國立臺北大學自然資源與環境管理研究所 103 學年度第二學期『環境系統分析專題』

課程講義(03):線性規劃回顧與進階主題

Review of Linear Programming and Advanced Topics

W.: What'sBest! Version 12.0 User's Manual

L.: Lindo Systems LINGO Version 14.0 User's Manual

G.: <u>A GAMS Tutorial</u> and <u>GAMS - A User's Guide</u>

F.: <u>線性規劃</u> (Linear Programming)- 方述誠

D: Linear Programming and Extensions by George Bernard Dantzig

• COMPONENTS OF AN OPTIMIZATION MODEL

- □ Objective Function(s)
 - ⇒ Single vs. Multiple
 - ⇒ Linear vs. Nonlinear
 - \Rightarrow Convex (Concave) vs. Non-convex
- \Box Constraints
 - ⇒ Constrained vs. Un-constrained
 - ⇒ Linear vs. Nonlinear
 - \Rightarrow Convex vs. Non-convex Feasible Regions
- Decision Variables
 - ⇒ Continuous vs. Discrete
 - ⇒ Deterministic vs. Stochastic
- □ System Parameters (Coefficients)
 - ⇒ Deterministic vs. Stochastic
 - ⇒ Division into Sub-Models
- □ Formulation of Optimization Models
 - ⇒ Plain Form: Straightforward but not suitable for large-scaled or complex problems
 - ⇒ Algebraic Formulations => Parameters (Scalars), Vectors, and Matrices (Tables)
 - ⇒ Algebraic Formulations with text description of variables and parameters
 - \Rightarrow Sets and Indices
- PROPERTIES OF AN LP
 - D Proportionality, Additivity, Divisibility, Certainty, and Non-Negativity
 - \Box Non-negative Decision Variables => What if negative values are needed?
 - □ A "Convex Programming" Model
 - □ Additional Terminology
 - \Rightarrow Feasible Region or Solution Space
 - ⇒ Vertex, Extreme Points or Corner Points
 - ⇒ Decision Space or Objective Space
- SOLUTION PROCEDURE OF AN LP
 - Dere-Optimal Analysis, Optimization (Solution) and Post-Optimization Analysis
 - □ Graphical, Simplex, Dual Simplex, Interior Point and Other Methods
 - □ Infeasible, Un-bounded and Degenerate Solutions
 - □ A "Convex Programming" Model: Feasible Region and Extreme Points

- ⇒ Characteristics of Feasible Region for the LP: Convex, Compact, and Continuous
- ⇒ Extreme Points (Corner Points) vs. Interior Points
- THE SIMPLEX METHOD
 - □ Augmented Form of the LP Models
 - ⇒ "Less-than-and-equal-to" Inequality constraints => Slack variables
 - ⇒ "Greater-than-and-equal-to" Inequality constraints => Surplus & Artificial Variables
 - ⇒ Equality constraints => Artificial variables => 'Big-M Treatment'
 - □ Terminology and Procedure of the Simplex Method
 - \Rightarrow Basic vs. non-basic variables
 - \Rightarrow Feasible basic solution => "Adjacent"
 - ⇒ Ratio test for Pivoting
 - ⇒ "Optimality"
 - □ Simplex Tableaus and An Animated Presentation
- EXAMPLES OF LINEAR PROGRAMMING
 - □ Homewood Masonry -- A Material Production Problem
 - ⇒ Objective Function: Maximizing the production profit
 - ⇒ Decision Variables: Two building products to be produced
 - ⇒ Constraints: Resource availability, work hours, and curing vat capacity

Resource	HYDIT	FILIT	Availability
Wahash Red Clay	$2 \text{ m}^3/\text{ton}$	4 m ³ /ton	28 m³/wk
Blending time	5 hr/ton	5 hr/ton	50 hr/wk
Curing vat capacity	8 tons	6 tons	
Profit	\$140/ton	\$160/ton	

• SENSITIVITY ANALYSIS

- □ Overview and Post-Optimality Analysis
- □ Sensitivity Analysis on RHS (Resource) Coefficients
 - ⇒ Shadow price, marginal value of a resource and economic interpretation
 ⇒ Dual price (?)
- □ Sensitivity Analysis on Objective Function Coefficients
- □ Graphical Illustration
- □ Outputs from Optimization Packages and Analytical Interpretation (?)
- □ Parametric Programming

• DUALITY THEORY

- Model Formulations
- Dual-Primal Relationships
 - \Rightarrow Implementation from Production Problem
 - ⇒ Implementation from Resource Allocation Problem
- □ Shadow Price
- □ Primal-Dual Methods for Optimization (Lagrange Algorithms)
- HOMEWORK #2 (2015/03/17 Due) : *Solve* the example problem of Homewood Masonry (ReVelle et al., 2004) by using What'sBest, LINGO, and GAMS.