國立臺北大學自然資源與環境管理研究所 100 學年度第二學期『環境系統分析』

課程講義(五):線性規劃回顧與進階主題 Review of Linear Programming and Advanced Topics

• COMPONENTS OF AN OPTIMIZATION MODEL

□ Objective Function(s)

	⇒ Single vs. Multiple				
	⇒ Linear vs. Nonlinear				
	⇒ Convex (Concave) vs. Non-convex				
	□ Constraints				
	⇒ Constrained vs. Un-constrained				
	⇒ Linear vs. Nonlinear				
	⇒ Convex vs. Non-convex Feasible Regions				
	□ Decision Variables				
	⇒ Continuous vs. Discrete				
	⇒ Deterministic vs. Stochastic				
	□ System Parameters (Coefficients)				
	⇒ Deterministic vs. Stochastic				
	⇒ Division into Sub-Models				
	☐ Formulation of Optimization Models				
	⇒ Plain Form: Straightforward but not suitable for large-scaled or complex problems				
	⇒ Algebraic Formulations => Vectors and Matrices				
	⇒ Algebraic Formulations with text description of variables and parameters				
	⇒ Sets and Indices				
•	PROPERTIES OF AN LP				
	□ Proportionality, Additivity, Divisibility, Certainty, and Non-Negativity				
	□ Non-negative Decision Variables => What if negative values are needed?				
	□ A "Convex Programming" Model				
□ Additional Terminology					
	⇒ Feasible Region or Solution Space				
	⇒ Vertex, Extreme Points or Corner Points				
	⇒ Decision Space or Objective Space				
	SOLUTION PROCEDURE OF AN LP				
	□ Pre-Optimal Analysis, Optimization (Solution) and Post-Optimization Analysis				
	□ Graphical, Simplex, Dual Simplex, Interior Point and Other Methods				
	□ Infeasible, Un-bounded and Degenerate Solutions				
	□ A "Convex Programming" Model: Feasible Region and Extreme Points				
	⇒ Characteristics of Feasible Region for the LP: Convex, Compact, and Continuous				
	⇒ Extreme Points (Corner Points) vs. Interior Points				

- THE SIMPLEX METHOD
 - ☐ Augmented Form of the LP Models
 - ⇒ "Less-than-and-equal-to" Inequality constraints => Slack variables
 - ⇒ "Greater-than-and-equal-to" Inequality constraints => Surplus & Artificial Variables
 - ⇒ Equality constraints => Artificial variables => 'Big-M Treatment'
 - ☐ Terminology and Procedure of the Simplex Method
 - ⇒ Basic vs. non-basic variables
 - ⇒ Feasible basic solution => "Adjacent"
 - ⇒ Ratio test for Pivoting
 - ⇒ "Optimality"
 - ☐ Simplex Tableaus and An Animated Presentation
- EXAMPLES OF LINEAR PROGRAMMING
 - ☐ Homewood Masonry -- A Material Production Problem
 - ⇒ Objective Function: Maximizing the production profit
 - ⇒ Decision Variables: Two building products to be produced
 - ⇒ Constraints: Resource availability, work hours, and curing vat capacity

Resource	HYDIT	FILIT	Availability
Wahash Red Clay	$2 \text{ m}^3/\text{ton}$	4 m ³ /ton	$28 \text{ m}^3/\text{wk}$
Blending time	5 hr/ton	5 hr/ton	50 hr/wk
Curing vat capacity	8 tons	6 tons	
Profit	\$140/ton	\$160/ton	

•	SENSITIVITY	Analysis
_	ODINOITIVITI.	

- ☐ Overview and Post-Optimality Analysis
- □ Sensitivity Analysis on RHS (Resource) Coefficients
 - ⇒ Shadow price, marginal value of a resource and economic interpretation
 - \Rightarrow Dual price (?)
- ☐ Sensitivity Analysis on Objective Function Coefficients
- □ Graphical Illustration
- □ Outputs from Optimization Packages and Analytical Interpretation (?)
- □ Parametric Programming
- DUALITY THEORY
 - □ Model Formulations
 - □ Dual-Primal Relationships
 - ⇒ Implementation from Production Problem
 - ⇒ Implementation from Resource Allocation Problem
 - □ Shadow Price
 - □ Primal-Dual Methods for Optimization (Lagrange Algorithms)
- HOMEWORK #2 (2012/04/03 Due) : *Solve* the example problem of Homewood Masonry (ReVelle et al., 2004) by using LINGO, What's Best, and GAMS and *interpret* the results.