
q No quadrat size problem to be concerned with

n However, NNI not as good as might appear
q Index highly dependent on the boundary for the area

n its size and its shape (perimeter)
q Fundamentally based on only the mean distance
q Doesn’t incorporate local variations (could have clustering locally in some areas, 

but not overall)
q Based on point location only and doesn’t incorporate magnitude of phenomena 

at that point
n An “adjustment for edge effects” available but does not solve all the 

problems
n Some alternatives to the NNI are the G and F functions, based on the 

entire frequency distribution of nearest neighbor distances, and the K
function based on all interpoint distances.
q See O and U  pp. 89-95 for more detail.
q Note: the G Function and the General/Local G statistic (to be discussed later) 

are related but not identical to each other
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K-function

Lecture 3: Point Pattern cont.
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Lecture 4: Spatial 
Autocorrelation (point)

Moran I
Geary C
Getis and Ord’s G

Spatial Autocorrelation

n The instantiation of Tobler’s first law of geography
n Everything is related to everything else, but near things are more related than 

distant things.
n Correlation of a variable with itself through space.
n The correlation between an observation’s value on a variable and the 

value of close-by observations on the same variable
n The degree to which characteristics at one location are similar (or 

dissimilar) to those nearby.
n Measure of the extent to which the occurrence of an event in an areal

unit constrains, or makes more probable, the occurrence of a similar 
event in a neighboring areal unit.

n Several measures available:
n Join Count Statistic (polygon)
n Moran’s I  (point and polygon)
n Geary’s C ratio (point and polygon)
n General (Getis-Ord) G (point and polygon)
n Anselin’s Local Index of Spatial Autocorrelation (LISA) (point and polygon)

These measures may be “global” or “local”
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Representation of Spatial Effects: WY,
Autocorrelation

n W
n The Spatial Weights Matrix
n The Spatial Association of 

All Sites to All Other
Sites 

n d, d2, 1/0, 1/d

n Y
n The Attribute Association 

Matrix
n The Association of the 

Attributes at Each Site to 
the Attributes at All Other 
Sites

n +,-,/,x

Auto: 
self     
Correlation: 
degree of  
relative 
correspondence

Positive: similar values cluster together on a map

Negative: dissimilar values cluster together on a map

Spatial
Autocorrelation

Source: Dr Dan Griffith, with 
modification



3

Why Spatial Autocorrelation Matters

n Spatial autocorrelation is of interest in its own right 
because it suggests the operation of a spatial process  

n Additionally, most statistical analyses are based on the 
assumption that the values of observations in each 
sample are independent of one another
q Positive spatial autocorrelation violates this, because 

samples taken from nearby areas are related to each 
other and are not independent

Why Spatial Autocorrelation Matters

n In ordinary least squares regression (OLS), for 
example, the correlation coefficients will be biased and 
their precision exaggerated
q Bias implies correlation coefficients may be higher 

than they really are
n They are biased because the areas with higher concentrations 

of events will have a greater impact on the model estimate 
q Exaggerated precision (lower standard error) implies 

they are more likely to be found “statistically 
significant”
n they will overestimate precision because, since events tend to 

be concentrated, there are actually a fewer number of 
independent observations than is being assumed.
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The Spatial Weights Matrix

W is the formal expression of the spatial 
association between objects

(it is the pair-wise geometry of objects
being studied). 

Measuring Relative Spatial Location

n How do we measure the relative location or distance 
apart of the points or polygons? Seems obvious but its 
not!

n Calculation of  Wij, the spatial weights matrix,  
indexing the relative location of  all  points i and j, is 
the big issue for all spatial autocorrelation measures

n Different methods of calculation potentially result in 
different values for the measures of autocorrelation 
and different conclusions from statistical significance 
tests on these measures



5

n Weights based on Contiguity 
q If zone j is adjacent to zone i, the interaction receives a 

weight of 1, otherwise it receives a weight of 0 and is 
essentially excluded 

q But what constitutes contiguity? Not as easy as it seems!
n Weights based on Distance

q Uses a measure of the actual distance between points or 
between polygon centroids

q But what measure,  and distance to what points -- All? 
Some?

n Often, GIS is used to calculate the spatial weights matrix, which is 
then inserted into other software for the  statistical calculations

For Regular Polygons

rook case or queen case

For Irregular polygons
n All polygons that share a common border
n All polygons that share a common border or have a centroid

within the circle defined by the average distance to (or the 
“convex hull” for) centroids of polygons that share a common 
border

For points
n The closest point (nearest neighbor)
--select the contiguity criteria
--construct n x n weights matrix with 1 if contiguous, 0 otherwise

Weights Based on Contiguity

X
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Weights based on Lagged Contiguity

n We can also use adjacency matrices 
which are based on lagged adjacency
q Base contiguity measures on “next nearest”

neighbor, not on immediate neighbor
n In fact, can define a range of contiguity 

matrices: 
q 1st nearest, 2nd nearest, 3rd nearest, etc.

Queens Case 
Full Contiguity 
Matrix for US 
States
• 0s omitted for 
clarity
• Column 
headings (same 
as rows) omitted 
for clarity
• Principal 
diagonal has 0s 
(blanks)
• Can be very 
large, thus 
inefficient to use.
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Name Fips Ncount N1 N2 N3 N4 N5 N6 N7 N8
Alabama 1 4 28 13 12 47
Arizona 4 5 35 8 49 6 32
Arkansas 5 6 22 28 48 47 40 29
California 6 3 4 32 41
Colorado 8 7 35 4 20 40 31 49 56
Connecticut 9 3 44 36 25
Delaware 10 3 24 42 34
District of Columbia 11 2 51 24
Florida 12 2 13 1
Georgia 13 5 12 45 37 1 47
Idaho 16 6 32 41 56 49 30 53
Illinois 17 5 29 21 18 55 19
Indiana 18 4 26 21 17 39
Iowa 19 6 29 31 17 55 27 46
Kansas 20 4 40 29 31 8
Kentucky 21 7 47 29 18 39 54 51 17
Louisiana 22 3 28 48 5
Maine 23 1 33
Maryland 24 5 51 10 54 42 11
Massachusetts 25 5 44 9 36 50 33
Michigan 26 3 18 39 55
Minnesota 27 4 19 55 46 38
Mississippi 28 4 22 5 1 47
Missouri 29 8 5 40 17 21 47 20 19 31
Montana 30 4 16 56 38 46
Nebraska 31 6 29 20 8 19 56 46
Nevada 32 5 6 4 49 16 41
New Hampshire 33 3 25 23 50
New Jersey 34 3 10 36 42
New Mexico 35 5 48 40 8 4 49
New York 36 5 34 9 42 50 25
North Carolina 37 4 45 13 47 51
North Dakota 38 3 46 27 30
Ohio 39 5 26 21 54 42 18
Oklahoma 40 6 5 35 48 29 20 8
Oregon 41 4 6 32 16 53
Pennsylvania 42 6 24 54 10 39 36 34
Rhode Island 44 2 25 9
South Carolina 45 2 13 37
South Dakota 46 6 56 27 19 31 38 30
Tennessee 47 8 5 28 1 37 13 51 21 29
Texas 48 4 22 5 35 40
Utah 49 6 4 8 35 56 32 16
Vermont 50 3 36 25 33
Virginia 51 6 47 37 24 54 11 21
Washington 53 2 41 16
West Virginia 54 5 51 21 24 39 42
Wisconsin 55 4 26 17 19 27
Wyoming 56 6 49 16 31 8 46 30

Sparse Contiguity Matrix for US States -- obtained from Anselin's web site (see powerpoint for link)

Queens Case 
Sparse Contiguity 
Matrix for US 
States
•Ncount is the 
number of 
neighbors for each 
state
•Max is 8 (Missouri 
and Tennessee)
•Sum of Ncount is 
218
•Number of 
common borders  
(joins) 

ncount / 2 = 109
•N1, N2… FIPS codes 
for neighbors 

∑

Weights Based on Distance
n Most common choice is  the inverse (reciprocal) of the distance 

between locations i and j (wij = 1/dij)
q Linear distance?
q Distance through a network?

n Other functional forms may be equally valid, such as inverse of 
squared distance (wij =1/dij

2), or negative exponential  (e-d or e-d2)
n Can use length of shared boundary:  wij= length (ij)/length(i)
n Inclusion of distance to all points may make it impossible to solve 

necessary equations, or may not make theoretical sense (effects may 
only be ‘local’)
q Include distance to only the “nth” nearest neighbors
q Include distances to locations only within a buffer distance 

n For polygons, distances usually measured centroid to centroid, but 
q could be measured from perimeter of one to centroid of other
q For irregular polygons, could be measured between the two closest 

boundary points (an adjustment is then necessary for contiguous 
polygons since distance for these would be zero)
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1

                                                              2

                                                                                                                         0    1    1    0

                                                                                                                         1    0    1    0

                                                                                                                         1    1    0    1

                                                                                                                         0    0    1    0

                        3

       4

Typical W

n Spatially contiguous neighbors (rook, queen: one/zero)
n Inverse distances raised to a power: (1/d, 1/d2, 1/d5)
n Geostatistics functions (spherical, gaussian, exponential)
n Lengths of shared borders (perimeters)
n All centroids within distance d
n nth nearest neighbor distance
n Links (number of)
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1

                                                              2
[ 1 2 ]

                                                                    [  1 0 ]                                            0    2    7   - 9

                                                                                                                        -2     0     5   - 1 1
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                                             [ 5 ]                                                                       9   11    1 6    0

                        3
     [ 2 1 ]
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A Note on Sampling Assumptions(1/2)

n Another factor which influences results from these 
tests is the assumption made regarding the type of 
sampling involved:
q Free (or normality) sampling assumes that the probability of 

a polygon having a particular value is not affected by the 
number or arrangement of the polygons 
n Analogous to sampling with replacement

q Non-free (or randomization) sampling assumes that the 
probability of a polygon having a particular value is affected 
by the number or arrangement of the polygons (or points), 
usually because there is only a fixed number of polygons 
(e.g. if  n = 20, once I have sampling 19, the 20th is 
determined) 
n Analogous to sampling without replacement
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A Note on Sampling Assumptions(2/2)

n The formulae used to calculate the various 
statistics (particularly the standard 
deviation/standard error) differ depending on 
which assumption is made
q Generally, the formulae are substantially more 

complex for  randomization sampling—
unfortunately, it is also the more common situation!

q Usually, assuming normality sampling requires 
knowledge about larger trends from outside the 
region or access to additional information within 
the region in order to estimate parameters.

Spatial Autocorrelation Coefficient (SAC)

∑∑
∑∑

≈

i j
ij

i j
ijij

w

ws
SAC
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Moran’s  I
n Where N is the number of cases

X is the mean of the variable
Xi is the variable value at a particular location
Xj is the variable value at another location
Wij is a weight indexing location of i relative to j

n Applied to a continuous variable for polygons or points
n Similar to correlation coefficient: varies between –1.0 and + 1.0 

q 0 indicates no spatial autocorrelation [approximate: technically it’s –1/(n-1)]
q When autocorrelation is high, the I coefficient is close to 1 or -1
q Negative/positive values indicate negative/positive autocorrelation

n Can also use Moran as index for dispersion/random/cluster patterns
q Indices close to zero [technically, close to  -1/(n-1)], indicate random pattern
q Indices above  -1/(n-1)   (toward +1) indicate a tendency toward  clustering
q Indices below  -1/(n-1)   (toward -1) indicate a tendency toward  dispersion/uniform

n Differences from correlation coefficient are:
q Involves one variable only, not two variables
q Incorporates weights (wij) which index relative location 
q Think of it as “the correlation between neighboring values on a variable”
q More precisely, the correlation between variable, X,  and  the  “spatial lag” of X 

formed by averaging all the values of X for the neighboring polygons 
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Adjustment for Short or Zero Distances
n If an inverse distance measure is used, 

and distances are very short, then wij
becomes very large and distorts I. 

n An adjustment for short distances can 
be used, usually scaling the distance to 
one mile.

n The units in the  adjustment formula are 
the number of data measurement units 
in a mile

n In the example, the data is assumed to 
be in feet. 

n With this adjustment, the weights will 
never exceed 1

n If a contiguity matrix is used (1or 0 only), 
this adjustment is unnecessary

Statistical Significance Tests for Moran’s I
n Based on the normal frequency distribution with 

E(I) = -1/(n-1)
n However, there are two different formulations for the standard 

error calculation
q The randomization or nonfree sampling method
q The normality or free sampling method
The actual formulae for calculation are in Lee and Wong p. 266

n Consequently, two  slightly different values for Z are  obtained. 
In either case, based on the normal frequency distribution, a 
value ‘beyond’ +/- 1.96 indicates a statistically significant result 
at the 95% confidence level (p <= 0.05)

)(

)(
IerrorS
IEIZ −

=
Where: I is the calculated value for Moran’s I from the sample  

E(I) is the expected value (mean)

S is the standard error  



13

Moran Scatter Plots
Moran’s I can be interpreted as the correlation between variable, X,  

and  the  “spatial lag” of X formed by averaging all the values of X 
for the neighboring polygons 

We can then  draw a scatter diagram between these two variables (in 
standardized form):  X and   lag-X (or w_X)

The slope of the regression line is 
Moran’s I
Each quadrant corresponds to one of 
the four different types of spatial 
association (SA) 

High/High 
positive SA

Low/Low 
positive SA

High/Low 
negative SA

Low/High 
negative SA

Moran’s I for rate-based data
n Moran’s I is often calculated for rates, such as crime 

rates (e.g. number of crimes per 1,000 population) or 
death rates (e.g. SIDS rate: number of sudden infant 
death syndrome deaths per 1,000 births)

n An adjustment should be made in these cases 
especially if the denominator in the rate (population or 
number of births) varies greatly (as it usually does)

n Adjustment is know as the EB adjustment:
q http://en.wikipedia.org/wiki/Empirical_Bayes_method

n Anselin’s GeoDA software includes an option for this 
adjustment both for Moran’s I and for LISA

http://en.wikipedia.org/wiki/Empirical_Bayes_method
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Geary’s C (Contiguity) Ratio
n Calculation is similar to Moran’s I, 

q For Moran, the cross-product is based on the deviations from the 
mean for the two location values

q For Geary, the cross-product uses the actual values themselves at 
each location 

n However, interpretation of these values is very different, essentially 
the opposite! 
Geary’s C varies on a scale from 0 to 2
q C of approximately 1 indicates no autocorrelation/random
q C of  0 indicates perfect positive autocorrelation/clustered
q C of 2 indicates perfect negative autocorrelation/dispersed

n Can convert to a   -/+1 scale by:  calculating C* = 1 - C
n Moran’s I is usually preferred over Geary’s C

Statistical Significance Tests for Geary’s C
n Similar to Moran
n Again, based on the normal frequency distribution with 

however, E(C) = 1
n Again, there are two different formulations for the standard error 

calculation
q The randomization or nonfree sampling method
q The normality or free sampling method
The actual formulae for calculation are in Lee and Wong p. 265

n Consequently, two  slightly different values for Z are obtained. In 
either case, based on the normal frequency distribution, a value
‘beyond’ +/- 1.96 indicates a statistically significant result at the 
95% confidence level (p <= 0.05)

)(

)(
IerrorS
CECZ −

=
Where: C is the calculated value for Moran’s I from the sample  

E(C) is the expected value (mean)

S is the standard error  



15

General  G-Statistic

n Moran’s I and Geary’s C will indicate clustering or positive spatial 
autocorrelation if high values (e.g. neighborhoods with high crime rates) 
cluster together (often called hot spots)  and/or if low values cluster 
together (cold spots) , but they cannot distinguish between these 
situations

n The General G statistic distinguishes between hot spots and cold spots. It 
identifies spatial concentrations.
q G is relatively large if high values cluster together 
q G is relatively low if low values cluster together 

n The  General G statistic is interpreted relative to its expected value (value 
for which there is no spatial association)
q Larger than expected value  è potential “hot spot”
q Smaller than expected value è potential “cold spot”

n A  Z  test statistic is used to test if the difference is sufficient to be  
statistically significant

n Calculation of G must begin by identifying a neighborhood distance within 
which cluster is expected to occur

n Global indicator or “LISA,” statistic. 

Calculating General G
n Actual Value for G is given by:

n Expected value (if no concentration) for G is given by:

n For the General G, the terms in the numerator (top) are calculated “within a 
distance bound (d),” and are then expressed relative to totals for the entire 
region under study.
q As with all of these measures, if adjacent x terms are both large with 

the same sign (indicating positive spatial association), the numerator 
(top) will be large

q If they are both large with different signs (indicating negative spatial 
association), the numerator (top) will again be large, but negative

Where:
d is neighborhood distance
Wij weights matrix has only 1 or 0

1 if j is within d distance of  i
0 if its beyond that distance

)1(
)(

−
=

nn
WGE where
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Testing General G

n The test statistic for G is normally distributed and is given by:

n As an example: Lee and Wong find the following values:
G(d) = 0.5557   E(G) = .5238. 

Since G(d) is greater than E(G) this indicates potential “hot spots”
(clusters of high values)
However, the test statistic  Z= 0.3463
Since this does not lie “beyond  +/-1.96, our standard marker for a 0.05 
significance level, we conclude that the difference between G(d) and E(G) could 
have occurred by chance.” There is no compelling evidence for a hot spot.

)(

)(
GerrorS
GEGZ −

=

However, the calculation of the 
standard error is complex. See Lee and 
Wong pp 381-382 for formulae.

)1(
)(

−
=

nn
WGEwith

Attribute Relationships

Y
n Types of Relationships

q Additive association (clustering): (Yi + Yj)   
q Multiplicative association (product): (YiYj)
q Covariation (correlation): (Yi - Ybar)(Yj - Ybar)
q Differences (homogeneity/heterogeneity): (Yi - Yj)
q Inverse (relativity): (Yi/Yj) 

n All Relationships Subject to Mathematical Manipulation 
(power, logs, abs, etc.) 
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WY:   Covariance

n Set W to preferred spatial weights matrix
n (rooks, queens, distance decline, etc.)
n Set Y to (xi - µ) (xj - µ)
n Set scale to n/W Σ(xi - µ)2

n I = n  ΣΣ Wij (xi - µ) (xj - µ) / W Σ(xi - µ)2

where W is sum of all Wij and igj

This is Moran’s I.

WY:   Multiplicativ

n Set W to 1/0 spatial weights matrix
n 1 within d; 0 outside of d
n Set Y to (xi + xj)
n Set scale to ΣWij(d) / Σ (xi)
n G(d) =Σ Wij(d) (xi + xj) / Σ (xi) and ig j

This is Getis and Ord’s G.
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WY:   Difference

n Set W to preferred spatial weights matrix
n Set Y to (xi - xj)2

n Set scale to (n-1)/2WΣ(xi - µ)2

n c = (n - 1) ΣΣWij (xi - yi))2/ 2WΣ(xi - µ)2

where W is sum of all Wij and ig j.

This is Geary’s c.

WY:   Difference

n Set W to 1/0 weights matrix; 1 within ad and 0 
otherwise; a is an integer; d is a constant distance

n Set Y to (xi - xj)2

n Set scale to 1/2
n χ(ad) = 1/2 ΣΣWij (xi - xj))2

This is the semivariance
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Isotropic Moran’s I


