國立臺北大學自然資源與環境管理研究所 100學年度第二學期『環境系統分析』

課程講義(15):多目標規劃 Multiobjective Programming

• MULTIOBJECTIVE PROGRAMMING

- □ Conflicting between Objectives (Goals) => Trade-off among objectives
- D Non-dominance, Non-inferiority, "Efficiency," or "Pareto Optimality"
- \Box Terminology
 - \Rightarrow Feasible Solution (Feasible Region)
 - ⇒Decision Space vs. Objective Space
 - ⇒Tradeoff 抵換 vs. Pay-off 償付
 - ⇒Noninferior Solution or "Best-Compromise Solution"非劣解
- Categories of MOP Solution Methods
 - \Rightarrow Information Flow: Bottom-Up or Top-Down
 - \Rightarrow Techniques that Incorporate Preferences
- □ Generating Techniques: Evaluating Alternatives, Decision Support
 - \Rightarrow Weighting method, Constraint method
 - \Rightarrow NISE algorithm for two-objective problems
 - \Rightarrow Multiobjective simplex method, and others
- $\hfill\square$ Number of Decision Makers
- NONINFERIOR SOLUTION GENERATING TECHNIQUES
 - □ Weighting Method
 - \Rightarrow Indifference Curve (Linear)
 - \Rightarrow Extreme Points (in Objective Space)
 - \Rightarrow Computing Procedure:
 - 1. Specify the weights (positive, normalized)
 - 2. Rearrange the objectives
 - 3. Find the optimal solutions
 - 4. Illustrate the solutions as points (extreme points) in decision space
 - 5. "Interpolate" the noninferior sets
 - □ Constraint Method
 - \Rightarrow Range of the Objectives
 - \Rightarrow Computing Procedure
 - 1. Find the ranges of the objectives (construct the payoff table)
 - 2. Specify number of intervals (constraints)
 - 3. Rearrange the programming model and find the optimal solutions
 - 4. Plotting the solutions in decision space
 - □ The NISE (Non-Inferior Set Estimation) Method (Cohon, 1978)

- \Rightarrow Working on the Objective Space
- \Rightarrow Convexity of the feasible region
- \Rightarrow The Algorithm (Calculation Procedure and Termination Criteria)
 - 1. Optimize the objectives individually (construct the payoff table)
 - 2. Find the weighted objective, optimize it and calculate the termination criterion
 - 3. Decide whether stop or continue; repeat 2 if not stop
- HOMEWORK #5 (2012/06/05 due): Please use What'sBest and apply both the weighting method and the constraint method to solve the example illustrated in Cohon (1978). The model can be formulated as the following.

