國立臺北大學自然資源與環境管理研究所 106 學年度第二學期『環境災害與風險管理』 課程講義(12): 危害分析、系統可靠度與模擬工具軟體 I Hazard Analysis, Systems Reliability and Simulation Software | _ | Introduction | |---|--------------| | • | INTRODUCTION | - □ Risk Assessment Steps - ⇒ Identification of hazards likely to result in disasters: What hazardous events may occur? - ⇒ Estimation of the risks of such events: What is the probability of each event? - ⇒ Evaluation of the consequences of the derived risk: What is the likely loss created by each event? - □ Risk Analysis Techniques related to Safety or Reliability Dhillon, B.S. (2013) *Safety and Human Error in Engineering Systems*, CRC Press. - **⇒** Fault Tree Analysis - ⇒ Failure Modes and Effect Analysis (FMEA) - ⇒ Failure Mode Effects and Criticality Analysis (FMECA) - ⇒ Hazard and Operability Analysis (HAZOP) ## • FAULT TREE ANALYSIS (FTA) - ☐ Event Tree, Decision Tree, and Fault Tree - □ Safety, Reliability, Risk, and Industrial Hazards - □ Components: Result, Gates (and/or), Fault Events (input/output) - ☐ Examples; Advantages/Disadvantages #### FMEA, FMECA AND HAZOP - ☐ An Overview of FMEA and FMECA (http://www.weibull.com/basics/fmea.htm) - □ Failure Modes and Effect Analysis (FMEA) 失效模式與效應分析 - □ Failure Mode Effects and Criticality Analysis (FMECA) 失效模式效應與關鍵性分析 - □ Hazard and Operability Analysis (HAZOP) 危害及可操作性分析 (http://158.132.155.107/posh97/private/accident-prevention/HAZOP_Technique.pdf) ### • RISK ANALYSIS SOFTWARE - □ Statistics and Probability: Calculation, Fitting, and Visualization - ☐ Event Tree, Value Tree, Fault Tree, and Decision Tree - ☐ Reliability and Safety => Fault and Failure - ⇒ Fault Tree Analysis, FMEA, and FMECA - ⇒ Risk Priority Numbers (RPN) for Failures: Severity, Occurrence & Detectability - □ Process and Operation => Hazard and Operability - ⇒ Process Hazards Analysis: HazOp, Job Safety Analysis, etc. - ⇒ Brainstorming, Countermeasures, and Cost Assessment # POTENTIAL FAILURE MODE AND EFFECTS ANALYSIS | | System 1 - Automobile | | | FAI | | AND EFFECTS ANALYSIS | FMEANumber _ | 1450 | | | | | | | |--|-----------------------|-----------|---------------------|------------|--------------|----------------------|-------------------|-------------------|--------|-----------|--|--|--|--| | Subsystem 2-Cl | | | ıres | | Fro | ont Door L.H. | Page 1 of 1 | | | | | | | | | Х | Component | 3 - Front | Door L.H. | Process Re | sponsibility | Body Engineering | Prepared By J. Fo | ord - X6521 - Ass | sy Ops | | | | | | | Мо | del Year(s)/√eh | icle(s) | 199X/Lion 4dr/Wagon | Key Date | 3/31/2003 | | FMEA Date (Orig.) | 3/10/2003 (| Rev) | 3/21/2003 | | | | | | Core Team A. Tate Body Engrg, J. Smith - OC, R. James - Production, J. Jones - Maintenance | | | | | | | | | | | | | | | | tem | | | | | | | | | | | | | Actions Taken | | | | | |---|----------------------------------|--|-----|-------|--|-------|---|--|-------|------|-------------------------------------|--|---|-----|-----|-----|-----| | Process
Function/Requirements | Potential Failure Mode | Potential Effect(s) of
Failure | Sev | Class | Potential
Cause(s)Mechanism(s)
of Failure | 0ccur | Current Process
Controls
Prevention | Current Process
Controls
Detection | Detec | RP N | Recommended Action(s) | Responsibility &
Target Completion Date | Actions Taken | Sev | 000 | Det | RPN | | 3 - Front Door L.H. | | | Ш | | | L | | | Ш | | | | | Ш | | _ | _ | | Manual application of
wax inside door.
To cover inner door,
lower surfaces at
minimum wax thickness | coverage over specified surface. | Deteriorated life of door
leading to:
- Unsatisfactory
appearance due to rust
through paint over time.
- Impaired function of | 7 | | Manually in serted spray
head not in serted far
enough. | 8 | | Visual check each
hour - 1/shi t for
film thickness
(de pth meter) and
coverage. | 5 | 280 | Add positive depth stop to sprayer. | | Stop added, sprayer
checked on line. | 7 | 2 | 5 | 70 | | to retard corrosion. | | interior door hardware. | | | Spray head clogged - Viscositytoo high - Temperature too low - Pressure too low. | 5 | | Test spray pattern
at start-up and
after idle periods,
and preventive
mainten ance
program to clean
heads. | 3 | 105 | | | | 7 | 1 | 3 | 21 | | | | | | | Spray head deformed due to impact. | 2 | | Pre ventive
mainten ance
program to
maintain he ads . | 2 | 28 | | | | 7 | 2 | 2 | 28 | | | | | | | Spray time in sufficient. | 80 | | Operator
instructions and lot
sampling (10
doors/shift) to
check for coverage
of critical areas. | 7 | 392 | | | | 7 | 1 | 7 | 49 | https://www.reliasoft.com/images/documents/xfmea_dfmea.pdf - Risk Priority Numbers: RPN = Severity × Occurrence × Detection - **■** Criticality Analysis Mode Criticality = Expected Failures × Mode Ratio of Unreliability × Probability of Loss Item Criticality = SUM of Mode Criticalities