# 國立臺北大學自然資源與環境管理研究所 102 學年度第二學期『環境災害與風險管理』

課程講義 (12): 危害分析、系統可靠度與模擬工具軟體 Hazard Analysis, Systems Reliability and Simulation Software

http://www.ipedr.com/vol11/16-R10014.pdf

Critical Review of a Risk Assessment Method and its Applications

http://www.weibull.com/basics/

Reliability Analysis Quick Subject Guides

http://www.ihs.com/info/ehss/dyadem-stature-pha-pro.aspx

EHS & Sustainability Software from HIS

Monte Carlo Simulation Software:

Oracle Crystal Ball, @Risk, ModelRisk, GoldSim, etc.

#### INTRODUCTION

- □ Risk Assessment Steps
  - ⇒ Identification of hazards likely to result in disasters: What hazardous events may occur?
  - ⇒ Estimation of the risks of such events: What is the probability of each event?
  - ⇒ Evaluation of the consequences of the derived risk: What is the likely loss created by each event?
- ☐ Types of Risk Analysis (Molak, 1997)
  - ⇒ Noncancer chemicals risk analysis and Carcinogen risk analysis
  - ⇒ Epidemiological risk analysis
  - ⇒ Probabilistic risk analysis associated with plant safety
  - ⇒ A posteriori risk analysis
  - ⇒ Nonquantitative risk analysis, or "common sense" risk analysis
- ☐ Risk Analysis Techniques related to Safety or Reliability (Dhillon, 2003)
  - ⇒ Fault Tree Analysis
  - ⇒ Failure Modes and Effect Analysis (FMEA)
  - ⇒ Failure Mode Effects and Criticality Analysis (FMECA)
  - ⇒ Hazard and Operability Analysis (HAZOP)
- □ Risk Analysis Methodologies: Qualitative Methodologies

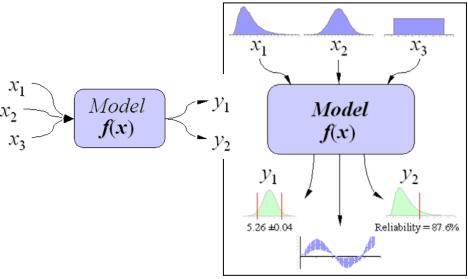
### • FAULT TREE ANALYSIS (FTA)

- ☐ Event Tree, Decision Tree, and Fault Tree
- □ Safety, Reliability, Risk, and Industrial Hazards
- □ Components: Result, Gates (and/or), Fault Events (input/output)
- ☐ Examples; Advantages/Disadvantages

#### • FMEA, FMECA AND HAZOP

- □ An Overview of FMEA and FMECA (<a href="http://www.weibull.com/basics/fmea.htm">http://www.weibull.com/basics/fmea.htm</a>)
- □ FMEA Info Centre (http://www.fmeainfocentre.com)
- □ Failure Modes and Effect Analysis (FMEA) 失效模式與效應分析
- □ Failure Mode Effects and Criticality Analysis (FMECA) 失效模式效應與關鍵性分析
- □ Hazard and Operability Analysis (HAZOP) 危害及可操作性分析 (http://158.132.155.107/posh97/private/accident-prevention/HAZOP\_Technique.pdf)

#### RISK ANALYSIS SOFTWARE


- □ Statistics and Probability: Calculation, Fitting, and Visualization
- ☐ Event Tree, Value Tree, Fault Tree, and Decision Tree => (PrecisionTree)
- ☐ Reliability and Safety => Fault and Failure
  - ⇒ Fault Tree Analysis, FMEA, and FMECA
  - ⇒ Risk Priority Numbers (RPN) for Failures: Severity, Occurrence & Detectability
- □ Process and Operation => Hazard and Operability
  - ⇒ Process Hazards Analysis: HazOp, Job Safety Analysis, etc.
  - ⇒ Brainstorming, Countermeasures, and Cost Assessment

#### • SOFTWARE PACKAGES FOR RISK (RELIABILITY) ANALYSIS

- ☐ EHS & Sustainability Software from HIS (formerly Dyadem Software)
  - ⇒ FMEA-Pro Failure Modes and Effects Analysis
  - ⇒ PHA-Pro Process Hazards and Analysis: HazOp, What If, Checklist, FMEA & PrHA
- □ Palisade Corporation: The DecisionTools Suite
  - ⇒ @RISK, PrecisionTree, TopRank, RISKOptimizer
  - ⇒ Examples for Applying DecisionTools: Volcano Eruption

#### • QUANTITATIVE RISK ANALYSIS: SIMULATION

- □ Representation of Uncertainty => Simulation
  - ⇒ Decision Making under Uncertainty (Risk)
  - ⇒ Simulation or Optimization? Simulation/Optimization (?)
- □ Monte Carlo Simulation
  - Step 1: Create a parametric model,  $y = f(x_1, x_2, \dots, x_a)$ .
  - Step 2: Generate a set of random inputs,  $x_1^i, x_2^i, \dots, x_q^i$ .
  - Step 3: Evaluate the model and store the results as  $y^i$ .
  - Step 4: Repeat steps 2 and 3 for  $i = 1 \cdots n$ .
  - Step 5: Analyze the results using histograms, statistics, confidence intervals, etc.



(http://www.vertex42.com/ExcelArticles/mc/MonteCarloSimulation.html)

## POTENTIAL FAILURE MODE AND EFFECTS ANALYSIS

|                                                                                      | System    | 1 - Automobile             |                           | AND EFFECTS ANALYSIS | FMEA Number 1450                                          |   |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|-----------|----------------------------|---------------------------|----------------------|-----------------------------------------------------------|---|--|--|--|--|--|--|
| Subsystem                                                                            |           | 2 - Closures               | Fro                       | ont Door L.H.        | Page 1 of 1                                               | _ |  |  |  |  |  |  |
| Х                                                                                    | Component | 3 - Front Door L.H.        | Process Responsibility    | Body Engineering     | Prepared By _ J. Ford - X6521 - Assy Ops                  |   |  |  |  |  |  |  |
| Model Year(s)/√ehicle(s)                                                             |           | cle(s) 199X/Lion 4dr/Wagon | Key Date <u>3/31/2003</u> |                      | FMEA Date (Orig.) <u>3/10/2003</u> (Rev) <u>3/21/2003</u> |   |  |  |  |  |  |  |
| Core Team A Tate Body Engra I Smith - OC P. James - Production I Jones - Maintenance |           |                            |                           |                      |                                                           |   |  |  |  |  |  |  |

| tem                                                                                    |                                                         |                                                                                                                                               |     |       |                                                                                  | Г     |                                           |                                                                                                                             |       |      |                                        |                                            | Actions Taken                            |     |     |     |     |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----------------------------------------------------------------------------------|-------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------|------|----------------------------------------|--------------------------------------------|------------------------------------------|-----|-----|-----|-----|--|
| Process<br>Function/Requirements                                                       | Potential Failure Mode                                  | Potential Effect(s) of<br>Failure                                                                                                             | Sev | Class | Potential<br>Cause(s )Mechanism(s)<br>of Failure                                 | 0ccur | Current Process<br>Controls<br>Prevention | Current Process<br>Controls<br>Detection                                                                                    | Detec | RP N | Recommended Action(s)                  | Responsibility &<br>Target Completion Date | Actions Taken                            | Sev | 000 | Det | RPN |  |
| 3 - Front Door L.H.                                                                    |                                                         |                                                                                                                                               |     |       | -                                                                                |       |                                           |                                                                                                                             |       |      |                                        |                                            |                                          |     |     |     |     |  |
| wax inside door.<br>To cover inner door,<br>lower surfaces at<br>minimum wax thickness | h sufficient wax<br>coverage over specified<br>surface. | Deteriorated life of do or<br>leading to:<br>- Unsatisfactory<br>appearance due to rust<br>through paint over time.<br>- Impaired function of | 7   |       | Manually in serted spray<br>head not in serted far<br>enough.                    | 8     |                                           | Visual check each<br>hour - 1/shit for<br>film thickness<br>(depth meter) and<br>coverage.                                  | 5     | 280  | Add positive depth stop to<br>sprayer. |                                            | Stop added , sprayer<br>checked on line. | 7   | 2   | 5   | 70  |  |
| to retard corrosion.                                                                   |                                                         | interior doorhardware.                                                                                                                        |     |       | Spray head clogged - Viscositytoo high - Temperature too low - Pressure too low. | 5     |                                           | Test spray pattern<br>at start-up and<br>after idle periods,<br>and preventive<br>maintenance<br>program to clean<br>heads. | 3     | 105  |                                        |                                            |                                          | 7   | 1   | 3   | 21  |  |
|                                                                                        |                                                         |                                                                                                                                               |     |       | Spray head deformed due<br>to impact.                                            | 2     |                                           | Pre ventive<br>mainten ance<br>program to<br>maintain he ads.                                                               | 2     | 28   |                                        |                                            |                                          | 7   | 2   | 2   | 28  |  |
|                                                                                        |                                                         |                                                                                                                                               |     |       | Spray time in sufficient.                                                        | 8     |                                           | Operator<br>instructions and lot<br>sampling (10<br>doors/shift) to<br>check for coverage<br>of critical are as.            |       | 392  |                                        |                                            |                                          | 7   | 1   | 7   | 49  |  |

- Risk Priority Numbers: RPN = Severity × Occurrence × Detection
- **■** Criticality Analysis

Mode Criticality = Expected Failures × Mode Ratio of Unreliability × Probability of Loss

Item Criticality = SUM of Mode Criticalities