國立臺北大學自然資源與環境管理研究所 104 學年度第一學期『環境工程科學概論』

課程講義(五):物質與能量平衡、環境計量 Conservation of Material and Energy; Stoichiometry and Environmetrics

• Introduction – Unifying Theories

□ Conservation of Matter => Chemical Reactions

	□ Conservation of Energy => Laws of Thermodynamics
	□ Conservation of Matter and Energy => The Theory of Relativity
•	MATERIAL BALANCE □ Control Volume, Control Mass, and System □ Steady State vs. Transit or Dynamic => Rate of Change (Accumulation Rate) = (Input Rate) – (Output Rate) ± (Transformation Rate) □ Steady-State Conservative Systems => Non-conservative Pollutants □ Batch Systems with Non-conservative Pollutants
•	ENERGY BALANCE □ First Law of Thermodynamics ⇒ Thermal Unit of Energy; Specific Heat Capacity ⇒ Latent Heat, Overheated Stream, Subcritical and Supercritical ⇒ Pressurized Water Reactors (vs. Boiling Water Reactors)
	 □ Second Law of Thermodynamics ⇒ Energy: Heat, Kinetic Energy, Potential, Electricity, etc. ⇒ Work, Unusable Energy, Entropy and Disorderness/Randomness ⇒ Thermal Efficiency: Carnot Engine ⇒ Thermal Power Plants: Coal, Oil and Natural Gas; Steam Generator and Internal combustion; Combined Cycle and IGCC
	 □ Conductive and Convective Heat Transfer □ Radiant Heat Transfer ⇒ Solar Energy: Heat vs. Photovoltaic ⇒ Electromagnetic Spectrum: Wavelength vs. Frequency □ Heat Engine vs. Heat Pump
•	UNIT OF MEASUREMENT □ Basic Units: Length, Mass, Time, and Temperature □ International System of Units (SI) vs. Imperial System (U.S. customary units) □ Extended Units: Concentration, Dose, ppm(m), ppb(v), Energy, "Equivalent" □ Units for Air Pollutants: ppm(v), ppb(v), µg/m³, iTEQ □ Units for Water Pollutants: mg/L, ppm(m), µ-mho/cm □ Units for Soil Contaminants: mg/kg, meq/100g (CEC)