

常態分配 (Normal Distribution) 假設隨機變數 X 服從常態分配,平均數與 變異數分別為 $\mu = E[X] 與 \sigma^2 = E[(X-\mu)^2],$ 一般以 X ~ N(μ, σ^2)表示。則隨機變數 X 的機率密度函數: $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty$

	The Normal Probability Distribution (常態分配)
	 任意一常態隨機變數 X ~ N(μ,σ²)並給定一 任意常數 a,則 P(X < a) 的機率,僅與 a 和μ相 距幾個 σ單位有關。
	 例如:已知 X ~ N(10,100) 且 Y ~ N(-8,64), 則: - P(X<20) = P(Y<0)
	- P(X<30) = P(Y < 8) - P(X > 0) = P(Y > -16)
25	- P(X > -10) = P(Y > -24)

	The Normal Probability Distribution (常態分配)
C	 任意一常態隨機變數 X ~ N(μ,σ²)並給定一任意常數 a,則求算 P(X < a) 的機率即等於求算 P(Z < (a-μ)/σ)
	 的機率。 要求算常態隨機變數 X ~ N(μ, σ²)的相關機率,皆可
	 以轉換成標準常態分配 Z ~ N(0,1)的相關機率。 透過標準常態分配表,常態隨機變數 X ~ N(μ,σ²)的 相關機率,時可以查表求得。
27	● 標準常態分配表見課本 Appendix B.1, PP. 784.

z	0.00	0.01	0.02	0.03	0.04	0.05
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265
1.5	0,4332	0.4345	0.4357	0.4370	0.4382	0.4394
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678
·/	0.110	0.4710	0.4720	0.4706	0.1100	0.1144

Normal Approximation to the Binomial - Example

Suppose the management of the Santoni Pizza Restaurant found that 70 percent of its new customers return for another meal. For a week in which 80 new (first-time) customers dined at Santoni's, what is the probability that 60 or more will return for another meal?

