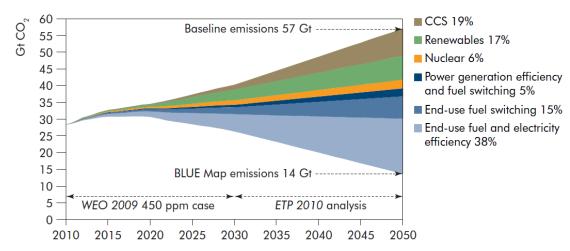
國立臺北大學自然資源與環境管理研究所


104 學年度第二學期『清潔生產與工業生態』

課程進度(16):工業生態學之展望:系統分析與情境模擬 Thinking Ahead: Systems Analysis and Scenario Simulation

- INTRODUCTION TO SYSTEMS ANALYSIS (G&A, Chp.15)
 - □ Industrial Ecology = Systems Analysis + Life Cycle Assessment
 - □ The Systems Concept
 - ⇒ A General Definition of A System: A Group of interacting, interdependent parts linked by exchanges of energy, matter, and/or information
 - ⇒ Simple Systems vs. Complex Systems
 - ⇒ Linear Systems vs. Nonlinear Systems
 - ⇒ The "Butterfly Effect"
 - □ The Adaptive Cycle => Adaptive Management => Adaptation vs. Mitigation
 - □ "Holarchies"=> Holistic Hierarchies?
 - □ Adaptive Management of Technological Holarchies
- MODELING IN INDUSTRIAL ECOLOGY SCENARIOS (G&A, Chp.22)
 - \Box Industrial Ecology Model
 - \Rightarrow Conceptual Models vs. Mathematical Models
 - □ Building the Conceptual Model
 - ⇒ Class 1 Industrial Ecology Model: "Sequential Process"
 - ⇒ Class 2 Industrial Ecology Model: "Multifold Considerations?"
 - ⇒ Class 3 Industrial Ecology Model: "System Dynamics Model?"
 - □ Running and Evaluating Industrial Ecology Models
 - \Rightarrow Implementing the Model
 - ⇒ Model Validation vs. Parameter Verification (Accreditation vs. Certification)
 - □ Examples and the Status of Industrial Ecology Models

• INDUSTRIAL ECOLOGY SCENARIOS (G&A, Chp.23)

- Industrial Ecology Scenario
 - ⇒ Conceptual Scenarios vs. Mathematical Scenarios
- \Box Building the Scenario
 - ⇒ Evolutionary Behavior vs. Disruptive Behavior
 - \Rightarrow BAU Business as Usual
 - ⇒ Decision Support vs. Decision Making
- □ Examples and the Status of Industrial Ecology Scenarios
- □ Describing Possible Future
 - ⇒ "Prediction" Models and Utility of Scenarios
 - ⇒ The ETP Scenarios (IEA: Energy Technology Perspectives 2016)

Figure ES.1 \blacktriangleright Key technologies for reducing CO₂ emissions under the BLUE Map scenario

Table ES.1 Energy and emission trends under the Baseline and BLUE Map scenarios: 2050 compared to 2007

Baseline scenario	BLUE Map scenario
 Energy-related CO₂ emissions roughly double 	• Energy-related CO ₂ emissions reduced by 50%
 Primary energy use rises by 84%; carbon intensity of energy use increases by 7% 	 Primary energy use rises by 32%; carbon intensity of energy use falls by 64%
• Liquid fuel demand rises by 57% requiring significant use of unconventional oil and synthetic fuels; primary coal demand increases by 138%; gas demand is 85% higher	• Liquid fuel demand falls by 4% and biofuels meet 20% of total; coal demand drops by 36%; natural gas falls by 12%; renewables provide almost 40% of primary energy supply
 CO₂ emissions from power generation more than double; CO₂ intensity of power generation declines slightly to 459 g/kWh 	 CO₂ emissions from power generation are cut by 76%; its CO₂ intensity falls to 67 g/kWh
 Fossil fuels supply more than two-thirds of power generation; the share of renewable energy increases slightly to 22% 	 Renewables account for 48% of power generation; nuclear provides 24% and plants equipped with CCS 17%
 Carbon capture and storage (CCS) is not commercially deployed 	• CCS is used to capture 9.4 Gt of CO ₂ from plants in power generation (55%), industry (21%) and fuel transformation (24%)
 CO₂ emissions in the buildings sector, including those associated with electricity use, nearly double 	 CO₂ emissions in buildings are reduced by two-thirds through low-carbon electricity, energy efficiency and the switch to low- and zero-carbon technologies (solar heating and cooling, heat pumps and CHP)
 Almost 80% of light-duty vehicles (LDVs) sales rely on conventional gasoline or diesel technology; petroleum products meet more than 90% of transport energy demand 	 Almost 80% of LDVs sales are plug-in hybrid, electric or fuel-cell vehicles; the share of petroleum products in final transport demand falls to 50%
 CO₂ emissions in industry grow by almost half, as industrial production increases 	 CO₂ emissions in industry fall by around a quarter mainly thanks to energy efficiency, fuel switching, recycling, energy recovery and CCS
• Total investment in energy supply and use totals USD 270 trillion	 Investment is USD 46 trillion (17%) more than in Baseline; cumulative fuel savings are USD 112 trillion higher than in Baseline
 Non-OECD countries are responsible for almost 90% of growth in energy demand and account for nearly three-quarters of global CO₂ emissions 	 Non-OECD countries achieve CO₂ emissions reduction of around 30% compared to 2007; OECD countries account for less than one-quarter of global CO₂ emissions, having reduced emissions by 70% to 80% below 2007 levels