國立臺北大學自然資源與環境管理研究所 九十九學年度第二學期 『環境系統分析』課程講義(二)

進度:線性規劃回顧與進階主題 Review of Linear Programming and Advanced Topics

• GOALS OF THE COURSE

- □ Content ⇒ Systems Analysis Models and Applications Concerning the *Environment*
 - ⇒ Systems vs. Systems Analysis
 - ⇒ Systems Analysis vs. Operations Research (Operational Research)
 - ⇒ Systems Analysis, System Simulation, and System Dynamics
 - ⇒ Programming vs. Planning => Simulation and Optimization
 - ⇒ Conceptual models => Mathematical models => Simulation/Optimization models
- □ Mathematical Models
 - ⇒ Classification: Prescriptive vs. Descriptive; Deterministic vs. Stochastic
 - ⇒ Solution Techniques: Symbolic/Graphical Interpretation; Analytical vs. Numerical
 - ⇒ Algorithms, Numerical Methods => Linearity, Convexity, and Complexity

• OPTIMIZATION AND SIMULATION SOFTWARE

- □ Problems or Models
 - ⇒ Linear vs. nonlinear; constrained vs. unconstrained; continuous vs. discrete
- □ Platform and Programming
 - ⇒ Command-line vs. Windows; Editor-oriented vs. Object-oriented
- □ Programming Skill
 - ⇒ Solver package vs. Program coding => Compiling vs. Running of Program codes

• COMPONENTS OF AN OPTIMIZATION MODEL

- □ Objective Function(s)
 - ⇒ Single vs. Multiple
 - ⇒ Linear vs. Nonlinear
 - ⇒ Convex (Concave) vs. Non-convex
- □ Constraints
 - ⇒ Constrained vs. Un-constrained
 - ⇒ Linear vs. Nonlinear
 - ⇒ Convex vs. Non-convex Feasible Regions
- □ Decision Variables
 - ⇒ Continuous vs. Discrete
 - ⇒ Deterministic vs. Stochastic
- □ System Parameters (Coefficients)
 - ⇒ Deterministic vs. Stochastic
 - ⇒ Division into Sub-Models

- □ Fuzzy Sets and Grey Information (Interval Variables)
 - ⇒ 'Probability,' 'Likelihood,' and 'Possibility'
 - ⇒ Uncertainties about Decision Variables and Parameters are Incorporated
 - ⇒ Division into Sub-Models
- ☐ Formulation of Optimization Models
 - ⇒ Plain Form: Straightforward but not suitable for large-scaled or complex problems
 - ⇒ Algebraic Formulations => Vectors and Matrices
 - ⇒ Algebraic Formulations with text description of variables and parameters
 - ⇒ Sets and Indices

• PROPERTIES OF AN LP

- □ Proportionality, Additivity, Divisibility, Certainty, and Non-Negativity
- □ Non-negative Decision Variables => What if negative values are needed?
- □ A "Convex Programming" Model
- □ Additional Terminology
 - ⇒ Feasible Region or Solution Space
 - ⇒ Vertex, Extreme Points or Corner Points
 - ⇒ Decision Space or Objective Space

• SOLUTION PROCEDURE OF AN LP

- □ Pre-Optimal Analysis, Optimization (Solution) and Post-Optimization Analysis
- □ Graphical, Simplex, Dual Simplex, Interior Point and Other Methods
- ☐ Infeasible, Un-bounded and Degenerate Solutions
- □ A "Convex Programming" Model: Feasible Region and Extreme Points
 - ⇒ Characteristics of Feasible Region for the LP: Convex, Compact, and Continuous
 - ⇒ Extreme Points (Corner Points) vs. Interior Points

• THE SIMPLEX METHOD

- ☐ Augmented Form of the LP Models
 - ⇒ "Less-than-and-equal-to" Inequality constraints => Slack variables
 - ⇒ "Greater-than-and-equal-to" Inequality constraints => Surplus & Artificial Variables
 - ⇒ Equality constraints => Artificial variables => 'Big-M Treatment'
- ☐ Terminology and Procedure of the Simplex Method
 - ⇒ Basic vs. non-basic variables
 - ⇒ Feasible basic solution => "Adjacent"
 - ⇒ Ratio test for Pivoting
 - ⇒ "Optimality"
- ☐ Simplex Tableaus and An Animated Presentation

• EXAMPLES OF LINEAR PROGRAMMING

- ☐ Glass Production at Wyndor Glass Co.
 - ⇒ Objective Function: Maximizing the profit
 - ⇒ Decision Variables: Production rate of the two types of products
 - ⇒ Constraints: Production time limits at the three plants

TABLE 3.1 Data for the Wyndor Glass Co. problem

Plant	Production Time per Batch, Hours Product			
			Production Time	
	1	2	Available per Week, Hours	
1	1	0	4	
2	0	2	12	
3	3	2	18	
Profit per batch	\$3,000	\$5,000		

Maximize $Z = 3x_1 + 5x_2$,

subject to the restrictions

$$x_1 \le 4$$

 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$

and

$$x_1 \ge 0, \qquad x_2 \ge 0.$$

- ☐ Homewood Masonry -- A Material Production Problem
 - ⇒ Objective Function: Maximizing the production profit
 - ⇒ Decision Variables: Two building products to be produced
 - ⇒ Constraints: Resource availability, work hours, and curing vat capacity

Resource	HYDIT	FILIT	Availability
Wahash Red Clay	$2 \text{ m}^3/\text{ton}$	4 m ³ /ton	$28 \text{ m}^3/\text{wk}$
Blending time	5 hr/ton	5 hr/ton	50 hr/wk
Curing vat capacity	8 tons	6 tons	
Profit	\$140/ton	\$160/ton	

• SENSITIVITY ANALYSIS

- □ Overview and Post-Optimality Analysis
- □ Sensitivity Analysis on RHS (Resource) Coefficients
 - ⇒ Shadow price, marginal value of a resource and economic interpretation
 - ⇒ Dual price (?)
- ☐ Sensitivity Analysis on Objective Function Coefficients
- □ Graphical Illustration
- □ Outputs from Optimization Packages and Analytical Interpretation (?)
- □ Parametric Programming

• DUALITY THEORY

- □ Model Formulations
- □ Dual-Primal Relationships
 - ⇒ Implementation from Production Problem
 - ⇒ Implementation from Resource Allocation Problem
- □ Shadow Price
- □ Primal-Dual Methods for Optimization (Lagrange Algorithms)
- HOMEWORK #1 (2011/03/15 Due): *Solve* the example of Homewood Masonry in ReVelle's textbook (p.44) by using AIMMS, LINGO, What's Best, and GAMS.