國立臺北大學自然資源與環境管理研究所 103 學年度第二學期『環境系統分析專題』

課程講義(02):環境系統、模式與量化指標 Environmental Systems, Modeling, and Indicators

O.: Organisation for Economic Co-Operation and Development (OECD), <u>Handbook on Constructing</u> <u>Composite Indicators: Methodology and User Guide</u>, OECD, 2008.

D.: ENVIROMATICS11 - Decision support systems.ppt; ENVIROMATICS11 - ApendixA.pdf

B.: Dissolved Oxygen Sag Curve

• ENVIRONMENTAL SYSTEMS ANALYSIS: MODELING AND DECISION MAKING

- □ Environmental Systems and Environmental Modeling
 - A system is composed of interrelated components, connected together in order to facilitate information, matter and energy flows.
 - ➡ Modeling can be defined as the process of application of fundamental knowledge or experience to simulate or describe the performance of a real system to achieve certain goals.
 - ⇒ Physical modeling, Empirical modeling, and Mathematical modeling
 - ➡ Environmental Systems: Ecological/Biological, Chemical (Engineering) and Socio-Economical Phenomena/Processes
 - \Rightarrow Environmental Modeling => *e.g.*, Streeter-Phelps Equation of Oxygen Sag Curve (**B**.)

Real Systems					
Mathematical Models					
Deterministic Probabilist					
Continuous Discrete					
Static		Dynamic			Statistics
N = 1	N > 1	Lumped	Distributed		Markov
Algebraic equations	System of algebraic equations	Ordinary differential equations	Partial differential equations	Difference equations	Monte Carlo
	Linear] [Nonlinear		
[Analytical] [Numerical		

Figure 1.1 Classification of mathematical models (*N* = number of variables).

- □ Environmental Systems Analysis and Environmental Informatics (Environmatics)
 - ⇒ Environmental Systems Analysis: Applications of system approaches to dealing with

problems/issues of environmental modeling and decision making

- \Rightarrow Environmental informatics is a part of applied Informatics and supports methods and procedures of information technologies which contribute to environmental data analysis and environmental protection.
- \Rightarrow Topics of environmental informatics:
 - Data capture and data storage
 - Methods of environmental sampling
 - Environmental data analysis
 - Environmental statistics

- Environmental simulation models
- Decision support systems

GIS

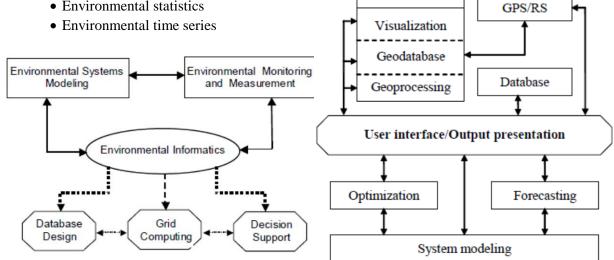


Figure 1. Components of environmental informatics and their interactions.

Figure 2. Outline of a computing system for environmental decision support.

- ⇒ Example 1: Identification of Statistical Distributions and Monte Carlo Simulation
- ⇒ Example 2: Dissolved Oxygen Sag Curve and System Dynamics
- INDICATOR, INDEX AND METRIC SYSTEM
 - □ Metric System: Performance, Benchmarking, Indicator, and Index
 - ⇒ Environmental Indices: PSI vs. API; RPI vs. WQI
 - \Rightarrow Sub-indices vs. Indicators
 - □ OECD Handbook (**O**.): Composite indicators which compare country performance are increasingly recognised as a useful tool in policy analysis and public communication.
 - \Rightarrow The construction of composite indicators:
 - Theoretical framework
 - Data selection
 - · Imputation of missing data
 - Multivariate analysis
 - Normalisation

- Weighting and aggregation
- Robustness and sensitivity
- · Back to the real data
- Links to other variables
- Presentation and Visualisation
- ⇒ Examples: RPI, PSI, AQI, <u>細懸浮微粒(PM2.5)指標</u>
- ⇒ Legatum Prosperity Index => The 2014 Legatum Prosperity Index
- Homework Assignment #1 (Reading Assignments) 請閱讀 OECD (2008) Handbook, 並且嘗試分析探討"2013 永續發展指標系統評量結 果",其中各指標之特性及其應用之綜整(composite)方法。