

- The purpose of the goodness-of-fit test is to compare an observed distribution to an expected distribution.
 - Equal Expected Frequencies
 某冰品公司生產三種不同口味的冰棒,想研究顧客 偏好三種冰棒的比例是否相同?
 - Unequal Expected Frequencies
 某冰品公司生產三種不同口味的冰棒,想研究顧客 偏好三種冰棒的比例是否為 20%, 30%, 50% ?

Goodness-of-fit Test: Equal Expected FrequenciesThe test statistic is: $\chi^2 = \sum \left[\frac{(f_o - f_e)^2}{f_e} \right]$ The critical value is a chi-square value with (k-1)
degrees of freedom, where k is the number of
categories

Goodness-of-Fit Example

At the end of the day she sold a total of 120 cards. The number of cards sold for each old-time player is shown in the table on the right. Can she conclude the sales are not the same for each player? Use 0.05 significance level.

Cards Sold

13

33

14

7

36

17

120

Tom Seaver Nolan Ryan Ty Cobb George Brett Hank Aaron Johnny Bench Total

			3-01-1	и Цла	npic	
Stop 5: C	omn	uto tl	م برمانیم	of the C	bi_cauara	
step 5. C	omb			of the C	III-square	
statisti	c and	sion	$u^2 = \sum_{n=1}^{n} \int (f_n) dx$	$(-f_e)^2$		
					$x = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} $	f_e
Peechall			(1)	(2)	(3) $(f - f)^2$	
Baseball Player	fo	f _e	(1) $(f_o - f_e)$	(2) $(f_o - f_o)^2$	$\frac{(3)}{(f_o - f_e)^2} - \frac{(f_o - f_e)^2}{f_e}$	
Baseball Player Tom Seaver	<i>f</i> _o 13	<i>f</i> _e 20	(1) $(f_o - f_c) = -7$	(2) $(f_o - f_e)^2$ 49	$\frac{\frac{(3)}{(f_o - f_o)^2}}{f_o}$ 49/20 = 2.45	
Baseball Player Tom Seaver Nolan Ryan	f _o 13 33	f _e 20 20	(1) $(f_o - f_e)$ -7 13	(2) $(f_o - f_e)^2$ 49 169	$\frac{(f_o - f_o)^2}{f_e}$ $\frac{49/20 = 2.45}{169/20 = 8.45}$	
Baseball Player Tom Seaver Nolan Ryan Ty Cobb	f ₀ 13 33 14	f _e 20 20 20	(1) $(f_o - f_c)$ -7 13 -6	(2) $(f_o - f_e)^2$ 49 169 36	$\frac{(f_o - f_o)^2}{f_e}$ $\frac{49/20 = 2.45}{169/20 = 8.45}$ $36/20 = 1.80$	
Baseball Player Tom Seaver Nolan Ryan Ty Cobb George Brett	f _o 13 33 14 7	f _e 20 20 20 20	(1) $(f_o - f_e)$ -7 13 -6 -13	(2) $(f_o - f_o)^2$ 49 169 36 169	$\frac{(3)}{(f_o - f_a)^2}$ $\frac{(4)/20}{f_e} = 2.45$ $169/20 = 8.45$ $36/20 = 1.80$ $169/20 = 8.45$	
Baseball Player Tom Seaver Nolan Ryan Ty Cobb George Brett Hank Aaron	f _o 13 33 14 7 36	f _e 20 20 20 20 20 20	(1) (f ₀ - f ₀) -7 13 -6 -13 16	(2) $(f_o - f_e)^2$ 49 169 36 169 256	$\frac{(3)}{f_e}$ $\frac{(f_o - f_o)^2}{f_e}$ $\frac{49/20 = 2.45}{36/20 = 8.45}$ $36/20 = 1.30$ $169/20 = 8.45$ $256/20 = 12.80$	

Limitations of Chi-Square

- If there is an unusually small expected frequency in a cell, chi-square might result in a wrong conclusion. Two generally accepted policies regarding small cell frequencies are:
 - If there are only two cells, the expected frequency in each cell should be at least 5.
 - For more than two cells, chi-square should not be used if more than 20 % of the fe cells have expected frequencies less than 5.

Goodness-of-Fit Test: Unqual Expected Frequencies

- *H*₀: There is no difference between the observed and expected frequencies.
- *H*₁: There is a difference between the observed and the expected frequencies.
- Notations:
 - f_0 : observed frequencies
 - $f_{\rm e}$: expected frequencies

Goodness-of-Fit Test: Unequal Expected Frequencies - Example

- A survey of 150 residents of Bartow Estates, a community devoted to active seniors located in central Florida, revealed 55 residents were not admitted during the last year, 50 were admitted to a hospital once, 32 were admitted twice, and the rest of those in the survey were admitted three or more times.
- Can we conclude the survey at Bartow Estates is consistent with the information suggested by the AHAA? Use the .05 significance level.

Goodness-of-Fit Test: Unequal Expected Frequencies - Example

The American Hospital Administrators Association (AHAA) reports the following information concerning the number of times senior citizens are admitted to a hospital during a one-year period.

40 percent are not admitted; 30 percent are admitted once; 20 percent are admitted twice, and the remaining 10 percent are admitted three or more times.

Goodness-of-Fit Test: Unequal
Expected Frequencies - ExampleStep 1: State the null hypothesis and the alternate hypothesis.H₀: There is no difference between local and national
experience for hospital admissions.H₁: There is a difference between local and national
experience for hospital admissions.Step 2: Select the level of significance.
 $\alpha = 0.05$ as stated in the problemStep 3: Select the test statistic
follows the chi-square distribution,
designated as χ^2 CHI-SQUARE TEST STATISTIC $\chi^2 = \Sigma \left[\frac{(f_o - f_0)^2}{f_e} \right]$

Goodne Frequer	Goodness-of-Fit Test: Unequal Expe Frequencies - Example									
Step 5: Compute t a decision	he value	e of the (Chi-square	e statistic and make $\chi^{2} = \sum \left[\frac{(f_{o} - f_{e})^{2}}{f_{e}} \right]$						
Number of Times Admitted	(f_o)	(f_o)	$f_o - f_e$	$(f_o - f_e)^2/f_e$						
0	55	60	-5	0.4167						
1	50	45	5	0.5556						
2	32	30	2	0.1333						
3 or more	13	15	-2	0.2667						
Total	150	150	0	1.3723						
		Co	mputed χ^2							

between the local and national experience for hospital admissions.

1 知人民料倾藏旅居	的丢汁切为好的比密为650%
1.率為20%,沒意見	的比率為 15%。現調查 1000
吉果如下表。問人民自	的看法是否改變?
對經濟發展看法	人數
對經濟發展看法 好	人数 300
對經濟發展看法 好 不好	人數 300 600
對經濟發展看法 好 不好 沒意見	人數 300 600 100

Ex. 17.1

1.設立兩個假設: H_0 :看法一樣; H_1 :看法不一樣

2.選擇檢定統計量

因爲有三個類別,是一個多項實驗,因此以卡方分配來做檢定。

3.決定拒絕域或接受域

 $\alpha = 0.025$,卡方檢定是右尾檢定。k = 3,自由度 df = k - 1 = 3 - 1 = 2。

查卡方機率值表得臨界值 $\chi^2_{2,0.025} = 7.378^\circ$

4. 計算檢定統計量 卡方檢定統計量的計算如下表 看法 0 機率 E=np (O-E) (O-E) ² (O-E) ² /1 好 300 0.65 1000*0.65=650 -350 122500 188.46	4. ≇	计算檢	完练				
4.計算檢定統計量 卡方檢定統計量的計算如下表 看法 0 機舉 E=np (O-E) (O-E) ² (O-E) ² /1 好 300 0.65 1000*0.65=650 -350 122500 188.46 工具 (00 0.2 100020.2 200 400 160000 900	■ 4. ≇	十算檢	定编言				
 卡方檢定統計量的計算如下表 看法 O 機率 E=np (O-E) (O-E)² (O-E)²/1 好 300 0.65 1000*0.65=650 -350 122500 188.46 エレ (000 0.22 1000*0.2 200 400 160000 000 				計重			
看法 O 機準 E=np (O-E) (O-E) ² (O-E) ² /1 好 300 0.65 1000*0.65=650 -350 122500 188.46 エレ CO 0.2 1000*0.2 200 400 160000 800	卡方	檢定約	充計量	的計算如下表			
看法 O 機率 E=np (O-E) (O-E) ² (O-E) ² /1 好 300 0.65 1000*0.65=650 -350 122500 188.46 エレ (OO-E) (OO-E) (OO-E) (OO-E) (OO-E) (OO-E)							
好 300 0.65 1000*0.65=650 -350 122500 188.46 下は 600 0.22 1000*0.2 200 400 160000 800	看法	0	機率	E=np	(O-E)	(O-E) ²	(O-E) ² /E
ゲ 300 0.65 1000*0.65=650 -350 122500 188.46 エレス COD 0.2 1000*0.2 200 400 160000 900							
# 300 0.65 1000*0.65=650 -350 122500 188.46 # 500 0.2 1000*0.2 200 1000							
T_{12} (00 0.0 1000 1000 0.0 0.0 1000 1000 000	1.7	200	0.65	1000*0 65 650	250	122500	100.46
木好 600 0.2 1000*0.2=200 400 160000 800	好	300	0.65	1000*0.65=650	-350	122500	188.46
安意 100 0.15 1000*0.15=150 -50 2500 16.67	子 下好	300 600	0.65	1000*0.65=650 1000*0.2=200	-350 400	122500 160000	188.46 800
	好 不好 沒意	300 600 100	0.65 0.2 0.15	1000*0.65=650 1000*0.2=200 1000*0.15=150	-350 400 -50	122500 160000 2500	188.46 800 16.67

Ex. 17.1 (1)
由上表知卡方檢定統計量為:
$$\chi^2 = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} = 1005.13$$

5.下結論
檢定統計量 $\chi^2 = 1005.13 > 7.378$,落在拒絕域,因此
拒絕虛無假設。故可下結論說人民對經濟發展的看法已經改變。

<u> </u>	0.20	20.40	40.60	60.80	PA 100	
分数	0-20	20-40	40-00	00-80	80-100	
人數	8	14	47	20	11	n=100

Ex. 17.2 (2) 1.設立兩個假設: H_0 :為常態分配; H_1 :不為常態分配 2.選擇檢定統計量 因為有5個類別,是一個多項實驗,因此以卡方分配來做檢定。 3.決定拒絕域或接受域 $\alpha = 0.025$, k = 5,自由度 df = k-1 = 5-1-2 = 2 (其中 m = 2 是因為利用樣本資料估計兩個未知參數 μ 及 σ^2)。 查卡方機率值表得臨界值 $\chi^2_{2,0025} = 7.378$ 。

故可得 P(X < 20) = P(Z <
$$\frac{20-52.4}{20.94}$$
) = P(Z < -1.547) = 0.061
P(20 < X < 40) = P($\frac{20-52.4}{20.94}$ < Z < $\frac{40-52.4}{20.94}$)
= P(-1.547 < Z < -0.592) = 0.217
另外三組的機率値如下

Ex. 1	7.2 (5)			
-					
	20以下	20-40	40-60	60-80	80以上
0	8	14	47	20	11
Z=(U-52.4)/20.94	-1.547	-0.592	0.363	1.318	~
Z=(L-52.4)/20.94	-∞	-1.547	-0.592	0.363	1.318
機率值P	0.061	0.217	0.363	0.266	0.093
E(np)	6.1	21.7	36.3	26.6	9.3
(O-E) ²	3.61	59.29	114.49	43.56	2.89

Ex. 17.2 (6)
-
由上知 $\overline{X} = 52.4$, S = 20.94,故可求得各組的上下限的Z值。
結果如表第三列第四列。由各組的上下限Z值可求各組的機率如
表第五列。第六列為期望次數即 E(np)。第七列為觀察次數與期望
次數的平方。因此可得
$\chi^2 = \frac{3.61}{6.1} + \frac{59.29}{21.7} + \frac{114.49}{36.3} + \frac{43.56}{26.6} + \frac{2.89}{9.3} = 8.43$

 Ex. 17.2 (7)

 5.下結論

 檢定統計量 $\chi^2 = 8.43 >$ 臨界值 $\chi^2_{5-1-2,0.025} = 7.378 ,$ 落

 在拒絕域,因此拒絕虛無假設,故可下結論說統計學

 期中考成績不爲常態分配。

 資料是否爲常態分配可繪製直方圖來觀察,但直方

 圖不如統計數字來得精確。

Contingency Tables

A CONTINGENCY TABLE is a table used to classify sample observations according to two or more identifiable characteristics

Contingency Tables - Example

A sample of executives were surveyed about their loyalty to their company. One of the questions was, "If you were given an offer by another company equal to or slightly better than your present position, would you remain with the company or take the other position?" The responses of the 200 executives in the survey were cross-classified with their length of service with the company.

Is loyalty related to the length of employment?

	Length of Service					
Loyalty	Less than 1 Year, <i>B</i> 1	1–5 Years, <i>B</i> 2	6–10 Years, <i>B</i> ₃	More than 10 Years, <i>B</i> 4	Total	
Would remain, A	10	30	5	75	120	
Would not remain, A2	25	15	10	30	80	
	35	45	15	105	200	

Contingency Tables

E.g. A survey of 150 adults classified each as to gender and the number of movies attended last month. Each respondent is classified according to two criteria—the number of movies attended and gender.

Is gender related to the movies attended ?

	G	ender	
Movies Attended	Men	Women	Total
0	20	40	60
1	40	30	70
2 or more	10	<u>10</u>	20
Total	70	80	150

Contingency Analysis

We can use the chi-square statistic to formally test for a relationship between two nominal-scaled variables. To put it another way, Is one variable *independent* of the other?

• Ford Motor Company operates an assembly plant in Dearborn, Michigan. The plant operates three shifts per day, 5 days a week. The quality control manager wishes to compare the quality level on the three shifts. Vehicles are classified by quality level (acceptable, unacceptable) and shift (day, afternoon, night). Is there a difference in the quality level on the three shifts? That is, is the quality of the product related to the shift when it was manufactured? Or is the quality of the product independent of the shift on which it was manufactured?

Contingency Analysis

- A sample of 100 drivers who were stopped for speeding violations was classified by gender and whether or not they were wearing a seat belt. For this sample, is wearing a seatbelt related to gender?
- Does a male released from federal prison make a different adjustment to civilian life if he returns to his hometown or if he goes elsewhere to live? The two variables are adjustment to civilian life and place of residence. Note that both variables are measured on the nominal scale.

Contingency Analysis - Example

The Federal Correction Agency is investigating the last question cited above: Does a male released from federal prison make a different adjustment to civilian life if he returns to his hometown or if he goes elsewhere to live? To put it another way, is there a relationship between adjustment to civilian life and place of residence after release from prison? Use the .01 significance level.

Contingency Analysis - Example

The agency's psychologists interviewed 200 randomly selected former prisoners. Using a series of questions, the psychologists classified the adjustment of each individual to civilian life as outstanding, good, fair, or unsatisfactory. The classifications for the 200 former prisoners were tallied as follows. Joseph Camden, for example, returned to his hometown and has shown outstanding adjustment to civilian life. His case is one of the 27 tallies in the upper left box (circled).

Residence	Adjustment to Civilian Life							
from Prison	Outstanding	Good	Fair	Unsatisfactory				
Hometown	1411 1411 1411 1411 1411 11	1111 1111 1111 1111 1111 1111 1111	1411 1411 1411 1411 1411 1411 1111	141 141 141 141 141				
Not hometown	1411 1441 111	1411 1411 1411	141 141 141 141 141 11	1111 1111 1111 1111 1111				

	0	5	5		I.
Residence		Adjustment to	Civilian Life		
from Prison	Outstanding	Good	Fair	Unsatisfactory	Total
Hometown	27	35	33	25	120
Not hometown	13	15	27	25	80
Total	40	50	60	50	200

_			Adjı	istment t	o Civilia	n Life				
Residence after Release	Outsta	anding	Go	od	Fa	air	Unsatis	factory	То	tal
from Prison	f _o	f _e	f _o	f _e	fo	f _e	f _o	f _e	f _o	t
Hometown	27	24	35	30	33	36	25	30	120	12
Not hometown	13	16	15	20	27	24	25	20	80	8
Total	40	40	50	50	60	60	50	50	200	20
$\chi^2 = \Sigma \bigg[\frac{(f_o - f_o)}{f_o} \bigg]$	$\left[\frac{f_{\theta}}{2}\right]^{2}$	St	arting with $\chi^2 = \frac{1}{2}$	h the uppe $\frac{(27 - 24)^2}{24}$ $+ \frac{(13 - 16)^2}{16}$	$(35 - 3)^2 + \frac{(35 - 3)^2}{30} + \frac{(15 - 3)^2}{30}$	$\frac{30)^2}{-20)^2} + \frac{(33)^2}{-20} + $	$\frac{3-36)^2}{36} + \frac{(27-24)^2}{24}$	$\frac{(25-30)^2}{30} + \frac{(25-2)^2}{20}$	0) ²	

 根據下表 有關? 	, 試問客	戶年齡與喜	与好車型是否
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	30歳以下	31歲以上	合計
<b>毕</b> 尘			
半至 Premacy	108	74	182
Premacy TRIBUTE2.0/3.0	108 45	74 36	182 81
Premacy TRIBUTE2.0/3.0 MPV	108           45           90	74 36 126	182           81           216



1.設立兩個假設:H₀:客戶年齡與喜好車型無關;H₁:客戶年齡與喜好車型有關

2.選擇檢定統計量

以卡方分配來做檢定。

3.決定拒絕域或接受域

 $\alpha$  = 0.05 , 上表是一個 3 * 2 的列聯表 , 因此自由度 df = (c-1)(r-1) = (3-1)(2-1) = 2

查卡方機率值表得臨界值  $\chi^2_{2.005}$ = 5.991。

Ex. 1	7.3 (3)					
4.計算檢定統語	十量					
依前面 $\hat{E}_{ij} = i $ 列總和 * j 行總和 樣本數						
括弧內的理論:						
車型/年齡	30歲以下	31歲以上	合計			
Premacy	108(92.33)	74(89.67)	182			
TRIBUTE2.0/3 .0	45(41.09)	36(39.91)	81			
MPV 90(109.58) 126(106.42) 216						
合計	243	236	479			



# Ex. 17.4 (1)

調查 398 個工人的婚姻狀況如下表,試檢定婚姻狀況與離職意願是否有關(α = 0.01)?

離職意願	婚姻狀況	婚姻狀況	合計
	未婚	已婚	
低	80	61	141
中	94	24	118
高	108	31	139
合計	282	116	398





