國立臺北大學自然資源與環境管理研究所

112 學年度第二學期『清潔生產與工業生態學』

課程進度(14):工業生態學-系統分析與情境模擬 Thinking Ahead: Systems Analysis and Scenario Simulation

• INTRODUCTION TO SYSTEMS ANALYSIS (G&A, Chp.15)

- □ Industrial Ecology = Systems Analysis + Life Cycle Assessment Industrial Ecology Programme (IndEcol) - NTNU
- □ The Systems Concept (G&A, Chp.15, pp.211-213)
 - ⇒ A General Definition of a System: A Group of interacting, interdependent parts linked by exchanges of energy, matter, and/or information
 - ⇒ Simple Systems vs. Complex Systems => "Context"
 - ⇒ Linear Systems vs. Nonlinear Systems => Circularity?
 - ⇒ The "Butterfly Effect"
- □ The Adaptive Cycle (G&A, Chp.15, pp.213-215)
 - ⇒ Adaptive Management => Adaptation vs. Mitigation
- □ "Holarchies"=> Holistic Hierarchies? (G&A, Chp.15, pp.215-217)
 - \Rightarrow Holon and Holarchy
 - Adaptive Management of Technological Holarchies

• MODELING IN INDUSTRIAL ECOLOGY SCENARIOS (G&A, Chp.22)

- □ Industrial Ecology Model
 - ⇒ Conceptual Models vs. Mathematical Models
- □ Building the Conceptual Model
 - ⇒ Class 1 Industrial Ecology Model: "Sequential Process"

Demittons of Terms Related to Model Bundning and Data Requisition
Definition
The spatial, temporal, quantitative, or analytical dimensions used to measure and study an object or process of interest.
The size of a scale dimension.
The precision used in measurement.
The units of analysis that are located in the same position on a scale. Many conceptual scales contain levels that are ordered hierarchically, but not all levels are necessarily linked to one another in a hierarchical system.

TABLE 22.1 Definitions of Terms Polated to Model Puilding and Date Acquisition

Source: Adapted from C.C. Gibson, E. Ostrom, and T.K. Ahn, The concept of scale and the human dimensions of global change: A survey, Ecological Economics, 32, 217-239, 2000.

- ⇒ Class 2 Industrial Ecology Model: "Multifold Considerations?"
- ⇒ Class 3 Industrial Ecology Model: "System Dynamics Model?"
- □ Running and Evaluating Industrial Ecology Models
 - \Rightarrow Implementing the Model
 - ⇒ Model Validation vs. Parameter Verification
 - => Accreditation, Certification, Validation, Verification (認證 驗證 確證 查證)

- INDUSTRIAL ECOLOGY SCENARIOS (G&A, Chp.23)
 - Industrial Ecology Scenario
 - ⇒ Conceptual Scenarios vs. Mathematical (Quantitative) Scenarios
 - $\hfill\square$ Building the Scenario
 - \Rightarrow Evolutionary Behavior vs. Disruptive Behavior
 - \Rightarrow BAU Business as Usual => Baseline
 - \Rightarrow Decision Support vs. Decision Making
 - Examples and the Status of Industrial Ecology Scenarios
 - □ Describing Possible Future
 - ⇒ "Prediction" Models and Utility of Scenarios
 - ⇒ The IEA Scenarios (NZE, Announced Pledges Scenario, and Stated Policies Scenario) <u>Understanding GEC Model scenarios – Global Energy and Climate Model – Analysis - IEA</u>
 - ⇒ Scenarios Analysis of TCFD => Related Scenarios of Climate Change
 - ⇒ IPCC AR6 Scenarios SSPx-y:
 - SSPx-y => (Shared Socioeconomic Pathway)x + (Representative Concentration Pathways)y :::氣候變遷科學報告-第一章 <u>https://www.moenv.gov.tw/File/9388ACC59F140034</u>

*黑框為無氣候政策介入的基線情境

⇒國家氣候變遷調適行動計畫(112-115年):固定暖化情境

□ Scenario vs. Pathway

Topics and Context of Industrial Ecology and Sustainable Engineering