國立臺北大學自然資源與環境管理研究所 105 學年度第二學期『環境系統分析專題』

課程講義(04):線性規劃回顧與進階主題 Review of Linear Programming and Advanced Topics

What's Best! User's Manual

Lindo Systems LINGO User's Manual

Euler Math Toolbox: An Introduction => Linear Programming: Simplex Algorithm

線性規劃(Linear Programming) by方述誠 =>中央研究院數學所一數學傳播

<u>Linear Programming and Extensions by George Dantzig => RAND Corporation (Delphi)</u>

• COMPONENTS OF AN OPTIMIZATION MODEL

- □ Objective Function(s)
 - ⇒ Single vs. Multiple
 - ⇒ Linear vs. Nonlinear
 - ⇒ Convex (Concave) vs. Non-convex
- □ Constraints
 - ⇒ Constrained vs. Un-constrained
 - □ Linear vs. Nonlinear
 - ⇒ Convex vs. Non-convex Feasible Regions
- □ Decision Variables
 - ⇒ Continuous vs. Discrete
 - ⇒ Deterministic vs. Stochastic
- □ System Parameters (Coefficients)
 - ⇒ Deterministic vs. Stochastic
 - ⇒ Division into Sub-Models
- ☐ Formulation of Optimization Models
 - ⇒ Plain Form: Straightforward but not suitable for large-scaled or complex problems
 - ⇒ Algebraic Formulations => Parameters (Scalars), Vectors, and Matrices (Tables)
 - ⇒ Algebraic Formulations with text description of variables and parameters
 - ⇒ Sets and Indices => Equation Editor

• PROPERTIES OF AN LP

- □ Proportionality, Additivity, Divisibility, Certainty, and Non-Negativity
- □ Non-negative Decision Variables => What if negative values are needed?
- ☐ A "Convex Programming" Model
- □ Additional Terminology
 - ⇒ Feasible Region or Solution Space
 - ⇒ Vertex. Extreme Points or Corner Points
 - ⇒ Decision Space or Objective Space

• SOLUTION PROCEDURE OF AN LP

- □ Pre-Optimal Analysis, Optimization (Solution) and Post-Optimization Analysis
- □ Graphical, Simplex, Dual Simplex, Interior Point and Other Methods
- ☐ Infeasible, Un-bounded and Degenerate Solutions
- □ A "Convex Programming" Model: Feasible Region and Extreme Points

- ⇒ Characteristics of Feasible Region for the LP: Convex, Compact, and Continuous
- ⇒ Extreme Points (Corner Points) vs. Interior Points

• THE SIMPLEX METHOD

- □ Augmented Form of the LP Models
 - ⇒ "Less-than-and-equal-to" Inequality constraints => Slack variables
 - ⇒ "Greater-than-and-equal-to" Inequality constraints => Surplus & Artificial Variables
 - ⇒ Equality constraints => Artificial variables => 'Big-M Treatment'
- □ Terminology and Procedure of the Simplex Method
 - ⇒ Basic vs. non-basic variables
 - ⇒ Feasible basic solution => "Adjacent"
 - ⇒ Ratio test for Pivoting
 - ⇒ "Optimality"
- ☐ Simplex Tableaus and An Animated Presentation

• EXAMPLES OF LINEAR PROGRAMMING

- ☐ Homewood Masonry -- A Material Production Problem
 - ⇒ Objective Function: Maximizing the production profit
 - ⇒ Decision Variables: Two building products to be produced
 - ⇒ Constraints: Resource availability, work hours, and curing vat capacity

Resource	HYDIT	FILIT	Availability	
Wahash Red Clay	2 m ³ /ton	4 m ³ /ton	$28 \text{ m}^3/\text{wk}$	
Blending time	5 hr/ton	5 hr/ton	50 hr/wk	
Curing vat capacity	8 tons	6 tons		
Profit	\$140/ton	\$160/ton		

• SENSITIVITY ANALYSIS

	Overview	and I	Post-O	ptimal	ity /	Anal	ysis
--	----------	-------	--------	--------	-------	------	------

- ☐ Sensitivity Analysis on RHS (Resource) Coefficients
 - ⇒ Shadow price, marginal value of a resource and economic interpretation
 - ⇒ Dual price (?)
- □ Sensitivity Analysis on Objective Function Coefficients
- □ Graphical Illustration
- □ Outputs from Optimization Packages and Analytical Interpretation (?)
- □ Parametric Programming

• DUALITY THEORY

- □ Model Formulations
- □ Dual-Primal Relationships
 - ⇒ Implementation from Production Problem
 - ⇒ Implementation from Resource Allocation Problem
- □ Shadow Price
- □ Primal-Dual Methods for Optimization (Lagrange Algorithms)
- HOMEWORK #2 (2017/03/21 Due) : *Solve* the example problem of Homewood Masonry (ReVelle et al., 2004) by using What's Best, LINGO, and Euler Math Toolbox.