國立臺北大學自然資源與環境管理研究所 100學年度第二學期『環境系統分析』

課程講義(13):非線性規劃與演算法 Nonlinear Programming and Algorithms

• NONLINEAR PROGRAMMING -- INTRODUCTION

- □ Formulations of the Models and Complexity
- Local Optima vs. Global Optima
- □ Convexity and Convex Programming
 - ⇒Convexity of a Function: Convex, Concave and Un-determinant
 - \Rightarrow Convex Region vs. Non-convex Region
- □ Analytical Solutions vs. Numerical Solutions
 - ⇒Linearization of Nonlinear Objective Function => unnecessary nowadays!
 - ⇒Software Packages => Lingo, What'sBest, GAMS (NLP) etc.

• UNCONSTRAINED OPTIMIZATION

- □ Minima, Maxima and Saddle Points
 - \Rightarrow Necessary Conditions and Sufficient Conditions
- □ Gradient of a Function (First Derivatives)
- □ Hessian Matrix (Second Derivatives)
 ⇒Positively Definite: All the Eigenvalues are Positive

• LAGRANGE MULTIPLIERS AND OTHER METHODS

- Lagrange Multiplier Method
 - \Rightarrow Constraints with All Equalities
 - \Rightarrow Properties of the Lagrange Multipliers
- D Kuhn-Tucker Conditions: Constraints with Inequalities
- □ Gradient Search Procedure (Greedy) => Danger of Being Trapped at Local Optima

• ALGORITHMS FOR NONLINEAR PROGRAMS

- □ Numerical Methods (Chang, 2002, Chap.5)
 - \Rightarrow Newton Method, Conjunctive Direction and Conjunctive Gradient Methods
- \Box Top-Ten Algorithms
- \Box Heuristic Algorithms => Soft Computation => Emulation of Natural Phenomena
 - ⇒Artificial Neural Network
 - ⇒Genetic Algorithms
 - \Rightarrow Simulated Annealing
 - ⇒Tabu Search
 - ⇒Ant Search, Ant Colony Algorithm, Swarm Intelligence, etc.