國立臺北大學自然資源與環境管理研究所 100學年度第二學期『環境系統分析』

課程講義(11&12):不確定性分析與隨機規劃 Uncertainty Analysis and Stochastic Programming

• PROBABILITY THEORY, STOCHASTIC PROCESS AND RANDOM FIELD

- Deterministic vs. Stochastic Systems
 - \Rightarrow Vagueness, Uncertainty and 'Stochasticity'
 - \Rightarrow Possibility, Likelihood, and Probability
- □ Probability Theory
 - \Rightarrow The Axioms of Probability
 - \Rightarrow Random Variables: Discrete and Continuous
 - \Rightarrow Statistics (Moments) of a Random Variable: Expected Value, Variance ... etc.
 - \Rightarrow Multiple Random Variables: Multivariate Statistics => Covariances
 - \Rightarrow Distribution: Probability Density Function, Cumulated Distribution Function
 - \Rightarrow Conditional Probability and Baye's Theorem => Bayesian Decision Analysis
- □ Normal Distribution
 - \Rightarrow Two-Parameter Distribution: Location and Dispersion => Mean and Variance
 - \Rightarrow Standardization and *t*-Distribution
 - \Rightarrow Confidence Interval and Standard Deviation
 - \Rightarrow Multivariate Gaussian Distribution
- □ Stochastic Process
 - ⇒ Serial Random Variables: Temporal, Spatial, Spatio-temporal Stochastic Processes
 - \Rightarrow Serial Correlation => Deterministic Term (Trend) + Disturbance (Noise)
 - \Rightarrow Poisson Process, Markov's Chains, and Random Walks
- \Box Random Field
 - \Rightarrow Random Variables Distributed ('Regionalized') in Space
 - \Rightarrow Spatial Variability (Correlation) => Trend + Disturbance
 - \Rightarrow Geostatistics: Kriging (Simple, Ordinary, Universal...) => GIS
- STOCHASTIC PROGRAMMING
 - □ Uncertainty Analysis
 - \Rightarrow Mathematical (Quantitative) Analyses Related to the Uncertainties about 'Systems'
 - ⇒ System Uncertainties: Uncertainties about Measurement, Modeling, and Parameters
 - □ Uncertainties Related to Mathematical Programming Systems
 - ⇒ Modeling Uncertainties: Assumptions, Objective Functions, and Constraints Mathematical Program with Recourse: Multi-Stage Stochastic Programming
 - ⇒ Uncertainties 'Embedded' in Decision Variables: Fuzziness, Grey Information...
 - (1) Intervals or Specified Ranges => Grey Numbers => Grey Programming
 - (2) Degree of Set Membership => Fuzzy Set => Fuzzy Programming
 - \Rightarrow Uncertainties about Model Parameters: Coefficients of Objective Function, RHS, A_{ij}
 - (1) Parameters (Coefficients) of the Optimization Model are Random Variables
 - (2) Treat Decision Variables as 'Deterministic Variables' to be determined

- (3) Probabilistic Constraints => Chance-Constrained Programming
- $\hfill\square$ Other Considerations
 - \Rightarrow Stochastic Dynamic Programming and Markov Decision Process
 - \Rightarrow Optimal Control and System Dynamics
- TWO-STAGE STOCHASTIC PROGRAMMING WITH RECOURSE
 - □ What is "recourse"? "Wait-and-See"?
 - \Rightarrow Recourse is the ability to take corrective action after a random event has taken place.
 - $\hfill\square$ Scenarios and Stages
 - \Rightarrow Deterministic Equivalent => Expected-Value Formulation
 - □ An Example (<u>http://wiki.mcs.anl.gov/NEOS/index.php/Stochastic_Programming</u>)
- CHANCE CONSTRAINED PROGRAMMING
 - □ What are Chance Constraints?
 - □ Significance Level => System Reliability
 - \Box Row Independence => Independently and Identically Distributed (i.i.d.)
 - □ Right-Hand-Side Random => Univariate Normal Distribution
 - □ Technical Coefficients Random => Multivariate Normal Distribution
 - □ Row Dependence => Joint Chance Constraint (relatively complicated!)

Chance Constraints:
$$p\left(\sum_{j=1}^{n} a_{ij} \cdot x_j \propto b_i\right) \ge 1 - \alpha_i; \quad \forall i = 1, \cdots m$$

(1) RHS b_i Random: Univariate probability distribution of b_i

i.
$$\alpha \equiv \geq$$

 $p\left(\sum_{j=1}^{n} a_{ij} \cdot x_{j} \geq b_{i}\right) \geq 1 - \alpha_{i} \Rightarrow p\left(b_{i} \leq \sum_{j=1}^{n} a_{ij} \cdot x_{j}\right) \geq 1 - \alpha_{i} \Rightarrow F(b_{i} = \sum a_{ij}x_{j}) \geq 1 - \alpha_{i}$
ii. $\alpha \equiv \leq$

$$p\left(\sum_{j=1}^{n} a_{ij} \cdot x_{j} \le b_{i}\right) \ge 1 - \alpha_{i} \Longrightarrow p\left(b_{i} \ge \sum_{j=1}^{n} a_{ij} \cdot x_{j}\right) \ge 1 - \alpha_{i} \Longrightarrow 1 - F(b_{i} = \sum a_{ij}x_{j}) \ge 1 - \alpha_{i}$$

- (2) Technical Coefficients a_{ij} Random: Multivariate probability distribution of $\sum a_{ij}x_j$
 - \Rightarrow Variance-Covariance Matrix: Positively definite (symmetric) matrix
- HOMEWORK #3 (2012/05/15 Due)
 - 1. Suppose that the first constraint of the Homewood Masonry Problem in ReVelle et al. (2004) is a chance constraint (RHS random), please construct the deterministic equivalent of the stochastic programming model.
 - 2. Suppose that the RHS of the first constraint is a random number with normal distribution of $b_1 \rightarrow N$ (28, 5²). Please use What'sBest and GAMS to solve the deterministic equivalent model and compare the objective values with respect to the variations of significance levels of 0.5%, 1%, 5%, and 10%.