國立臺北大學自然資源與環境管理研究所 113 學年度第一學期『環境工程科學概論』

課程講義(05):物質與能量平衡 Conservation of Material and Energy

)	INTRODUCTION — UNIFYING THEORIES □ Conservation of Matter => Chemical Reactions (Bio-Sensor)
	□ Conservation of Energy => Laws of Thermodynamics (Entropy) □ Conservation of Matter and Energy => The Theory of Relativity (E=MC ²) ⇒ E = (2.2×10^{13}) (m): conversion of 1 g of matter to energy => 2.2×10^{13} calories.
•	MATERIAL BALANCE □ Control Volume, Control Mass, and System □ Steady State vs. Transit or Dynamic => Rate of Change => Sink/Source (Accumulation Rate) = (Input Rate) – (Output Rate) ± (Transformation Rate) ⇒ 入流率、出流率、源與匯 => 碳匯(綠碳、黃碳、藍碳) ⇒ Balance = deposit – withdrawal => 收入(存款)、支出(提款)、債權與債務 □ Steady-State Conservative Systems => Non-conservative Pollutants □ Batch Systems with Non-Conservative Pollutants
•	ENERGY BALANCE □ First Law of Thermodynamics ⇒ Thermal Unit of Energy; Specific Heat Capacity ⇒ Latent Heat, Overheated Stream, Subcritical and Supercritical ⇒ Pressurized Water Reactors 壓水式反應爐 (vs. Boiling Water Reactors 沸水式)
	□ Second Law of Thermodynamics ⇒ Energy: Heat, Kinetic Energy, Potential, Electricity, etc. ⇒ Work, Unusable Energy, Entropy and Disorderness/Randomness ⇒ Thermal Efficiency: Carnot Engine => Fuel Cell ⇒ Thermal Power Plants: Coal, Oil and Natural Gas; Combined Cycle (複循環)
	□ Conductive and Convective Heat Transfer □ Radiant Heat Transfer ⇒ Solar Energy: Heat vs. Photovoltaic □ Heat Engine vs. Heat Pump (熱泵)
	UNIT OF MEASUREMENT □ Basic Units: Length, Mass, Time, and Temperature □ International System of Units (SI) vs. Imperial System (U.S. customary units) □ SI Unit Prefixes and Greek Alphabet => Appendixes □ Extended Units: Concentration, Dose, ppm(m), ppb(v), Energy, "Equivalent" ⇒Units for Air Pollutants: ppm(v), ppb(v), µg/m³, iTEQ ⇒Units for Water Pollutants: mg/L, ppm(m), µ-mho/cm ⇒Units for Soil Contaminants: mg/kg, meq/100g (CEC)