國立臺北大學自然資源與環境管理研究所 112 學年度第二學期『清潔生產與工業生態學』

課程進度(05):工業生態學:架構性觀念與指標工具 Introduction to Industrial Ecology: Framework Concepts and Tools of Indicators

)	TECHNOLOGY AND RISK
	□ Dimensions of Industrial Ecology:
	⇒ Ecological (Biological Analogy), Social, and Technological
	☐ Historical Patterns in Technological Revolution (G&A, pp.67-71)
	⇒ Trends in Anthropogenic Environmental Transformation (Fig. 6.1)
	⇒ Technological Revolution => Product lifecycle; Market penetration rate; Clusters
	□ Approaches to Risk (G&A, pp.71-75)
	⇒ Risk => Opportunity => Degree of adverse effect and probability of occurrence
	⇒ Annual mortality rate => one-in-a-million (ppm)
	□ Risk Assessment (G&A, pp.75-77)
	□ Perception of risk and Risk Communication (G&A, pp.77-78)
	□ Risk Management (G&A, pp.78-80)
	REVISIT THE SOCIAL DIMENSIONS OF INDUSTRIAL ECOLOGY
	□ Cultural Constructs and Temporal Scales: Paradigm Shift (G&A, pp.83-86)
	 ⇒ Social System Structure over Different Timescales ⇒ Belief systems regarding the economy, individual liberty, the environment, and sustainability
	□ Social Ecology (G&A, pp.86-87)
	□ Consumption (G&A, pp.88-89)
	☐ Governmental Agencies and NGOs (NPOs) => Ayres and Ayres (2002): Chp.6 (Allenby)
	□ Economics and Industrial Ecology (G&A, pp.93-97)
	⇒ The Private Firm and Business Activities
	⇒ Valuation, Discount Rates, and Green Accounting

• THE "MASTER EQUATION" OF INDUSTRIAL ECOLOGY

☐ The Master Equation (G&A, p.28)

Environmental Impact

= Population \times [GDP/person] \times [(Environmental Impact)/(Unit of GDP)]

- ⇒ The IPAT Equation: I=Impact; P=Population; A=Affluence, T=Technology
- ⇒ Ayres and Ayres (2002) P.8: The IPAT equation has provided an analytical basis for parsing the relative contributions of population, economic growth (or, viewed in another way, consumption) and technology on environmental quality.
- \Rightarrow Sustainability \sim (AP/I) = 1/T => Ratio of human quality of life to environmental impact (*)
- ⇒ The Kaya's identity: a mathematical expression for energy-related carbon emission $\frac{C = (P) \times (GDP/P) \times (E/GDP) \times (C/E)}{C/E}$ where the total energy-related carbon emissions C is expressed as a product of Population P, GDP per capita, energy intensity E/GDP and carbon intensity of energy use C/E.
- ⇒ The IPAT Equation and Its Variants (Chertow, 2000)

⇒ ImPACT and Kaya Identity (https://unfccc.int/sites/default/files/2.4 cicero peters.pdf)

(https://blogs.ntu.edu.sg/hp3203-1718-s2-15/overview/)

⇒ The IPAMDH Equation: I = P×A×M×D×H (Kapur and Graedel, 2004)

M is the materials intensity, D the dissipation factor, and H the hazard factor, which depends on the chemical form of the material lost and the susceptibility of the receiving ecosystem.

Environmental Impact

= Population × [GDP/person] × [(Units of Material)/GDP]
× [(Units of Pollution)/(Unit of Material)] × [Impact/(Unit of Pollution)]

 \Rightarrow STIRPAT (York et al., 2003):

STochastic Impacts by Regression on Population, Affluence, and Technology

$$I_i = aP_i^b A_i^c T_i^d e_i$$

- ⇒ Application IPAT to assess resource productivity (Wang et al., 2014)
- ☐ From Equations to Indicators
 - ⇒ Handbook on Constructing Composite Indicators: Methodology and User Guide
 - ⇒ The Human Development Index and related indices
 - ➡ 國發會-景氣指標查詢系統-景氣對策信號(ndc.gov.tw)
 - ⇒ Environmental Performance Index (yale.edu)
 - ➡ 許明華碩士論文:我國飲用水水質適飲性指標化評估之研究--2.1 環境指標系統

• HUMANITY AND TECHNOLOGY

- □ The Tragedy of the Commons (G&A, pp.2-4; http://zh.wikipedia.org/zh-tw/公地悲劇)
 - ⇒ The Maximum Sustainable Yield
 - ⇒ Free Riders and Externality
- □ Technology at Work (G&A, pp.4-5)
- □ Technological Evolution (G&A, pp.7-10)
- ☐ The 'Past Goods' and the 'New Bads' (G&A, p.31)
- □ Decoupling of 'Economic Goods' and 'Environmental Bads'
 - ⇒ The Environmental Kuznets Curve (Kuznets curve Wikipedia)
- □ Metabolic "Dissipativeness" of Materials vs. Anthropic "Concentration" of Pollutants
- ☐ Final Sink of Materials: Consumption vs. Production
- HOMEWORK ASSIGNMENT #4 (Due 2024/04/02):

請參考 IPAT 方程式之指標定義與計算方式,整理能源生產力、能源密集度、電力排碳係數等指標之計算方式,並繪製三項指標近10年之趨勢變化圖。